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~ dann ein allgemeiner topologischer Existenzsatz bewiesen.
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Es wird die ebene Potentialstrémurg um einen Kreiszylinder mit\porééer Oberfliche bei zwei
Klassen von nichtlincaren Filtrationsgesetzen behandelt, indem das Problem entsprechend auf
eine nichtlinecare singulire Integralgleichung und auf ein lineares Riemann-Hilbert-Problem
fiic eine quasilineare Gleichung vom Beltrami-Typ zuriickgefithrt wird. Fiir das Problem wird

3amava NIA0CKOro MOTCHIMAILHOTO obrexanusn ,l(p&PHOPO LUMIMHADPA- ¢ nopuctoft o6onoukoif -
TS ABYX KJIACCOB HeNMHEHHBLIX 3aKOHOB OUABTPAIMI CBOAUTCH COOTBETCTBEHHO K HeJMHel-
HOMY CHHTYJAPHOMY HHTErPAJIbHOMY YPaBHCGHMIO M K JMHelHoit .3agzavye Pumana-I'miap--
Gepra RAs KBa3MJIMHENHOr0 YPAaBHEHMA THUTIA Benerpamun. JlokasunBaerca ofmasa Tomoso-
THYECKAA TeopeMa CylecTBOBANHMA A JTOfl 3aKauM. : : ’

The plane potential flow past a circular cylinder with porou's.’surfac'e for_two classes of non-

linear filtration laws is dealt with by reducing the problem to & nonlinear singular integral
* equation and to a, lincar Riemann-Hilbert problem for a' quasilinear equation of Beltrami

type, respectively. A general topological existence theorem for the' problem will be proven. .
: [ S o - -
Introduction i , : S

. e ‘. . \\ . .
The problem of plane potential flow of an inviscid incompressible fluid past a circular

./' cylinder with porous surface has been dealt ,wit'h» by Baiéorov-in 1951, 1952 (cf. [6]).

He.proposed two models for this problem supposing that either'the tangential .velo-
city-of the fluid on the inner surface of the cylinder is zero or the pressure of the fluid °
is constant there. Both models of Baidorov were investigated from the mathematical
viewpoint in our paper [6]. In [13] the second author prop6ses another model for this
problem constructing also the whole flow inside the cylinder as a potential flow and-
do not making a special assumption about the flow on the inner surface of the cylinder.
In the case of a’linear filtration law the problem is reduced to a linear singular inte- -
gral equation of Hilbert type which is solvable in closed form. .
"In the present paper we consider this miodel for a general nonlinear filtration law. -
After briefly restating the mathematical model, we prove-three existence theorems

, under different assumptions. First the problem is reduced to a nonlinear singular

integral equation of Hilbert type for which a solution is constructed. by means of

‘successive approximation. This method works for nearly linear filtration laws and
may also be used for computing the solution of the problem. Further, the problem is
equivalent to a nonlinear Riemann-Hilbert problem for a holomorphic function in
the upit,/disk. In the sccond proof the last problem is transformed to a linear Rie-

- mann-Hilbert problem for a quasi-linear equation of-Beltrami type. Adopting an -
approach by VINOGRADOV [10], we,prove the existence of a'solution to this problem
in the case of filtration laws with a linear minorant and majorant. Then a.third non-
constructive general existence proof will be given by means of the Leray-Schauder

. ~
.. -
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" degree and homotopy. theory. Using recent results of the first author abotit strongly
nonlinear Riemann-Hilbert problems, we will obtain the existence of a solution for

-filtration laws with linear maJorant alone, mcludmg the case of a semlpcrmeable '

surfacé, of the cylmdel . .

’

L Statemcnt of th.c' Aproblen'l ~ N _ B

Asin [13] we consider the phne steady irrotational flow of an inviscid-incompressible
fluid with density ¢ past a circular cylinder with radius a and pcrmeable (porous or
pcrforated) surface. We look for the velocity field v(z), z = = 4 iy, in a cross-section
" ‘—plane of the flow with the components v;, v, and the amount g. It is assumed that the

flow at infinity is parallel to the z- axis and has the speed ¢o. The pressure field in the - -

flow is denoted by p(z) and the pressure at infinity by p. We neglect the influence -
of gravity. Further we suppose that the flows outside, and inside the cylinder are

potentlal flows with prescribed mass and vorticity distributions in a~closed domain .-

in the interior of the cylinder, 1nducmg a total flux @ through the cylinder surface
I"and a circulation J around I inside the cylinder. Besides we also assume a circula-
tiori J outside the cylinder. (In [13] for simplicity J = J was taken.) '
~ The complex velocity function W =V, — wv possesses ‘the de(,omposmon (cf.
[13] , 4 _

L

- 7 iD a ) BN
Wl 4o (1= ) =gt T HE>e

W(z) = : L~ : o , Co(11) .
- : ()+—w@ L S if 2| <a,

where D = J —J, Wo(2) is thc complex veloclty function due to the prcscnbed
mass and vort,mty distributions, and w(z) is a sectionally holomorphic fun(,txon
) satlsfymg the conditions '

!

w(0) =0, < w(z)=0(1)z)at infinity. s ; ) (1.2) .
\ . . T .

In pal ticular : . . o

s

Omf—wmwQTm : ) “- o Qm

if there are a sink of strength @ and a vortex of strengbh J at the origin. |
As in [13] we assume that the filtration velocity ¥ in direction of the inner normal’
on Fobeys a filtration law :

V_F(s pa—pl) onl:z=acé€, o (14)

where the functlon F(s p) is continuous and non-decxcasmg with respect to the
difference p'="p, — p; of the pressure on the outer and inner surface of I' satisfying
F(s,0) =0, and is ‘2z-periodic and (piecewise-) continuous with respect to the polar
angle s. By means of Bernoulli’s equation and the continuity of the normal compo- "
nent of the velocity through I this condition leads to the basic relablon

Ve

@(s) = A(s) — F (s ¢+ O(s) [qm sing — — + Y(s )]) ' ". (1.5)
i .
for the rea.l and i imaginary palts D, ¥ of the inner and the outer boundary values -

cwt(ae) = Ps) — 19’(8), - wi(a e"’) ¢(§) + i¥(s)

¢

A}
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) ) AT
of won I', where Y= H® and

[ ee)ds = [ Wie)ds=0_ e (1.6)
in virtue of (1.2) with the Hilbert operator i <! / )
| o1 f o—s8, T
~ HD(s) = — f @(o) cot - do. .
. _ - 2x ) -2 R

-5

Here ¢ is an unknown pressure constant and C(s) = 2o[B(s) — oo Sin s + D/dnal,
" where A(s), B(s) are the normal and tangential component of the prescribed velocity -
* field W,. In particular, m the case (1.3) we have A(s) = Q/2na, B(s) = J/2na.

Remark 1: If the functlons &, ¥ and the unknown constant ¢ are determmed the velocity .

-

and pressure distributions on I' are given by the formulae (39), (40) of [13], where in the ex-
pressions for v,~ and p, the term D/2na’ has to be added to B. :

As shown in [13] there exists at most one solution of the flow problem with con-

tmuous velocnty and pressure distributions on I"if the function F(s, p) is contmuous' ’

and possesses a posmve contmuous derxvatlve F(s, p) with respect to p.

v

2. Reductlon to a smgular integral equation : ‘ N . -, )

. The ba,sm relation (1. 5) WIth ¥ = HO® represents a nonlmca,r smgular integral equa~
tion for @ ‘with an unknown constant ¢ and the additional condition (1.6) for @.
Applying the Hilbert operator H to (1.5), we obtain an analogous integral equation

- for ¥. Especially in the case of (1.3) with J = J = 0 wehave A(s) = Q/2na, B(s) = 0.~

and the cquation.for ¥ takes the simple form

W = —H[F(s, ¢ + 0(s) g sins + ¥(s))] ' TRV
’ \ L ¢ . ot . ..
with’C(s)' = —209 ,sin s, and the constant c is determined.by the condition
f F(s,c + C(s). {qm sin s + P(s))) ds = Qla - R . (22)

-5 . \

followmg fxom (1. 5) by mtegratlon over I. The condmon (1.6) for '1/ is automatlcally
fulfilled by (2.1).

In the sequel we consnder the equat,lons (2. 1) (2.2).for funptxons F(s, ) of @he form ‘

\

F(s,p) = Kp + Fols,p) ' o o @23)

! wnth a posmve constant K and a function F,y which is 2n-periodic and continuous *

. with respect to s and fulfils a Lipschitz condition with respect to p: '

|Fols, 1) — Fols, po)l < N lpy'—pal, ./ N =oconst. - - (2.4)
Since Fy(s, 0) = 0, from (2. 4) we further obtain ~\,« ’ '
o FsPISNipl. - @)
The substltutlon Y (8) = ¥(s) + g 8in 8 leads to the equatlon for ¥, '
) - \
D Y, = MH[sm $ 9’,] = oo, sin s — II[FO], . o . (2.6)

.27 Analysis Bd. 9, Heft 5 (1890) A o
, . . .
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where M= 2ngqw, Fo = Fo(s, c— Mo sin s ¥,(s)), M, = 204, together with the
condition , ) .
I : x' ;o .
. -an—Q/a—{—Mfsms?{’lds [ Fods. . (2.7)

- C—=

i

Considering (2.6) as a linear smgular integral equatlon with known right-hand
snde, from [12: Appcndlx] and [4] after some lengthy calculatlons we obtain
t

¥, = o+ ale) Fo = ba(o) HibaFi) ), - 28
where .7 . v . . L Lo
. sins’ g (8) - M sin s
Lo - a — ——
: V + M2 — Mcoss ,1+M2sinzs’
. b(s) V1+M3+Mcoss b(g)_VI—}—M?—Mcoss.
: 1+ M2ginzs BT 14 Msints
Analogously the condmon (2 7) reads : o«

.on : ? V %

. 1 e . 1 [ e Mg _ :

=Cp — —= - d. == ——| .

c , Co 2nK_ ba(s) Fy \s ~ with ¢ K [2na + T ]/1 T Mz] (2-9)
' »Fmally, we set y = !I’ — ¥, and C = ¢ — ¢, and write the equamons @. 8) (2.9) -
in fixed-point form '

) O =T Oy , (2.10) -
~with the operator . : < : - : :
, a(s) Fy — bl(s) H[b_zFo] ’ - , .
T{y, C} = o @1
. . (2nK) 1 f byls Fo ds. © o S i
. ’ T )

_ The functions a, b;, b, satisfy the lnequahtles A . : . s

el S M+ MY, e S M VT (k=1,2). (212
In theAfoll'owfng we are looking for solutions ¥ € Ly(—n, n), i.e., {3,C) € E :=

Ly(—7, n)'X R of (2.10) by means of Banach’s fixed- -point theorem. Corrcspondmg .' .

solutions of our flow problem aré said to be genemlzzed solutions. Obv:ously, in virtue
of (2.59 the operator/T' maps the space E into Jtself Further, fortwo pairs {y;, Ok} e E .

) wlth Pei= Co + Ck My sin s [P + ul (k = 1, 2) by (2.4) we have
P\

AFo(s, p1) — Fo(s, p) . = N |Cl - 02| + NMo |71 - 72|

and for the norm W in Ly(—n, =), -

o WBosp) — Fofs, ol < gl — 12,01 = C) (213)
Wlt;h ) LN . . ’\ . ’ .
o el =V2nN|0| + Nyl . © (214
Besxdes by (2.12) for any h € Ly(—n, =) there holds the estlmatlon .
/
{

b, F[beh]Il < M2 By, 9 = M YL+ MR ) (2.15) -
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In virtue ofl(2.12), (2.13) @. 15)~f0r the first component.T', of T'{y, C} we obtain. -
173, €} = T, Cll Aol —Ci = Co) = = (2.16)
with Ay, = M2+M/(1 +M2) i - ’
Further, by Schwarz’ mequallty, for any h € Ly(= :rz, 7) there holds

-

§27iV1-}—M2\||h||2." AR v T,

3

,,f b,h ds

Hence, taking (2.13) into account, for the second component T2 of T{,{, C} we have e

NTafrns Cob — Talza, € IS(A,/Vzn)e —12,01—02) . IRRTAt)

with A4, =1+ Me NH/K. '

Introducing in E the eqmvalent norm Iz, }llg' g(,(, C’) the estimations (2. 16),
(2.17) imply [IT{y, Cllle = = ]l{x, C}llg with x = N[Myd, + A,] = NoA(M), where
No = N/K and A(M) = (M2 + M1+ M2)+ (1 + M2)1/‘ Bana.ch s fixed pomb
theorem now ylelds R . )

\ Theo rem 1: If x < 1 u,zth x de/med by (2 19), there exists a uniquely determned
generalzzed solution of the flow problem in the case of (1.3) with J =J =0.and (2.3)
with (2.4). The corresponding: equation (2. 10) can be solved b y the method o/ successive
approximations. . . N

Remark 2: The constants M and N, are mmensnonless, therefore also % isa drmensxonless
conistant. In the exump]e of Baitorov (cp. [6]) M. has the: value M = 0.13296 with A(M)
=1.19509. Hence in this example the condition % < 1 is fulflllcd it Ny < 0.83675. Genera.lly, )
smce A(M) > 1, there must be alwa.ys Ny < l c .

Rcmu,rk 3: The condltlon % < 1,i8' fulfllled if for f:xed M the constant No is suffrcrently
" small. If Fy(s, p) satlsfxcs a Holder- Llpschntz,condrtlon of the form . . . ,

|Fo(31»2’1) — F (32:2’ )1 S No[?oo |31 — &|* +. K|I’1 —pall, 0 < o< 1

implying |Fo(s, p)l = N ]pl N = NyK, for suffxcnently small N. there also exists,a Holder
continuous solution ¥ € Cs[—x, ). This can be proved by means of Schauder’s flxed point
theorem applied to the operator 7' on the convex compact set

—{X, €F=C[—n,n]xR1x(s|SR10|‘_-.’S T - R
. . [%(81) — X(3°)l =R 181 — S°t !

‘with fixed positive B, Ry, S (cf. [6]). If then also the condmon x.< 1is fulfllled, the itcration
sequence {%n+1> Cas1} = Txn, Cu} (n € Ng) with {x,, Co}lé J converges in the space F towatds
the unique solution of (2.10) in JC i.e., the sequence {y,} is uniformly convergent (cf. [3, 6]).

. Wé finally remark that in an anulogous way the equation (2.10) can be investigated in balls -
of Hélder spaces if the function Fo(s, p) only sntxsfnes a (with respcct to p) local Holder Llp-
schltL condition: S

|F (81, P1) — Fo(&zy Pz)l = A’o[?oo ls, — 30 + K(R) |p, — p.l]

for |p,l, |j>2i < R, R > 0. This is fulfilled for instance if. Fy(s, p) behaves like a polynomial
or an exponential function in p (cp. the investigation of Bditorov’s integral equation'in [6]).
[ . Lt . : A M

3. Reduction to a Riemann-Hilbert prob]em

t

. The basic relation (1 5) is equ:valent to the followmg nonlinear Rlemann Hilbert
problem for the holomorphic functlon w($),. C = z/a w1th Re w(e'®) = @(s) in the
unit dlsk [l < 1. o

, . ’ N - Tt N

27% - \
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" Problem P. lund a holomorphnc function w(C) in |¢] < l/and a real constant ¢
such that the boundary condltlon . .

7 . ~

. Re w(ei’) . A(.s) - (s c ¥ 0(3) [qw sin § _th—z — Im w(e's)]) ' (3.‘1)

/

“on |l =1,¢= e" and the additional condition w(0) = 0 are fulfilled.

_ In the sequel for convemence we write' 2z mstead of ¢ for the points in the unit disk
G with ¢ = e'* for the points on the circumference I" and also use the notations w(z)

- and W(z)-for. certain: functions in the unit dlsk-mdependently from their meaning -

above. "~
- We assume that F '= F(p) depends on pr alone and possesses a contmuous deriva-

tive F Whlch fulfils the mequahty _
o 0<K,£F(p)$K2<oo - peR, - . 3.2)

" with positive constants K, 1\2 Let F, be the inverse funct,lon to F. Then (3.1)
equlvalentto t,he condition . - oo . ‘

Il

c + C(s) qw sins — ——D— — Im w(e”) = F\. (s) — Re w(e"’) v/(3.3)' :
. 4na A

7

We now mtroduce the new unknown funct,lon .

z) = (H( z)/oo(z)) ATORS A) — 1) + w(z) — wof z)] NCEY

where A = Q/2na, the mean value of the function 4, the holomorphlc function

w(z) = u(z) + w(z) = S{u] z) is- the Schwarz mtegral of the boundary function

u(t) = A(s) — A — Re w(t) op T, and wy(z) is the uniquely’ determined holomorphic
“function in G samsfymg we(0) = 0..and the boundary condition uo(t) — C(s) vo(t)
\ .

._ f(s) +c¢yon I, where ) /
' Hs) = lo(s) —F (A) - with fo(s) =.0(8) [goo Sin s — D470 +'H~A(s)]'

and c, is some réal constant. The function w, is glven by the formula (cf. [2: Chap IV,
v § 29.3] or [12: Appendix]) :

welz) = go(z)‘S[e"“" dol,

~\Yhere . . . “ L = -
. ofe) =exp (—iu(a),  Qule) = Sluel @), -
;zzo(s) = é.fcﬁain C’(s), L (27: f Uols) ds, /
/(3 + ¢ B S | . elnos)
==, = — — —— f(s) ds.
I%() Virow o ity i om oy <

Finally, H(z) is the posmve rea.l valued harmomc function” in G with the boundary

values H(t) = V1 + C%(s) exp ( Hug(s) ) on T. The funcmon W is solution ofagene-
' rahzed Beltraml -type equatlon of the form : L . ’

~ .

OW[ZE+ ute, W) anaz tdeWy=0 L . 35)
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with a continuous functlon u satisfying the uniform elllptncnty condition I,u(z W)
< y < 1, where y ="max ((K2 — D/(K, +. 1), 1 — K)/Qa+ K,)) and d'is a con-
tinuous. functhn which is umformly bounded in W Further, W fulfils the boundary
condition

" ReW(t)=D - on‘F A I S 36
with an unknown real .consvtant;lD = ¢ — cyand the side condition = o~ ~ -
W) =0. ' . T . ' 6

Boundary value problems for quasi-linear first-order elliptic s'ystems"of the form -

(3.5) and related form have been dealt with in the literature for a long time. But it
. seems that the case of boundary conditions with a free constant D like (3.6) and the
side condition (3.7) has not been studied. In the sequel we apply a method of Vn\o-
GRADOY [10] in a modified form to the problem (3.5)—(3.7).

Ay

For the unknown function W we use the mtegral representation of [10] wnt,h an . .

additional term -

e 2 [Jl B L

+— ff"’“ £dn, b=gin (3.8)

).

where @ € L 2(G), P > 2. Thc ansatz (3 8) automatlcally fulfils the conditions (3. 6)
“(3.7). It reduccs ‘the differential equaclon (3.5) to the nonlmear two-dlmensnonal
“singular integral- equat:on . .

v
o

where P is the same singular integral operator as in [10]:

- WO T R
Py =3 ff[i—’zJ'_l—ZC)z] wdn .o
. ff @(0) dt dn
NN ' 7 1__2_

(cf. also [:) Part 1, Chap 9]) : ' '
(' The equation (3.9) can now be treated in an analogous way as in [10] by means s of®
Schauder’s fixed-point theorem. The only difference is the proof of the uniqueness
of the solution to the corresponding homogencous linear equation-to (3.5) with the
conditions (3.6), (3.7). But also this “proof can be performed along the usual lines.
Additionally, one has only to take into acéount the minimum property of harmonie
functions when the general solution”of the differential equation with the boundary
condition i(3.6) is subjected to the side condition (3.7).

Applying riow Schauder’s fixed point theorem to thc equation (3.9) like i [10],
. we obtain the existence of a solution ¢ € L,(G) for some p > 2 to (3.9) which by

(3.8) yields a solution W € W (@) of (3.5)—(3.7). From this the existence of a solu- " _

. tion w € W, }(G) for some p > 2 of the nonlinear Riemann-Hilbert problem P follows.
Lastly thls yields a Holder-continuous solution pair @, ¥ (with Holdel cxponent

o = (p — 2)/p) of the basuc relatlon (1 5). ‘ .
N
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Theorem 2: The flow proBlem uzth a /zltratzon law (1.4), where F = F(p) s a
continuously differentiable function -satisfying (3.2) possesses a umquely determined
soiutzon with Holder continuous ve@oczty and pressure distributions.

Remark 4: Vinograpov [10] assumes that the coefflclent satisfies a LlprhltZ condltron
with respect to W which is fulfnllcd for the equation (3.5) if F'(p) satisfics a Lipschitz.condition,
too. But-this assumption (and the analogous one for d) is only neéded for the proof of uni- .
quepess of the solution, and for our problem a general uniqueness theorem for only contmuously
dlfferentla.ble functions F has already been proved in {13] as is pointed out above. =~ ' -

Remark:\5: If F has a Llpschntl continuous derivative, also the combination” of t,he im-
beddirig method with Newton’s method like in BEGLHR a.nd Hsrao [1] should be appllca.ble to
the problem (‘3 5)—(3.7).- + ; . .

4 A general cxnstence theorem . )
In this sectlon we investigate the solvabrlrt,y of the Rlemann Hilbert problem P for
the determination of the holomorphlc functron w and the real constant ¢ from a more

general viewpoint. / -
After substituting w = u + w = iw, the boundary condmon (3. 1) takes the form
v(el®) = A(s) — F(s ¢ + E(s) + C(s) u(e")) , ~(4.1)

\
with the- abbreviation E(s) = C(s (g Sin 8 —D/4.7t(1 The additional condition

\w(O) = 0 is equivalent to | v o S -

w(0) = 0. - o N )

Let u us start with“explainihg the phllosophy of our method The Riemann- Hllbert
problem (4.1) with ¢ € R fixed has a solution set {ws}4em which can be parametrized.
" by a real parameter d. Therefore we are left with balancing the two parameters ¢ and
d to satisfy the additional condition (4.2). In order to do this we apply the geometric
approach developed in [7—9] to get an idea of the influence of ¢ and d to ws¢(0). In
this way we shall determine the range {w;(0): c, d € lR} and decide whether the con-
dition (4.2) can be fulfilled or not. . '

According to the assumptions in [7] the function F is requued to be monotone inp
and to satisfy the following hypotheses: i

The function F together with its'derivatives 0F/0s, 0F/0p, 82F/6s dp is'continuous
with respect to both arguments. Thereby the (finite) limits

RS

Fox(s) = "lim oF(s, p)/&p, llm p‘2 oF (s, p)[os =0 : (4.3)
Portoo

‘should exist umformly with respect to s. In particular, ‘there is a posmve decreasmg
functlon g tending to zero at mflmt,y such that

(9F(s, p)iop — Fy ()] < g(1p)- o S ey

Morcover we suppose that
o B = Fy() | / SN CE)

and write F(s)instead of F' f(s) We assume that the function Fy(s) is contmuously
dlffercntlable :

Remark 6: The condition (4.5) looks somewhat artificial from the physical viewpoint but :
it-is essential for the given existence proof Neverthcless we conjecture that Thcorem 3 remains
valid w1thout this assurption.

.-

-

.

¢

i
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The solvablhty of the problem sxgmﬁcantly depends on the followmg quantmes

—

F(s) = lim F(s, p), . =2—n' fﬁ’i(s)ds; Z:— — fA(s)ds

p—t oo

N

\

‘Here 1t is allowed that the values of F# are +oco or —oo, respectlvely

To stress the geometric nature of the Rlemann Hllbert problem we define the
_curves

Moo= {u +iviv = A(s) F(s, ¢+ E(s) + O(s) w))
\_' (cé[R 86[ —, 7)), . v
and wrrte the boundary condltlon (4. 1) in thc form ’ . \

u,(e”)EM" s : . BN V/ . e (46)

The curves M, are smooth open. curves whose shape depends on the srgn of the func- -

tion C(s) as is illustrated in Fig. 1. For fixed s the family of curves, (M, ,,,em covers the

domain of the (u v)-plane bounded from above by the straight line v = A(5) — F~ (s)'
and from below by v= A(s) — F#(s). For ¢, > ¢, the curve M & lies below Mc:

. v_A(s) F1s) Tv L= Al)-FTS)TY | fv=Als)- F(s) [
T e —— Pt
: // ! / - -\\-
. u x : u
1 T ] e
— | e T‘
. . = 3 —— [ —— ==
v=A(s)-Fls) | C(s)<0 v=A(s)-Fls) | C(s)=0 | |- |v=A(s)-FTs] | C(s)>0
B S

oL
'\ N

. We check thé assumptlons (i)— (v) in [7: Sect 3]. For thls end the curves M, are
parametr)zed by " :

‘ . M‘:{u»}—iv'_—_a+.iy‘(s,a):oélR} g o ",.V
\:'heré ue(s, o) = A(s) — F(s ¢+ E(s) + C(s) a) The smoothness aesumptlons
(i)—(iii) follow from E, C € C'[==, n) and from the continuity of u¢, ;' 0us[0s, ou‘lodo,

o%uclos’ 60 To prove.(iv) we calculate the quantltres at, BE (cf. [7:p. 219]) Obvrously, . ‘
i

~ aci(s) .= 1im Re 8‘u°(s o /6a =1, ‘ ‘( !
i 400 ! ot . . .
Be(s):=lim Im ducs, a)/aa ‘ - ° o
. oo o o 4.7)
[ =Cls) 2F (s, —{-oo)/ap\ asC(s) > 0, oo \
=10 . as C(s) = 0, B : ‘
] /| . . . \ c.
—C(s) 0F(s,—oc0)fop asC(s) <O, : .
ie by @s), = . | Co |
- ﬂc:t(s) = —0(8) F,,(S) : . N ‘\ * . (4.8)
. : " . \ A - X l/
o] . /, ,
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- On account of (4.4) and (4. 8)\for any & > 0 the estlmate

ey

. P - . )
' . - .

AN
'

" Further we have to show the uniformity of the limits (4.7). Let M := sup |0F/ap|. .

8,u‘ . . E : N - :
£ (S,_ o) — 5c+(8) 1C(s)1 o (s, ¢+ E(S) + C(s) o) — Fy(s)| < e
holds, wherllevér@l
. . ' . 7
Leesg | \
“or. . ' N N
|C(3) Z # i a‘nd, g\_(]'ol i{ — Sup |C—{— E(8)|) < m,

respectlvely This proves the umformxty of the limits (4.7). Finally, the assumpt10n~ .

(), i.e., the continuous differentiability of g %, follows from (4.8) and from the con- -

. tinyous dlfferentlablhtv of B *, follows from (4.8) and from the continuous differen-
tlablllty of F and C.

o ~

‘Now we can state some results about the solvab!llty of problem (4. b)

Lemma 1: The following statements are true.
(i) Under the above assumptions, forany ¢, d € R the problem (4.6) possesses exactly -~

_ one solution wy® with boundary Yy valucs from thc Sobolev spuce Wal(l"') uhzch fulfils the

side condition

'\ NN

g =d. . e )
(i) If dy > dy, then T ' o .4
uG (e”) > ud. e's) for all s €[—m, ).

(m) For all'c € R we hcwe \ |

o . .
lim inf ugf(e’®) = 400, lim’sup ugf(e¥) = —oo.
d—+o s ) . d—>—o00 g
(iv) The mapping R2 — W N(IY: {c, d} > w e z's\cont\z’m)ous.,’ (
To prové Lemma 'l wé remark that the index x of the considered Riemann-Hilbert,
problem is zero. Hence the assertions (i)—(iii) immediately folloiv from Theorem. 3

L in [7].

“We merely sketch the basic Jdeas for provmg (1v) Accordmg to [11] the boundary .
value problems. (4 6), (4.9) are reduced to fixed point equations for compact opera-

© tors.Ng° acting in W,2. Each operator has exactly one fixed point with Leray-Schad-.

der fixed point index 1. Sincesthe operators Ny° depend continuously on ¢ and d (in
some sensc) it, follows from the stability of the fixed point index (with.respect to a
suitable chosen small ball; cf. [14]) that the fixed points of N are continuous func-
tions of ¢ and d. This implies (iv). For more details we refer to'[9: Proof of Theorem 2],
where an analogous result was derived for a similar problem @ :

- Our concérn is now to find values of the parameters cand d so that the corzespond-
ing solution w4¢ of the. Rlemann Hilbert problem (4.6), (4.9) given by Lemma 1 B
satisfies the condition w,¢(0) =.0. For this end at first we vary d. For any fixed -

‘¢ € R we define curves L.-by L, = {w;?(0):d € R}. In virtue of Lemma 1/(iv) and
: c .
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the mean valug formula

£ /

w(0) = o= f we(e®) ds (4.10)

[

bt 1 4 . N

the curves L, are Jordan curves. Additionally, by Lemma’ 1/(111 any vertical inter-

sects each curve L.. Due to Lemma 1/(11) we have o

ud,(O) ug,(0) f[udl(e"’) — ud.(e")] ds > 0 o " (4.11)

if d; > d,. Further, taking into account the definition, of the curves- M ¢ and the

continuous differentiability ‘of the function F we obtain the existence of consta.nt,s
K, such that ‘ :

lof,(e') — v,,_(e")] < Kduj,(e*) — ug,(e¥)],

’ This implies the estimates o

, : ) . 1

. \ \ ' |'Ufi,(0.)‘— b’fi,(O)I S —_— f“’d.(e”) _ Ud'(e"’)l ds

S f 6" ) = wie) ds

2(0) — ua.(o)l. | - @12)

' . . 7’ : . .
From (4.11).and (4.12) we’ conclude the existence of Lipschitz-continuous functions
Ae such that L, = {u +ive C:v = )c(u) These functions 4, satisfy the estimates

~

A - F*S)c(uLS)C,(u)SA F-, uweR, "(413)’

if cl > cy, where A, F+ F- are the above defmed mean values of t,he functnons 4,
Fr, F-, respectlvely The outer mequalntncs 1mmed1ately follow by integrating the
esmmates (cf. Fig. 1)

A(s) — F*s) = vgf(el) < A(s) F- (s)

over I'. To prove the middle inequality in (4.13) we introduce the followmg notatlons
We write w = M¢ if for the continuous holomorphic function w the values w(e'®) 110
above or on the curves M ¢ for any s € [—a, n]. If additionally w(ei®) lies actually -
above M, for at least one s, we denote this by w > M°. Analogously we write «(0)
= L, if the value w(O) lies abovc or on the cirve-L,and w(0).> I, means that w(O)
© liesabove K. K . .

\ v i

Lemma'2: Let w be a holomorphzc /zmctzon with boundary y values f7‘07-7;, W \(I). I f

w 2 M¢, then w( ) = Lg. Further, if w = M° and u,(O) €-L,, then u,(e") € M for all

8, i.e., w = wy for some d.

The proof of Lemma 2 will be given below. -

“Now ¢, > ¢, yields wg = M since the curves M ¥ lie above or on M for any s.

From Lemma 2 we conclude w;(0) Z L, This 1mplles Ae,(u) S g (u) for u — Rc

wg(0). Vaymg d over R we get the’ mlddle inequality in (4.13).

\
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If the function F(s, p) is even stnctly monotone in p for some s, we have wy* > M @
and consequently the second” part of Lemma 2 ynelds w,,“’(O) > L. ThlS 1mphcs the

strict mequahtles -

R ¢
‘

A —Ft <) <o) <A—F-, . uweR. . '14)

At last we mvestlgate the behawour of the curves L, as ¢ — 4 o0. For any u €R-
the relations ’

“lim ;.c(),:z F ©lim A(u) = A F- S (4.15)

¢—>+o00 . ., C—>—00

ho]d We only prove this for bounded functlons F+ F-, otherwme the proof has to be
modified in an obvious way: For any ¢ > 0'we choose a real-valued 2z-periodic func-
tlon h whlch is continuously differentiable and satlsfles the inequalities - | -

" , .A()——F+(s)<h()<A(s ) — F*(s) e o ..

wFurther we define the holomorphic fﬁllctidns W by their bbmida-ryAvalucs

wy(e?) —'Hh(é)¢ih( ) + d; d€R N o \ ' '

Since Re wy is bounded, we ha.ve wy = Me for sufflmently large c. Takmg into account

that Re wy(0) = d Im wy(0) < A —F* 4 ¢, from Lemma 2 and (4.13) we obtain the

inequality - T . . : o -

- . A ) . N
. A-Frsa@sAiF L * B

Smce gisan arbitrary posntlve number this. ylelds the first relatlon in (4.15) mth u=d.

The second estimate can be proved-in an analogous manner.

7

'

AN

Closing the preparations for the general existence theorem for the flow problem we -

still have to prove Lemma 2. Let w.be a holomorphic function with boundary values
from W, (I') which satisfieg w = M¢. We must show that either w' = wy® for some d or
‘w(0) > L. Evidently the point-w(0) can lic above, on, or below the curve L. In the
first case u(O) >.L, there is nothing to prove. 'In thé sccond case w(0) € L there -
exists a.real numbcr d with w(0) = w;(0), i.c., the function wy = w'— wyt satlsfles
wo(0) = 0. From the gcometry of the curves M ¢ it can be seen that the boundary .
values of w, belong to the complex plane slitted along the negative imaginary axis:

wy(ei?) € S-U (0}, é%'{wec\{owargw#’—n/2- L @de)

If w, is not a constant, then in virtue of w,(0) = O there must exist a point z, in a
" neighborhood of the origin such that wo(zo) = —igwitha sufflclently small positive .

-&.-From (4.16) we see that the wmdmg number of the function w, 4 i¢ is zero. But °

then the function 1, + ie ¢an not.vanish at Zo- Th(\zrefore wp is a constant function,
wo = wp(0) = 0, i.e. w = w,f. In'the third case there exists a positive number ¢ w1th
~ w(0) 4 id € L,. As in the ptoof of the second case this implies w + 16 = w, for some
_d. But this is lmpOSSlble because w(el*) = w;f(e'*).— i6 would lie below the curve M,°
in contradiction to the assumption w = Me¢. . ' ‘

Remark 7: In the paper [8] of the fn'st author 1t ls shown, that Lemma 2 can be extended
" to more general situations. .

We are now ready to formulate the main existence theorem.

\ .
v M

I3

Vi
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Theorem 3: Let the function F satisfy the above assumptions. Then the following .-

* assertions about the solvability of the Riemann-Hilbert problem (4.1), (4.2) for the holo-

. morphic function w with boundary values from WM(I') and the real conslant c hold:
(i) If either, A > F+ or 4 < F- then there exists no solutzon ‘

(i)IfF- < 4 < F+, then the problem is solvable. The junctzon w s umquely deler- h
niined. .
- (iii) If the functum F(s p) is stnctly monotone inp for at least one value of s, then the-
function w and the constant c are' unzquely determmed A solutzon exists if a,nd only if
F-<Ad<F+. . A , . ., ,

" Proof: 1. Accordmg to (4. 13) the curves- L lie completely in the strlp T = {u + iv
€C: weER,A—F+<v<d— F}Thlsproves(r) o . L

2. In virtue of Lemma: 1/(1v) the. mappmg R2 =T {c,d} > wf(0) is continuous .
Further, by Lemma 1/(ii), (iii), the curvesL run from —oo to +-co. Finally, by (4.13),
the curves L, depend monotonically on ¢ and by (4. 1:)) they extend up to the both
boundaries of the strip T'. Therefore the curves L, completely exhaust the interior
int T of T. That means since 0 € int T in case (ii), theze exists a function ¢ satlsfy-f

" ing w;f(0) = 0. !

Lét further w$ and wf be two solutlons of the problem. If ¢ = c2, then Lemma

- “1/(i) 1mphes d, =d, If on the other hand ¢, > ¢,, then we have wg > Mo (cp. Fig. 1)

and w§(0) € L, since w3(0) =0 = wf,'(O) € L,,. Hence Lemma 2 1m_p11es w§h = wg™
for"some d. But w," must be equal to w§ as we just proved. Consequently we hafze
wd = '“/d, o ‘
3. Let the function F(sy, p) be strlctly monotone inp for some $0'€ [—7, 7). By
" (4.14) the curves L, lie completely in the 1nter10r of the strip 7'.-Hence solutions can-

' notexnstlfA__F orA—F+ .

If wi t and w are two solutions of the problem with ¢, > ¢y, then we havc w" >.M
and agam w§ (0) € L.,. Hence, by Lemma 2, the relation wii(el*) € Mo holds for all

s. But w§ (e"° lies above M. Thls cont(adlctxon shows that ¢, =¢, ¥ ,°

Remark 8: In case of a semi- permeable surface (w herd F(s, p) = 0 if p <'0, for mstance)
only the statements (i), (ii) of Theorem 3 apply. In particular, if 0 < A < F*, we have i uni-
que solution w of (4.1), (4.2), but the pressure constint ¢ may not be uniquely determined. This
seems p]a.usxble also from the physical pomt of view (cf also the remark to the uniqueness
theorem in [13]) ' . S . o o hd

i

“Remark 9: Comparmg the obtained existence theorems for the flow problem we pomt out
that in tlie Theorems { and 2 we always have F- = —oo, F* = +00, s0 that under the assump- "
. tions of these theorems the problcm is solvable for any value of 4 = @/2na. In contrast to

- this, for finite F-, F* the existence condition in Theorem 3 is a natural Testriction to the magm-

tude of the total mass flux through the surface’of the cylinder.

~
./
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