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"Sei D ein dichter Bereich in einem Hilbertraum“und sei £#(D) die maximale Op*-Algebra von
) Operatoren auf D. In der Arbeit-wird die gleichmaBige Topologie 7y auf £+(D) fiir den Fall
-, ‘untersucht, daB3 D ein DF-Raum beziiglich der Graphtopologie ist. Als Hauptergebnis wird’
" eine Charakterisierung der beschrinkten Teilmengen von D und der Topologie 7p durch be-
schrinkte ‘selbstadjungierte Operatoren in H gegeben. Insbesondere ist jede beschrinkte Teil-
meng¢ von D in einem beséhrinkten Ellipsoid enthalten. Als Anwendung wird bewiesen, daf3
jeder Operator in £+(D) durch beschrinkte Operatoren approximiert werden kann,

H}I’CTL 'D'naornoe TOANPOCTPAHCTBO B ruab6epTOBOM NpPOCTPAHCTBE U nycrs ¥+(D) maxcu-
ManbHax Op*-aarebpa anHeftuuix -onepatopos na D. B paGoTe paBHOMEpHAA TOMOJNOIHA T .
Ha £*(D) uccsienyerca B ciydae korna D ABIAeTCA NPOCTPAHCTBOM Tina DF OTHOCHTENHEHO
JIPOCKTUBHOI Tomomornn. [napubit peaynuTar — XapaKTepH3aLua OrpalMyeHHBIX IOUMHO-
#ecTB npocrpaHcTsd D W TONOJOTHIT T, C HOMOM{BbIO CHIBHMIX OrpaHnYeHHBIX CaMOCO-
- IPFREHUBIX ONepaTopoR. B 4acTHOCTH, Kail0e OrpaHIYeiiHOE TOIMHOMKECTBO TPOCTPAHCTBA
* . D .conepRuTCA B HEKOTOPOM 3;uIMINCOMAE. B mpumeneHite RoOKa3aHO 4TO KA oneparop

B £*(D) ABNAETCA NMpeJesIoM OrPaHHYCHHBIX OTNEPATOPOR. :
. : B i

‘Let D be any depse d_omdin‘in a Hilbert space and let £+(D) be the maximal Op*-algebra of o
(possibly unbounded) linear operators. In this paper the uniform topology tp on f+(D) is in-
-vestigated for the case where D is a ‘DF-space with respect.to the graph topology. As a main

result, a characterization of the bounded subsets’of D arid of the topology tj) by strongly bound- . .

ed selfadjoint operators is given. Especially, each bounded subset of D is contiined in some
bounded ellipsoid., This is applicd to approximate the operators in #+(D) by bounded oncs. . .
. . N - ] . \ ~ *
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Among the.non-normable topological *-algebras, the maximal *-a]gebx'a'f*‘(D) of

{(possibly unbounded) linear operators on a dense linear subspace D of some Hilbert,
space H islof spécial interest since this‘algebra and its subideals are used in_ quantum

physics. Therefore, the structure of #*(D) and of the domain D supporting the.alge-
\bra has been studied extensively. But up to now, far reaching and deep results

could only be'proved in the case of a Fréchet domain D. Using the fact that the struc-

ture of L*(D) depends in some sense only of the structure of the bounded subsets of

D, KGrsTEX [7] could generalize some essential results to so-called quasi-Fréchet do- .
‘mains. : . L
B But these methods fail completely for domains which are strong duals of non- >
normable Fréchet spaces. Examgles of -such domain will be given in Section 3..In"
the main'part of this paper we will develop a totally new .technique to attack this

dual metric case and we will demonstrate the power of this technique in proving

that any operator in £*(D) is the 7p-limit of a net of bounded operators. In the case

of metrizable domains this was shown by KURSTEN in [7]. As the key result in this
© paper appears Theorem 5.1. It states that every closed DF-domain admits a funda-

i
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i mental sysbem of bounded sets which are all “cllipsoids”. A refinement. of the tech-
nique presented here could allow.moreover a detailed study of several subideals of
£*(D) as nuclear or compact operators as it was done for the metric case in [4].

~

. 2. Notation and basw results

" As usually, for any p'ur E and F of locally convex spaces we denote by ¥ (E, F) the
" linear space of all linear continuous operators from E into-F. Concerning the notion
- of maximal Op*-algebras'we will follow [10]. First of all let.us recall this definition "
and some well-known results. In all the following let"H be any fixed Hl]bert space and
_let D b€ any dense linear subspace of H. For any linear closable operator 4 in H we

denote by 4, A* and D(A) its closure, adjoint and domain, respocnve]y The restric-
tion of A*’toD will be denoted bv Aar. For glven D the mammal Op* a]gebmassocmt- :
ed to D is defined by , .

£+(D) = {4 € End (D): A% exists D D(A*) A*(D )-S D).

Obvlously, L¥(D)is a *-a]gebra The graph topologv tonDis dcfmed by the system
of all seminorms - . .

pa(d) = ||4d| d¢ D, A f*(D)

. This topology coincides with the projective topology on D defined by the mappings
"A:D— H for 4 ¢ .f*(D) Since the identity 1; belongs to £+(D), the canonical
‘embedding J: D> H is t- -||*[-continuous. \Ioreover any opera,tor A€ f*(D) is ¢-t-
continous as a map from D into itself. :

From now on we restrict ourself to closed domains, i.e.; we supp0se

D—n (D(A): € £H D) =0 {D(A**) A€ .Z’T(D)}

The sclfadjomt domains chalacteuzed by D=n {D(A*) A € £+ (D)} appear as as
special case of such domains. Smce the graph topology ¢ is even generated by
the system of energetic norms

| paT) = (I4dIE £ 1A, A € 74(D),

and since t,he domams D(4) are Hilbert spaces with respect to the energetlc norm, it

~ follows that D is a projective limit of Hilbert spaces. In particular, (D, ?) is a semi-
reflexive and complete locally convex space. Now, the following main questions can .
be posed: .

]

1. To what extent does the topologlcal str ucbul eof D reflecb the structure of £+(D) .

and vice versa? ’ g

2, What topologies should be mbroduced on .[’*(D) and what about dense. subsets
-and states? S
. 3. What suba,]gcbras does e\lst in .Y’*(D)

1401 the answer to these qucstlons the introduction of the stxong dual space Dy’
: of (D, t) proves useful. *

To avoid antilinear mappings we mtroduce the’ comple\ corijugate space D* of D’
by. replacing the original scalar multiplication in D’ by the new one (4, z) — iz
Since any vector h € H defines a continuous linear functional f, on D by (d, fs)

= (d, h)y, we get linear continuous embeddings

J =J,J,: D — H - Dy*.

-
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If we consider the bipolar of D in D', we obtai‘n R
GID® = (1 DPf = o =0

This shows that D is ¢(D’, D)-dense in D’ by the bipolar theorem Since D'is semi-
reflexive, it is even ¢(D’, D"’)-dense in- D'. But then Mazur’s theorem shows that D

is also dense in Dy’ and Dy* with Fespect to the strong topologv © .

Proposxtlon 2.1: E’very operator A € ¥ +(D) admits a umquel Y determmed exten-
sion to some lineat continuous ope'rator A € Z(Dy*, Dy*). . .

" Proof: Define 4 as the adjomb operator of A*: D — D with respect to the dual
pair (D, D) For any d, dy € D we have <do,Ad)DD = (A%dy, dYp.py = (A*dy, d)y

=+(d,, Ad),, = (do, Ad)pp. This shows Ad = Ad for all' d € D. Since D is weakly
dense in Dy’, 4 is the only (weakly-)contmuous extension of 4 I

Let us consider now some subideals in the algebra .Z’*(D) Very small subldeals
can be-obtained b) the following method duc to TrMMERMANXN [16]. Let A(H) ‘be any
ideal of operators in the algebra #(H) of all bounded linear operators on the Hilbert

space H. Then the set” . .

. \ .

A(D) = (S € £+(D): XS7Y ¢ ‘4(11) forall X, Y € .Z’*(D)} ‘

is 0bv1ouslv a x-ideal in (D). As above, XSY denotes the closure of the operatorA
XSY. The idcals A(D) are very small, because they contain only bounded operators.
Of special importance in this paper is the ideal

, B(D) = (S € £+(D): XSY ¢ Z(H) for all X, Ye £+(D)},

and we wnll mainly deal with such operators here. But the mct,hods presented below
- can also be applied to the ideals 4(D). '
For closed domains D the 1deal JB(D) can be represented by [14, Chapter 3)as

, AB(D) = (S € .Y’*(])) XS,8Y € £(H) forall X, Y € £*(D)}.
“The following easy charaetenzatlon of the opelatms of B(D) is very importanf

Proposition 2.2: An operator T € .[’*(D) belongs to B(D) z/ and only if there is an
extension Ty € £(Dv*, D) of T such that the /olloumg diagram'commutes: .- :

D*——&D

ST N .
3 c .
Here J dénotes the canonical embedding of D into.D* introduced above. Using natural
tdentifications we can express the proposition by the formula B(D) = £ (Dn*, D).

Proof: We have to improve.the eonsbmcmon of Pr oposmon 2.1. Let T e B(D)be
gw(,n In a first step we will prove T*(H) S D and T* € X(H, D). For fixed h € H,
X ¢ £*(D) and d € D(X*) we have |(X*d, T*h)| = |[(TX*d, h)| < |TX*| |idll ||R)|.
This shows 7™h € D(X**). Since D is assumed to be closed, this.implies T*h € D. .
For any ¥ € £+(D) we get py(T*h) = ||YT*h|| < ||YT*| ||k|l, and this provesthe con-
tinuity of 7*: H — D. Next, let us consider the adjoint-operator (T*)': D" — H'. It.
can be identified with some linear continuous operator Ty: Dyt — H. Let us prove
that the range of T, is even contamed inD. 1*1\ Xe .t’*( ), d€ D(X"‘) and d’ € D*.

é
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The contmulty of d’ means that there is some operator Ye¢ .?’*(D) such that ]( d,d")
< py(d) = ||Yd|| for alld'e D. So we get ~ * 4 ‘

- [(X*d, Tod )ul I(T*X"'d Y.l < IIYT*X*dII = HYT*X*II el

This’ proves Tod’ € D(X**) for all X ¢ £+(D). Hence T\D* < D. It remains to prove
the contmulty of Ty: Db - D. Let Y € £*(D) be glven Then we have »

(Tod )= IIYTod ”H = Sup I((Jl YTod Jul = Sup KT*Y+d, d)onl
< sup l(y, d’ >n D | sup. (y, d\>l = pae(d’), :

YET*Y+S veM _ : S : .
where Sy is the unit ball in H'and M = T* Y+*8y is t-bounded in D because of the
estimation py(M) = || XT* Y*Sull < | X1T* Y*H This proves T, € _Z’(Db*“, D). Obvis-

ously, T, coincides with 7' on D .
' Conversely, let any T, € .Z’(Db , D) be given. For fixed X, Y € £*(D) the product‘

: YTOX is a continuous map from Dy* into D. Especially, thls Is.a continuous map
- from H into H. ThlS proves YT, Xy € .Z’(H) |

-

. There is a close donnéction between the set L?(D) and- the natural bornology of
- (D t) for special dbmains. For Fréchet domams this was. dlscovered in [4] and in [8].
In Sectlon 4 we will trea.t the DF-case. .

N \
, .

3. Selfadjoint _DF-domains T -
!l . - ’ L
"In this section we present a gcneral method to construct DF- domams Let us recall -
. the definition of DF-spaces. They have been introduced by Grothendieck to have a
nice.class containing the dual spaces of all F-spaces (F = Fréchet). Conversely, the
strong duals of DF-spaces are F-spaces. But there exist DF-spaces without any pre-

- dual: There are several different definitions of DF-spaccs. Here we choose the follow-
“ing one (for equlvalenb condmons see [3]).. =~ T~

Definition 3.1: A locally convex space,E is a DF-space, if it has a countable 4

+ fundamental system of bounded subsets and if the intersection of any sequence of

closed absolutely convex zero-neighbourhoods is a /ero-nelghbourhood prov1ded
that it absorbs all bounded subsets of E. - ~ MR

It is easy to'see that every metrizable space with a countable fundamenta,l system
of bounded sets admits a bounded neighbourhood. So it must be normed. This implies
that ‘& non-normable DF-space cannot be metrizable. Now, let us start with the
construction of DF-domains. This generalnes an example given in [9].

Let « = (x,) be any increasing sequence of positive real numbers satisfying

S ¢ )

! lim1 0.
.‘Hmnn/a,,;—) ,

Such sequences are called nuclear exponent sequences of finite type. The assomated
power series space of finite type is the space . _— -
. A X .- -

T = All(oc.) 'i.{d € RN: Y |p*ra,| < oo for all.0 < o <_'1}~
. n . ,' S, -
. .
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This is a nuclear F-space with respect to the ‘‘normal’ topology given by the semi-
norms p‘,’(a)-z 2 lo%a,|, 0 <o < 1. ' i

’
N

Proposﬁnon 3.1: The foléowmg systems of seminorms are equwalent on X (0 <e
< 1) (s . \ "

(i) 2. (a) Z 0%, (H) Pel@) = (Z' Ie "a I )"2 (i) Pe“’(a) = sup Ie""anl-

i

Proof: CLear]y, we have pf"(a) S Po(a) =< p,’(a)foralla € RN, To prove converse _

inequalities we first remark that, by (1), for every 0 < u << 1 there is sorme number'
n(,u) such that In n/oc,, + Inu = 0 for all » = n(u). But this inequality is equivalent

"to n,u‘» <.1 for all n = n(u). Thus‘ we get for O0<o< 1-and b= Vg the estimation’

w\

Po ((na,.)) sup |ng* "a,| + sup |ng*ra,} .
~ n<n(p) nnu) . s . ' _
. én(»u)pf(a) + (S @ S ont@, @
. N (‘/ N

where ¢, is some constant mdependent of a. This implies
pe'(a) = Z' lo%"@,| = Zn'ze n? lay| = 2 sup le® "nza al .= 2¢ p,°°(a)
' _wherezj =04 1
Coroil_ery ‘32 ‘We have
T =@eRS:p=@) <oVWO<g<l . =~

\‘='{ae[RV pg(a)<ooVO<g<l}

Next, we, wx]l consider 2 as an algebra of diagonal operators on some subspace of -~

l,. Let&f"be theKothe dualofi’ Le. , o , "
=.fl”‘='{d€[R"r Z|da,,|<ooforalla€2’}

Thisjsa complete loca,lly convex space with respect to the normal topology given by

S

pa(d) Z[duanly a€2" . o o (3)

Sincel, & X we haveD = = cl,. As in Coxollary3 2, this spaceDallows someother -

I epresentamons

'

' In fact we havé

pa'(d) _ Z Id,,a,,l < (Z n'z) sup ld,.n2a,,| =-2pp®™ (d),

~

where b = (n2a,). Since a € Z, we. get b € 2 by (2). .

Prop051t10n 3.3 The space D together ‘with the equwalent systems o/ seminorms (3)

and (4) ts the strong dual - space of the nuclea'r space L. Especially, D is.a nuclear DF- o

space contained in l2

N -
Y

7

= (deRS: pa(d>~(.>:|da|2)"2<ooaef} ) , .' X
{de[R‘ p¢°°(d)—<3(lp|da|<oo aE.Y} - @



¢

P
-

~

408 - H. JUNEK » - o a ‘ .

{

" “This completes the pfoof, - ,

. Proof: As a linear space, D is the topological dual of 2 with'respect to the normal
topology on  [6, §30, 8]. Tt remains to be shown that the strong topology b(D, )
‘on D coincides with the fopology given by the seminorms (4). Clearly, thistopology is
weaker than the strong topology On the other hand, let M S 2 be anyp(, ®-bounded
subset of 2. Then there is some constant c, such that |a,e*| < ¢, for all » ¢ N and
alla € M. Set b, = sup {|a,]: a € M}. Then we have Pe™(b) = o, thusb € L. But M
is contained in the inter va]l [—b, b]. Thls proves. ‘ )

_ prld) = Ii\[—b_.bl‘(d)‘ : S[UEbllz dia;l = Z ld ib; | = Do (d) I

! ) : . NS
. . -

R . I v ’ ’ . ' " ' ’ -
Now we state the main fesult of this section : o

i

~ Pr opos1tlon 3.4: For every nuclear exponent scqucnce the space D = A,(x)* isa

sel/adyomt domain in l, and the graph topology t on D coincides with the topology given
by the semmorms (4). E’specmlly, (D, t)isa nuclear DPF-space.
. I
Proof Inafirst step we consider thé commutative algebra  asan operator’ algebra
A on D by assoc1atmg to each a € & the diagonal operatox D, Z @nen ® e,. Here

(en) denotes the canonical orthonormal basis in ;. Since [[Dad||? = Z |y d a2 = pa(d)?,

the operators D, map D into itself, and the graph topology t.« generated by 4 on D,
coincides with the natulal “topology (4). Since D, is a selfadjoint operator on the Hil-

bert space l2( a) = {x: ) |z, a,,] < oo}, the domain D = n {l(a):a € X} is selfad- -
joint. It remains to be - proven in a second step that 4 = ¢, where ¢ is the graph topo-
]ogy generated by’ the maximal Op* -algebra £*(D)on D. To this end we use the follow-
mg lemma due to KURSTEN [9] (recall that a sequence (e,) is an uncondmonal basis
in some locally convex'space D, if for any z € D there are scalar coefficients «l, such

that the net 2 onen: I S N, Lfiniter is convergent to z):
nel |
Let (e,) be any ortfumormal sequence in I) < H. If (é,) is an unconditional basis for
some closed Op*-algebra A on D .then it is an uncondztwnal baszs for any closed Op*-

algebm on D. .Moreover, we have

5 (&, en)? 1de,l < oo for all 4 € £+(D) and all x € D,

Using. this lemma we can show theé coincidence of t4 and ¢ on D. The canonical

basis (e,) in D is an unconditional basis for (D. t4), in fact, it is even'an absolute basis
by the deflmtlon of D and the topology (4). By the lemma’ we have T

-

pX | d en) ]IAe,.III2 < oo for all deD,Ac f"(D)

Since d = (p%) € D for all 0 <9 < 1, this 1mplles a= (l]Ae,,l[) 6 Ve by Corollal_y 3.2.
Since 4d = Z (d, e,) Ae,, we fmallv obtam .

R 4(d) = ||4d||.= lI 2 (@, en) el =2 I(t?, e,.)l lldeall.= pa.(d).,

Thls pnoves t = l‘,¢ | ~

’
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- £*(D). The main result in this section is the followmg theorem

‘4. Bounded Hilbert balls in domains
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In this section we will give a characten?atlon of the bounded Hl]bert ballsin domams 5
The set of all absolutely convex and bounded subsets of (D, t) will be denoted by

B(D). For every set M € B(D) the assocmted gauge functional is dcflncd by

pu(d) = inf {p > 0:d€oM}., .

If d is- not in the linear hull of 3 then we pub om(d) = oco. The lmeal hull of JII inD
will be denoted by D(M). If M is closed-then D(M) becomes a Banach space with
respect to the norm py, and this space is continuously embedded into D. This is a
consequence of the comp]etenes of D (cf. [3, 1.3.4]). A set M € B(D) is called to be
a bounded Hilbert ball, if its gaugé functional py satisfies the paralleloglam equation

Pu(@ + Y + pu(@ — y)F = 2pw@? F pu@P). 0 3)

In this case D(M) is a Hilbert space under Pu for closed sets M and the assocmted

scalar product will be denoted by [z, y]. It is very important that thc Hilbert ba]ls'
in D can be characterized in the fo]luwmg way. ,

Proposxtlon 4.1: For every closed and bounded Hilbert ball M < D there is some
positive operator T € RB(D) sich that M = T(Sy). Conversely, if T' is any operator in
AB(D), then the set M = T(Sy) is a bounded Hilbert ball. .

Proof Let us start with the second statement. If M = T(SH), then its gauge
functional can be computed as py(y) = inf {}z]: ¥y = Tx}. But the norm satisfies the
paralle]ogram equation and this propel ty transmits to the 1nf1mum Furthermore, if

‘any operator 4 € f*(D) is glven then.we have [AM)| = ||ATSH|] < |AT]: This proves

the boundedriess of M in D. Conversely, let'any closed and bounded Hilbert ball M

in D be given. As above, we denote by [-, -] the sca]ar product associated t6 pyr. Slnce

M is’even bounded in H, there is some constant ¢ > 0 such that

1

[z, x] -pu(x )2 = c ||z||* for all z E M. : (6) .'

Let Hl be the norm closurc of D(M)in H! Smce ever) pyu-Cauchy sequence in D(M)
is convergent in D(M), the form [-, -] is even closed in the sense of [5]. By [5, Thm.
2.33] there is some positive operator W in H, such that D(M) & D(W) € H, and
[z, y] = (Wx, Wy)y for every z,y € (M) hspemally, we have

pule) = Wl for all z € D(M). o L
From N( ) + R(W) = H, and-N(W) =0 by. (6) we obtam R(W) = H,. By (7), the

" map W: I)(M) -> H, is a py-||-|-isometry. Hence, R(W) is norm-complete in H,,
_ since D(M)is complete. This shows R(W) = H, Since N(W) = 0, the inverse-operator

W-v: H, - D(M) exists and is an isometry, too. I£ specially, we have W-1(Sy,) = M.
Now, define T' € Y(H) by T(z, @ ;) = W'z, for x, D, € Hy D (H — H,). Then
we have T(Sy) = M and T = T* = 0. Since M is t-bounded; the sets YT'Sy = Y M
is norm-bounded for all ¥ € .?’*(D) Therefore, Y1' had a bounded closure in H.
Slr)ce TY < (YT*)*, the same is true for 7'Y. This proves T € B(D) 1

9. Bonnded subscts m DF domains

As aheadv mentloned in the mtroduchon the chmactcruatlon of the bounded sub-

sets plaw a key role for numerous qucstlons concerning the structure of .D and of

.

¥
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Theorem 5.1:-Let (D, t) be any closed DF-domain and let‘ M be (my.subset of D.
" Then the following conditions are equivalént: : '
<. (i) M ist-bounded. T . T, - ,
(i) There is some bounded Hilbert ball containing M. o
(iii) There is some operator T € B(D) such that M < T(Sy). . 7

s . ' o
For F-spaces a similar result has béen proved in (8] In view of Proposition 4.1 it is:
sufficient to show that every ¢-bounded absolutely convex and closed subset of D is

contained in some boiinded Hilbert ball of-D. But before we need some deep results -
from the theory of opérator ideals in“Banach spaces. Let £ and F be any Banach
spaces. An operator T' € 7(E, F) is called to be a Hilbert operator if there is a factori-
~zation T = SR with R ¢ ¥(E,H)and S € (H, F), where H is a Hilbert Space. The

" set of all Hilbert operators from E into F will be denpted'by JE(E, F). It'can be shown

+[12] that the quantity S B

- AT = inf R 18]
defines a norm on JH(E, ). Here the inﬁmum_is’ taken over _ali possiblefactorizations
of T’ through someé Hilbert space. It is easy to see that for operators T' € ¥(E, F)with
dim R(T') = d < oo the inequality |||T]|] < d lIT|| holds true. : .
. M ~ ) ’ .‘ . . ) . . a

The next proposition,is crucial for the proof of Theorem 5.1. Roughly spoken, this
proposition states that Hilbert operators can be characterized by its finite-dimensio-

" nal parts. Let dim () be the set of all finite-dimensional-subspaces of E. For M ¢

dim (E) we dengte by Jy the canonical embeddihg of M into E. Analogously, let
codim (F) be the set, of all subspaces of F of finite codimension. For'N € ¢odim (F)
let @v be the canonical map from F onto the factor space F/N-

. - 3 - N

- Pr."opoéit;'io'n 5.2: Let E and F be any Banach spaces. An operator T € ¥(E, I«;) sa

- Hilbért operator if and only if there is a constant ¢ depending only on' T such that

H@xTJIu|l| < ¢ holds true for all W € dim (E) and all N € codim (F). -

* The proof of this proposition,can be found in [12, 19.3.7/8]. The-idea runs as follows.
The finite-dimensiongl operators Qy7T'J,, for N € codim (F) and M € dim (E) admit . ~
uniformly bounded factorizations through Hilbert spaces. Using the ultraproduct tech- *
nique one can reconstruct the operator T from its finite-dimensional parts. But the
ultraproduct of Hilbert spaces is again a Hilbert space. This yields the desired facto-
rization of T'. Now we are ready to prove the theorem. )

Proof of THeorem 5.1: Let M-be any ¢-bounded, ébsolutely convex and closed
subset of D. The linear hull D(M).of M in D is a Banach space with respect to the
gauge functional p. Suppose for the moment that there would be another bounded,
absolutely convex and closed subset M, of D containing M such that the embedding
map T': D(M) — D(M,) factorizes through some Hilbert space H, as T = RS. Then
the set B(Su,) would be a bounded Hilbert ball in-D(M,) < D, and (ii) would follow
from. M = T(M) = RS(M) < ||S)| R(Sy,). Se we have reduced the proof of the theo-
rem to the existence of such a set' M. Let us suppose now that such a set M, would

" not exist. Since D is supposed to be a DF-space, there is a countable fundamental
‘8ystem (B,) of closed, absolutely convex and bounded 'subsets. We may suppose
‘M < B, and 2B, S B,,,. The linear hull D(B,) of.B, in D is a Banach space with

~respect to the norm pg,. Since M < B, for all # € N, the canonical embedding 7': .
D(M) — D factors through the-canonical embeddings C,: D(B,) — D according to _

<
/

N .
A

-,
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‘thediagrani" ST SR

D(M) ——————D

\‘D(B,,)/ L i

- < ,

: By assumptlon non of the maps T, is a Hilbert map. According to-Proposition.5.2
.there are subspaces M, € dim (D(M)) and N € codim (D(B,.)) such that the opera-
tors . .
QT My DU > DB, > DB, L
’satlsfy 11@:7» J,,l|| > 2n For abbrewatlon we set Y, = D(B,,)/N Put &=d,",
~ where d, = rank J, = dim R(J,). Now, we use ProposMon 4.3.11 of [3]. This result

states that for every ¢ > 0 there isa lmear contmuous operator.S, in the non-commu-

tative didgram ) . . e
M,.—>D(M)’—">D(Bn>'.°—,"f> Y, : |
. . AN NP o ) ' - (
N c"\~ /'l ‘ v . . K
~Np/ A : X

) ° ’ N
‘such tha.t ||S C,,II =2 and (S, G —Q, )T J',,Il < €. Thls means that up to & the

operator S, is a bounded.lifting of @, on'the finite-dimensional subspace T',J ,(M,) -
< D. Now, we can estlmate ‘the Hllbert norm of the finite- dlmensmnal operators as

> follows: : " o "
U I“QnTan — ST = 111(@n — SnCn) Tn‘JnI“ T .
o L =@ — 8iCa) Tadulids = 1
_Thls proves ' 4 " . .
WIS Tl = I”QnT J - (Q T —S TJ )1|| o
b ' ZIHQnT Jalll —lllQnTJ — ST 22”'—127&

- We pull back now the closed unit balls Sy, of the spaces Y, to D by bhe defmltlon
’ S V=ns “(S,,n)nEIN} S ‘ :

Lét us prove that V is a t- nelghbourhood in D In view of. the contmmt,y of t,he S
and of Defmmon 3.1 it remains to be shown that ¥ absorbs each B,. Since the finite

. 1ntersect10n n {S,"1(Sy,): n < k}.is a t‘neighbourhood, it absorbs B,. But forn > k_
‘we have 2B, & C B,and S,(B,) = S,Ca(B,) < 28y, because of ||S C.ll £ 2..This means
‘B, < 8,~1(Sy,). Therefore, V absorbs By: This shows that V is a ¢- nelghbourhood in
D But then there exists some operator A E*f*‘(D) such that

P Pv(d) < pat(d) = ([AdIP + ()52 R (8)
for all d € D. So we have the followmg product of operatoxs

1
. S

M,,——»D('M)x—+ D . Y, .
' - AN IR o P
' SR 2NN 5. - -
. \D(Z)./

-
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WhOl e P, is the continuous embeddmg of D into the domain D(A) of A.equipped with "
the norm p,°*¢, and where 8, is some operator satlsfvmg S WPr= 8, By (8), 8, is
uniquely determined and of norin 1S < 1. Fmally we.can replacc Y, by some
factor space of D(4). Indeed, the space N, = ker 8, is of finite cod1mens1on in D(A) S
" and we get a factorization of §, through the quotient map Q,": D(4) - D(A)|N,a

S, = S,, Q.. The umquely determined operator S :D(4)/N, — Y, is of the-norm

||S' || = |]S,,|| =< 1. This-way we have constructed. operators . L
‘ Q. PTJ,: M =5 I)(M) — D(A) - D(A )/N '
such that o - : -
< WISATTLII = 18,PAT L )I| = 118,@u PaT

L o = 18NN PAT Tl < [11Qu PaTT Wl

"This lmplles PAT 4 %(D(M) D(A )) by Prop051tlon 5.2, but thls contradicts the fact
that D(4) is a Hilbert space. Thus we are done | . . .

A . .

6. The uniform topology 7, and its characterization for DF-domains = - . .

Thereé are several poss1b1]1t1es to introduce, natural topologics on f*‘\(D) One of the
. most important among these is the so-called uniform topology 7p. ‘This topology was’

introduced by LassxER in [10] and it-was intensively'studied in the past by several
" authors. Concer ning the case of F-domains we refer once more to-[8]. lhc topology
» is'given by the system of all seminorms: A

" pul4) = sup ((4dy, d): dydy € M), A € 2¥(D),

" where M runs overa basis of the absolutely convex and t-bounded subsets of D. The
embedding D S H S Dy* leads to* the embeddmg £+(D) S £(D, Dy*).. In this
_context, the topology 7p appears as the restriction of the bounded open topology on
£(D, Dy*). The results of Sectlon “allow a chalactcrllatlon of zp by thesubalgebra

(D) of f*(D) - . ”

"Théorem 6.1: Let D be any closed DF domam Then the umform topology 7p.ON
f‘(D) s given b/ the system of all ‘semmorms

- I

pp(A) = |l’I'AT|{ Aef*(D),Tc¢ $(D) T=0.
Proof: The statement follows directly from Thcox em 5.1 and Proposition 4.1 B~

The foregomg theorem allows the application of the techmquc developped for the
metric case in [8] and [9] also in the DF- case. :

Proposntlon 6.2: Let D by any closed DF-domain. For every X € .Z’*(D) and for
every tp-conlinuous seminorm p there is some orthogonal projection P € <59( ) such that -
p(X — PXP)< 1.

Proof: By Theorem 6 1 we may assume p pr for some T € $(D), T=0. Let
T J AdE; be the spectral representation of 7'. First of all, we prove that for every
'¢"> 0 the plOJecmon .

.

o

P¢=jdE1“ : ' . ‘ -
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’ / : .
: belongs'to AB(D). To this aim we'introduce the operator’

R—f,—ldE, | . B

Then we have R, E.Y’(H) and P,=TR,. Smce P(H)=TR,(H) S D, we get
P, ¢ £*(D). But P,: H —~ D is even ||-[|-- contlnuous Indeed, for every 4 € £*(D) ’
we havc S s

(P h) = ||[APAl = |ATRA| = IIA—TH 19208111 PR

e

Therefore, the adjoint operator PF: D — H exists; and P, +P € ¥(D*, D) is an
extension of P,. This proves P, € B(D) by Proposmlon 2.2. Defme Q=1—-P, and
let X € £+(D) be given. Then we obtain . .

pr(X — PXP,) = |T(X — P, XP )Tl = ITXT — TP.XP.T|
foo. = |QTXT + PTXTQ)
' < IQTNIXTY + 1P ITXN I1TQ < el X7l + ITX] e <

4 N

for Snfflcmntly smalle >0 1

Corollary 6.3: Let D be any closed D#-domain. Then the set <$(D) 18 tD-dense n
b +(D)
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\_'l . . ) ~N N e
REFERE\TCES | ' E ST

-~ s

[1] GROTHL\ DIECK, A.: Sur les espaces (F) et (DB) Summa Brasnl Math. 3 (19:)4 ) 6, 57—121

.[2] JuxEk, H.: Factorization of operators mapping (F)-spaces into (DF)-spaces. ‘Z. Anal.
Anw. 1 (1982) 4, 37—45.

[3] JuxEexk, H.: Locally Convex Spaces and 0perator Ideals (Teubner Texte zur \Iathemumk
Vol. 50). Leipzig: B. G. Teubner Verlagsges. 1983.

(4] JuNER, H., und J. MULLER: Topologische Ideale unbeschrinkter Operatoren im Hilbert-
raum. Wlss Z. Piad. Hochschule Potsdam 25 (1981) 1, 101 —110.

{5] KaTo, T.: Pertubation Theory for Linear Operators. Berlin— ]-{cldelbcrg New Yorl\

. Springer-Verlag 1966. .

[6] KéTHE, G.: Topologische lmearc Raume I. Berlin— Heidelberg—New York: Sprmger-
Verlag 1960.

- [7] KirsTEN, K. D.: On topological. properties of domains of unbounded operator algebras.
In: Proc. 11. Intern. Conf. Operator Algebras, Ideals and Their Applications in Theoretical
Physics (Teubner-Texte zur Mathematik: Vol 67). Leipzig: B. G. Tcubner Verlagsges.
1984, 105—107. .

(8] KiirsTEN, K. D.: The complctlon of thc maximal Op ulgebru, on a Frechet domain. Publ.
Res. Inst. Math. Sciences, Kyoto University 22 (1986), 151—175.
[9] KirsTEN, K. D.: Lokaikonvexe Algebren und andere lokalkonvexe Raume von auf
einem unitiren Raum definierten lmearen Opt,ratoren Disscrtation B. Leipzig: hml-
~Marx-Universitit 1986.

[10] LassNER, G.: Topological a]gebras of opero.tors Rep. Math. Phys. 3 (1972 279~ 2‘)3

‘[11] Lass~ERg, G., and W TIMMERMANN: Normal states on algcbrus of unbounded opcmtors
Rep: Math. Phys. 8 (1972), 205—305. .

[12] Pretscu, A.: Operator Ideals. Berlin: Dt. Verlag Wiss. 1978.

[13] ScumypceN, K.: Lokal multlphka.tlv konvexe Op*- Algcbrcn Math. Nachr. 80 (1980),
1()1—170 \ . .

) . . : : .



414  H. Juxex

s

[14] SCHMUDGEN, K Unbounded Operator Algebras and Representatlons Berlm Akademle- :

Verlag 1990.
[15] SINGER, I.: Bases ln Banach Spa.ces I. Berlin— Heldelberg New York ‘Springer- Ver]ag

. 1970.
_[16] TIMMERMANN, W.: Ideals in algebras of unbounded operators Math. Nachr. 92 (1979),
" 99—110. -
o < : ' T
. Manuskripteingang: 31. 08. 1988} in revidierter Fassung 08.02. 1989 .
VERFASSER: . . :

" Prof. Dr. HErxz JUNER :
~ Sektion Mathematik/Physik der

s

Piadagogischen Hochschule ,,Karl Liebknecht* Potsdam - N
Am Neucn Palais , .
0- 1571 Potsdam : ’ L T /
.
LA
‘ A ’ e ~
\
’ !
- ) . ) )
’
- !
'
. \ \ )
¢
N N N -
SN - "
. . .
< y
. } '
’
. e ’
- .
¢ -
A .
. AY
{ )"
‘N - “
~\ !
~ N
Y
-
) A
\
[ — . N
Vo A L N e
' . : ! ‘
N = A}
,
)
N
- M *
- A
~N
; .
o \
R
, !
- ~ )



