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V. Es wird die ebene Potentialstromung urn einen Kreiszylinder mit poroser Oberfliiche bei zwei 
Klassen von niehtlinearen Filtrationsgesetzen behandelt, indem das Problem entprechend auf 
eine nichtlineare singillare Integralgleichung und auf ein lineares Riemann-Hilbert-Problem 
file eine quasilineaTe Gleichung vom Beltrami-Typ zuruckgefuhrt wirfd. File das Problem wird 
dann ein allgemeiner topologischer Existenzsatz bewiesen.	-	

V 

3aaa nnocxoro floTCHLHaJIbHoro oGTeHaHIan 1pyrioro winnjpa C nOpMCTbA o6oio'iicoli 
Jffl )ByX Hilaccon HeJIIsHeftIIaIx 3aHOHou 4ll!J1bTpaInI1 CBOWTCH cooTneTcTBeIHo H Heininefl-

jio.my cnHryinlpiIoey uHTerpanhHoMy ypaBHCHlflo Ii H JnhIIeflHofl •3aaqe PHMaHa-FHJTb-	V 

SepTa i,nn RBa3FIJnIHefthloro ypaBHeHHn TMna BeJmTpaslll. lioHa3hIBaeTc g o6uaH TOnoJlo-
risqecxaa TeopeNta cynecTBouaiiu,'i J1.JIH aTofi aaaqir.	

• V 

The plane potential flow past a circular cylinder with porous surface for two classes of non-



linear filtration laws is dealt with by reducing the problem to a nonlinear singular integral 
equation and to a , linear Riemann-Hilbert problem for a quasilinCar equation of Beltrami 

	

•	type, respectively. A general topological existence theoiem for the' problem will be proven.	V 

V	

Introduction	
V	 .	 -+	 V 

The problem of plane potential flow of an inviscid in compressible . fluid past a circular 
cylinder with porous surface has been dealt with by Baióorov'in 1951, 1952 (cf. [6])	V 

	

• He. proposed tvo models for this p'roblem supposing that eitherthe tangentialvelo-	V 

city . of the fluid on the inner ,surface of the cylinder is zero or , the pressure of the fluid	V 

is constant there. Both models of Baièorov were investigated from the mathematical 
viewpoint in our' paper [6]. In [13] the second author propses an'other model for this 
problem constructing also the whole flow inside the cylinder as a potential flow and' 
do not making a special assumption about the flow on the inner surface of the cylinder. 
In the cake of aliiiear filtration law the problem is reduced to a linear singular inte-
gral equation of Hilbert type which is ,solvabl,e in closed form.	- 

	

V	 In the present paper we consider this n'iodel for a giieral ndnlinear filtration law. - 
After briefly restating the mathematiel model, we prove' three existence theorems	

V 

V

	

	 under different assumptions. First the problem is reduced to a nonlinear singular	• 
integral equation of Hilbert type for , which a Solution is constructed by means of 
'successive approximation. This method works fot nearly liiear filtration laws and 

• may also be used for computing the solution of the problem. Further, the problem is 
equivalent to a nonlinear Riemann-Hilbert problem for a holomorphió function in 
the uni(disk. In the second proof the last problem is transformed to a linear Rie-

• mann-Hilbert problem for a ciinsi-linear equation of-Beltrami type. Adopting an ' • 
approach by VIN0ORAD0v [10], weprovè'the existence of asolutioti to this problem 
in .the case of filtration laws with a linear minorant and mnajorant. Then a.third non- • 
constructive general existence proof will be given by means of the Leray-Schauder 

V	

•	 -, 

-	 V	 -
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degree and homotopy theory. Using recent results of the first author about strongly 
nonlinear Riemann-Hilbert problems, we will obtain the existence of a solution for 
filtration laws with linear majorant alone, including the case of a semipermeable 
surface of the, cylinder.  

1. Statement of the problem 

As in [13] we' conider the plane . steady irrotational flow of an in viscid -inompressible 
fluid with density Q past a circular cylinder with radius a and permeable (porous or - 
perforated) surface. We look for the velocity field D(z),z = x ± iy, in a cross-section - 

-plane of the flow with the components v, v and the amount q. It is assumed that the 
flow at infinity'is par allelto the x-axi and has the speed q. The pressure field in the 
flow is denoted by p(z) and the pIessure at infinity by p. We neglect the influence 
of giavity. Further we suppose that the flos outside and inside the cylinder are 
potential flows with prescribed mass and vorticity distributions in a'cl9sed domain 
in the interior of th cylinder, inducing a tbtal flux Q through the cylinder surface 
Panda circulation J around P inside the cylinder. Besides we also assume a circula-
tioi J outside the cylinder. (In [13] for simplicity J = J was taken.) 

The complex velocity function W =_ v - iv, possesses 'the decomposition (cf. 
113])

 
W0(z)_l_q,('1----±--+w(z)	iflzj>a,	.. 

\	z2
)

	2iz'	z 
W(z)  
-	W(z) + --w(z)	,	'	 if Izi < a, 

where D = J - J, W0 (z) 'is' the complex velocity function due to the prescribed 
mass and vorticity distributions, and w(z) is •a sectionally holomorph, c functioi 
satisfying the conditions 

-	,	w(0) = 0,	w(z)	0(1/z) at infinity.	/	 -	(1.2) 

In particular  

W0 (z) = — (2)' (Q ± iJ)	 (1.3) 

if there are a sink of strength Q and a vortex of strength J at the origin. - 
As in [13] we assume that the filtration velocity V,in direction of the inner normal 

on P obeys a filtration law 

V = F(s, Pa - P1) on 17: z = a e1 , (1.4) 

where the function 1"(s, p) is continuous and non-decreasing with respect to the 
difference p--. Pa - p of the pressure on the outer and inner surface of P satisfying 
F(s, 0) = 0, and is 2i-periodic and (piecewise-) continuous with respect to the polar 
angle s. By means of Bernoulli's, equation and the continuity of the normal compo-
nent of the velocity through P this condition leads to the basic relation, 

(s) = A(s) - P (8, c ± C(s) [q sins -	+ W(s)])	 (15) 

for the real and imaginary parts 0, I-' of the inner and, the outer boundary values 

- w'4'(a,&8)	P(s) '-- iW(s), - w- (a &8) = 0(s) '+ iW(s)	-	- -
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ofwonF, where W=Hand 

J (s) ds =f W(s) ds = 0  

•	in virtue of (1.2) with the Hubert operator	 I' 

•	 2T	 •' 

	

1 f' (P(,)- 'cot HO(s) = -  	d,.
2ir 	-2 

—n	 - 

Here c is an unknown pressure constant and C(s) = 2[B(s) - 'q sin s + D14.ira], 
-where A(s), B(s) are the normil and tangential component of the prescribed velocity •	field W0. In particular, in the case (1.3) we have .4(s)	Q/2xa, B(s) = J/2i. 

Remark 1: If the functions 0, Wand the unknown cons tantc are determined, the velocity 
and pressure distributions on I' are given by the formulae (39), (40) of [13], where in the ex-
pressions for yr and Pa the term D/2xa has to be added to B. 

- - As shown in [13] there exists at most one solution of the flow problem with con-
tinuous velocity and pressure distributions on Pif the function F(s, p) is continuous-
and possesses a positive continuous derivative F(s, p) with respect top. 

•	2. Reduction to a singular integral equation  

,. The basic relation (1.5) with !1-' = i1Ii represents a nonlinear singular integral equa-
tion for b with an unknown constant c and the additional cbnditiön (1.6) for 0. 
Applying the Hilbert operator H to (1.5), we obtain an analogous integral equation 
'for W. Especially in the case of (1.3) with J ='J 0 ve have A(s) = Q12ra, B(s) = 0. 
and the equation. for !1' takes the simple form 

•	 = _U[F(s, c ± C(s) {q sins + !!'(s)})] '.	 (2.1)

With C(s) = —2qsin s, and the constant c is determined by the condition 

•	'	f F(s, c + C(s) '{q sin s + !P(s)}) ds = Q/a , '	.	 . (2.2) 

followingfrom (1.) by integration over r. The condition (1.6) for'!!' is automatically 
fulfilled by (2.1). 

In the sequel we consider theequations (2.1), (2.2) for functions F(s, p) of the form 

(s, p) = Kp + F0(s, p)	'	' 	' ''	•	'	(2.3) 

' with a positive constant K and a function F0 whi *ch is 2r-periodic and continuous 
with , respect to s and fulfils a Lipschitz condition with respect to p: 

- •	IF(s, p) - F0(s, P2)1	N li 	P21, ,	N = const.	•	• (2.4) 

Since F(s, 0)	0, from (2.4) wtfurthcr obtain  

! F0 (s, P)I	N 1pl.	•	.,	 ••	-	( 2.5)

The substitution ' T, (s)  = !!'(s) + q sin s leads to the equation for !!' 
•	•	'-- MH[sin s W 1 ] = qsil1 s '- H[F0],	

"
	 (2.6) 

•27 Analysis BU. 9, Heft 5 (1990)	 -	 - 

•	 -	 -	/ 

-•	 I.
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I' where Al =	F0 = Fo(s, c — M0 sin s q' 1 (s)), M0 =	together with the 
condition	 S 

	

f	 I 

2yKc = Q/a + M f sins 1'1 ds - f F0 ds.	 (2.7) 
– 

Cpnsidering (2.6) as a linear 'singular- integral equation with known right-hand 
side, from [12: Appendix] and [4] after some lengthy calculations we obtain 

	

"o ± a(s) F0 — b 1 (s) I1[b 2F0] (s),	 '(2.8) 
where 	 -	 -. 

	

sins'	
a(s)	

.Msins - -	= q	 ,	= 

	

•	 - T'1±.M2_ M Cos s	 1+M2sin2s 

b1(s)	i ±M	
2 

2 . + Mcoss	
b () - 

1 i +M — Mcoss 

	

•	 1 + ,M2 sill 2 S	'	 -	1 + M2 sin 2 s 

	

•	Analogously the condition (2.7) reads	 • '	 '	 '•	 S 

c = co —	fb2(s) F0 ds	with co =	
[a + 1 + Vi+M2]

	
(2.9). 

-Finally, we set x = V1,— Po and C = c — co and write the equations (2.8),(2.9.) 
.	in fixed-point form  

/	 y, C} = T{7 , C}	'	'.	'.	'	I.	 (2.10)
• , with the operator  

a(s) F0 - b 1 (s) H[h2F0]  

T{7 , C}

	

	'	"	''	S	 •	 (2.11)
—(27lK) 1 fb2(s)Fods.  

– 

The functions a, b 1 , b2 satisfy the inequalities	-	 - 

I a (s)I ^S M1(1 + M2),	bk(s)!	M ± i + M2	(k = 1,2). / (2.12) 

In thefoUowng we are looking for solutions V fi EL2(—t, di), i.e., { 7 ,C} E E := 
L2(--7r)xER of (2.10) by means of Banachs fixed-point theorem. Corresponding 

	

•	solutions of our flow problem are said to be generalized solutions. Obviously, in virtue 
of (2.51 the operator,T maps the space E into itself. Further, for two pairs {Xk, Ck} E B 
with pk := co + Ck'— Mo'sins[Wo+yk](k= 1,2) by (2.4) we have	'	S 

•	 - 

	

•	:, - -	-	jF0(s,p1)'— F0(s,p2)!.^ N C1 - C21,+ NM0 lxi - 721	- 
and, for ihe.norm It'll in L2(—,), •	 -	 S •	 -• 

• -
	 11F0(s;p1) — F0 (s, r)II	— 72' C . - C2 )	 -	(2.13) 

with	 —	•	 -	 •	 -•	 '	 •	

S	 (-

•	 -• .•	 , C) = f2n N I CI + NM0 11XII. 
•	 -	

-	 (2.14) 

/ - 
Besides, by (2.12) for any h E L2(-21 'z) there holds the estimation 

-	
IIb1H[b2h]II	2 Ilh iI,	M	M ± Vi+ M2.	

• (2.15) 

	

S	 -	 •	 S.
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In virtue of (2.12), (2.13), (2.15) for the first component. T 1 of T{7 , C} we obtain,	- 
IIT1{x1, C 1 } - T 1 { 721 C2}II ;5 A 0o( 1	C1	CO	 (2.16) 

with A 0 = 22 + M/(1 + M2).  
Further, by Schwarz' inequality, for any h E L2( * _n, ) there holds 

J b2h ds	2	1	M I jhII1. ( 

Hence, taking (2.13) into account, for the second component T2 of T(, C) we have' 

• 1T 2 {xi, C 1 ) - T2 { 72 , C2}j ^ (A 1 /I/) e(xi	x, C 1 - C2 )	 (217) 
St 

with A 1 = (1._-f- M2).1/4 1K.	 .	 ..	S.;	 . 

Introducing in E the equivalent norm I( Z , C}115'= (x C), the estimations (2.16), 
(2.17) imply IIT {x,' CHIs	x II{x, QIE with x = N[MOA 0 + A 1 ] = NQA(M), where 
• No = N/K and A(M) = M(M2 + M/(1 + M2)) + (1 + M2 ) h 14 . Banach's fixed point 

theorem now yields	'	 .	,	.	 S 

• . 
Theorem 1:1/ c < 1 with x defined by (2.19), there exists a uniquely detemined 

generalized solution of the flow problem in the ca-se of (1.3) with J = .1 =,0,and (2.3) 
with (2.4). The corresponding equation (2.10) can be solved by the method of successive 
approximations.  

N. 

	

Remark 2: The constants M and N0 are dimensionless, t .herfore also x is a dimensionless	S 

constant. In , the example of Baiöorov . (cp. [6]) M has the value M = 0.13296 with A(M) 
1.19509. Hence in this example the condition x < 1 is fulfilled if No < 0.836 75. Generally, 

since A(M) > 1, there must be always No < L. '	.	•+	 . .. , 

Remark 3: The condition x < 1,1s 'fulfilled if for fixed M the 'constant'N0 is sufficiently' 
small. If F0 (s, p) saisfies a Hölder-Lipschitz,coiidition of thq form	 - 

lF0 ( 1 , Pi) - F0 (s21 P2)1	N0[q Is,- 21	-. K.Jp1	P211 '	0 < a < 1, 

• , implying 1F0 (s, p)j N I pI, N = N0K, for sufficiently small N0 , there also exists,a HOlder 
continuous solution W E C[—r, ui]. This can be proved by meansof Schauder's fixed point 
theorem afplied to the operator T on the convex compact set 

X =.{,C}EF:= C[—,] x: Ix(s )l	 . 
-S	 • S ,	

'	 Ix(s) - x(2)l - -RO Is,- 82l} 

with fixed positive R, R, S(cf. [6]). If then also the condition x.< l'is fulfilled, the iteration 
sequence {Xn+j, C01 } = T{X0 , C} (n E N O ) with (Zo, Co) IE X converges in the space F towat4s 
the unique solution of (2.10) in X, i.e., the sequence {Xn} is uniformly convergent (cf. [3, 6]). 

-	. We finally remark that in an analogous way the equation (2.10) can be investigated in balls 
of HOlder spaces if the function F(s, p) only satisfies a (with respect to p) local Holder-Lip-	5 

schitz condition..	 ,	 . 
C. S	

F(s11 Pi) - F0(821 P2)1	N0[q Is, ---s .4- K(R) Ip — P211  

for I p1I P21	R, B > 0. This is fulfilled for instance if. P0 (8, p) behaves like a polynomial 
or an exponential function in p (cp. the investigation of BiiCorov's integral equation in [6]). 

I	 S..	 S	
S	 / 

3. Reduction to a Rien,ann-Hulbert problem	. .•.	
5 

The basic relation (1.5) is equiválen to the following nonlinear Riemann-Hilbert 
problem for the holomorphic function w(), C =' z/a with Re w(e) = (s) in the 
unit disk RI < 1. .	•	

'	 S	 • •	 •	

S I .	•	 . . .	 S	 ' 

27*  

(S
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ProblemP; Find a holomorphic function o() in jj < hand a real constant c 
such that the boundary condition 

Re W(&8 ) = A(s) -i-F S, c + C(s) [qoo sin s -	- Tm w(e 13 )])	/ (3.1) 

on 	= 1, = e 18 , and the additional condition w(0) = 0 are fulfilled. 

In the sequel for convenience we .,ritez instead of C for the points in the unit disk - 
G with t = & 8 fr the points on the circumference F and also use the notations w(z) 
and W(z)* for.. certain- functions in the unit disk-independently from their meaning 
above.	 - 

We assume that F'-- F(p) depends on p-alone and possesses a continuous deriva-
tive F' which fulfils the inequality	- -	 -	 - 

0< K	F'(p) <00,	p E R,	-	 (3.2) - 

with positive constants K 1 , K2 . Let F1 be the inverse function to F. Then (3.1)-i& 

- -	equivalent to the condition - -	 -	- 

c + C(s) [co sin s -	- Im w(ehi)] = F1 (A(s) - Re co(e 18 ))	(3 3) 

• We nod' introduce the new unknown function -	-	-	 - 

-	W(z) = (H(z)/(z)) [F 1 (u(z)H- A) - F 1 (A) + iv(z) - wo(z)1,	(3.4) 

where A = Q/27na, the mean value of the; function A, the holomorphic function 
w() = u(z) + iv(z) := S[u] (z) is- the Schwarz integral of the boundary function 

• -	u(t) = A(s) i— A- Re w(t) op F, and w0 (z) is the tinquelydetermined holomorphic 
function in 0 satisfying w0(0) = 0. and the boundary condition u0(t) - C(s). v0 (t)	- - 
- f(s) + co on F, where  

•	/(s) = /0(s) - F, (A) with f0 (s) = C(s) [q.. sin s - D/4ia + HA(s)] 

and co is some real cónstant.The function w0 is given by the formula (cf. [2: Chap. TV, - 
§ 29.31 or [12: Appendi*])	 -	- 

w0(z) = 0(z)S[e"' go],  
where  

(z) = exp (—iQo(z)),	Q(z) = S[] (z), — 

y0(s)= 
arctan C(s),	 = (2)_ 1 f 1L o (s) ds,  

-	
f(S) + Co	 -	

fe

	f(s) ds. "'1
go(5) =	 ,C 

1 i + C2(s) 	- 27 eqs	 i/i + C2(s)	- N 

Finally, 11(z) is the positivenrealvalued harmonic function 'in G with the boundary 
values H(1) = Vi + C2 (8) exp (_Huo(s)) on F. The function W is solution of a gere-

•	ralized Beltrami-type equation of the form	•	 -	n	 •	 - 

-	

W/'+ u(z, W) aW/ez + d(z, W) = 0	• •	
n	•	

(3.5) 

	

•	 •	•
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with a continuous function y satisfying the unifrm ellipticity condition ly(z, W) I
 •	y < 1,. where y =max ((K2 - 1)/(K 2 +1), (1 - K 1 )1(1 + K 1 )) and dis a con-

tinuous-function which is uniformly bounded in W. Further, W fulfils the boundary 
condition	

0	 S 

Re W(t) ='D -' on l'	 (3.6)\ 

" with an unknown r'eal constant  = c - c0-and the side condition 

W(0) = 0:	 (3. .7) 

Bdundary value problems for quasi-linear first-order elliptic systems of the form• 
(3.5) and related form have been dealt with in the literature for a long time. But it 
seems that the case of boundary conditions with a free constant D like (3.6) and the 
side condition (3.7) has not been studied. In the sequel we apply a methpd of VIN0- 
GRADOy [10] in a modified form to the problem (3.5)—(3.7). 

For the unknown function W we use the integral representation of [10] with an 
additional term 

W(z)=T:= _f[+ 1	 \	 i' 

+	 ddi7,	+ i,	 (3.8) 

where q E 4G), p> 2. The ansatz (3.8) automatically fulfils the conditions (3.6), 
(3.7). It reduces the differential equation (3.5) to the nonlinear two-dimensional 
singular integral 6quation 

•T +(z, T) Pp - d(z, T)	0,	 (3.9) 

where P is the same singular integral operator a in [10]:	-	 ' S 

=	ff	(l_Z4)2] d di 
Oz	n 

_ff 1 d .	-	
0•" 

ZC 
le	G 

(cf. also, [5: Part 1, Chap. 9]).	 - 
The equation (3.9) can now be treated in an analogous way as in [10] by rreans'of" 

Schauder's fixed-point theorem. The only difference is the proof of the uniqueness 
of the solution to the corresponding homoeneous linear equation to (3.5) with the 
conditions (3.6), (3.7). But also this proof can be performed along the usual lines. 
Additionally, one has only to take into account the minimum property of harmoniä 

•

	

	functions when the general solution - of the differential equation with the boundary
condition (3.6) is subjected to the side condition (3.7). 

• Applying now Schauder's fixed point theorem to the equation (3.9) like 'iii [10], 
we obtain he existence of a solutionip EL(G) for some p > 2 to (3.9) whiCh by 
(3.8) yields a-solution W E W(G) of (3.5)—(3.7). From this the existence of a solu-
tion co E W(G) for some p > 2 of the nonlinear Riemann-Hilbert problem P follows. 

•	Lastly this yields a Holder-continuous solution pair 0, (/ (with HOlder exponent 
= (p - 2)/p) of the basic relation (1.5).	 -	-.	•	-
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Theorem 2: The flow pro6lem with'a filtration law (1.4), where F '(p) A a 
continuouslj di/ferentiable function satisfying' (12) possesses a uiiiquely determined 
solution with hOlder continuous velocity and pressure distributions. 

Remark 4: VncooRADov [10] assumes that the .coefficient satisfies a Lipschitz conditioh 
with respect to W which is fulfilled for the equation (3.5) if P(p) satisfies a Lips chi tzcondition, 
too. But-this assumption (and the analogous one for d) is only needed for the proof of uni-
queess of the solution, and for our problem a general uniqueness theorem foronly continuously 

•	differentiable functions F has already been proved in [13] as is pointed out above. 

Remark\5: If F has a Lipschitz continuous derivative, also the combination'of the im-
•	bedding method with Newton's method like in BEOEHR and HsIAo [1] should be applicable to 

the problem. (3.5)—(3.7).	
0	 S 

4. A general existence theorem 

In this section we investigate the solvability of the RiernnnHilbert problem P for 
the determination of the holomorphic function w and the real constant c from a more 
general viewpoint.  

After substituting w =.0 + iv = iw, the boundary condition (3.1) takes the form 

v(e 8) = A(s) - F(s, c ± E(s) ± C(s) u(e' 8 )	 .	(4.1) 

with the abbreviation E(s)' = C(s) (q sin s - D/4xa). The additional condition 
• w(0) = 0 is equivalent to 

w(0) = 0'.	 (4.2) 

Let us start withexplanitig the philosophy of our method. The Riemann-Hilbert 
problem (4.1) with c E ER fixed has a solution set {wdc } deR which can be parametrized. 

'. by a real Parameter d. Therefore we are left with balancing the two parameters c and 
d to satisfy the additional condition (4.2). In order to do this we apply the geometric 
approach developed in [7-9] to get an idea of the influence of c and d to wac (0). In 
this , way we shall determine the range {wac(0): c, d E [R} and decide whether the con-
dition (4.2) can be fuliulled or not.	 ,	S 

According to the assumptions in [7] the function F is required to be monotone in p 
and to satisfy the following hypotheses: 

The function F together with itsderivatives OF/as, aF/ap, a2 F/s 13p is-continuous 
with respect to both arguments. Thereby the (finite) limits 

F ± (s) =,' urn aF(s, p)/p,	urn p 2 F(s, p)/as = 0	 (4.3) 

should exist uniforrnly.with respect to s. In particular, there is a' positive decreasing 
function q tending to zero at infinity such that  

IaF(s,p)/ap - F(s)I	g(p).	
0	

(4.4) - 

Moreover we suppose that  

F(s) = f(s) -	 /	 •	. (4.5) 

and write Fr(s)' instead of	(s). We assume that the function Fr(s) is continuously 
differentiable.	 S	 ' S 

• Remark 6: The condition (4.5) looks somewhat artificial' from the physical viewpoint but ' • 
it-is essential for the given existence proof. Nevertheless we conjecture that Theorem 3 remains 
valid without this assumption.	 0	

.1 

/



v=A(s)-F7s) V 

—

MCI 

v-A-F7s) C(s)<O

v=A(s)-F(s) V

U 
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vA(sJ-F7s) V. 

EPI=  - 
'v=A(s)-F(s)  C(s)>O 

-'I 

Potential Flow Past a Circular C'linder	423 

The solvability of the problem significantly depends on the following quantities: 

F(s) =hmF(s p),	± =	f	 ds - 

•	Here it is allowed that the values of ± are oo or —oo, repectively. 
•

	

	To stres the geometric nature of the Riemann . Hilbert problem we define the
curves

M8c = {u + iv: v = A(s) --- F(s, c + E(s) + C(s) u)} 

•	,	(cE iR,sE [—i,r])• 

and write the boundary condition (4.1) in the form 
• n,(ei8) E M3 c . /	 :	 •	' (4.6) 

The curves M c are smooth opencurfes whose shape depends on the sign, df the func-' 
tion C(s) as is illustrated in Fig. 1. For fixed a the family of curves{M3 c covers the 
domain of the (u, v)-plane bounded from above by the straight line v A() - 
and from below by,v'= A(s) - Fr(s). For'c 1 > c2 th curve M3c lies below M5c2.

Fig.	1	•.	.-	 .'	.	 - 

We check the -assumptions (i)—(v) in [7: Sect. 3]. For this 6nd the curves M, c are 
•	parametrized by  

M3c = {	+ iv = a + i(s, a): cF E	},	 •'	;	' - 
where	s, a) ='A (s) - P(s, c + E(s) + C(s)a.	The	smoothness	assumptions 
(i)—(iii) follow from E,C E C'[—t, n] and from the 'continuity of ic a/as, c/a, 
a24tt c/asaa. To prove.(iv) we calculate the quantities	±, fi± (cf. [7: p.219]). Obviously,. 

•	±() := Aim Re	C(5, a)/aa = 1,	•	 * 
-.	o-.'±oO	•	•	- - 

•	.	j9(s) := urn Tm ajuc 	a)/aa	 I	• 

*	 •	-	•	
• (4.7) 

•	,	 - • —C(s) afls, +00)/ar .	as C(s) > 0, - 
.	 as C(s)	0, . 

—C(s) aP(s, '—oo)/ap	as C(s) < 0,. :	• .	,.	-. 
S	 ,,-',, i.e., by (4.5),	 . •••,	•.	•	S 

- fl(s) = —C(s) Fr(s).	
.	 .	

• (4.8) 

• •	 S.!	 .	S	• .•/5
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Further, we have to show the ' uniformity of the limits (4.7). Lt M : --- sup J aFlapj. 
On account of (4.4) and (4.8)for any e> 0 the estimate	 - 

	

(s, a) -	= IC(s)I -	(s, C + E(s) + C(s) a) - F(s) <s' 
auk	 ap, 

holds, whenever. 

	

em	 1	- 

S	 I 

or	

and	g (^,I- sup c + F(s)I) < sup IC(s)I' 

' respectively. This proves the uniformity of the limits (4.7). , Finally, the assumption 
(v),Le., the continuous differentiability of #,±, follows from (4.8) and from the con-
tinuous differentiability of fi, follows from (4.8) and from the continuous differen-
tiability of F,, and C.  

Now i.e can state some results about the solvabilit3F of problem (4.6). 

Lemma I: The following statements are true. 
(i) Under the above assumptions; /or'any c, d E ER the probleni(4.6) possesses exactly. 

one solution wdc with boundary vdlues]rom the Sobolev s
p

ace W2'(I') which fulfils the' 
side condition  

u(l)	' d. '	 S	 ,	 (4.9) 

(ii) If d 1 > d2, then  

u, (e') > u(e 8) /or all s E [ — t, yr]. 

(iii) For all'c E ER we have  

lim inf Udc (&8 ) = +oo,	lim ' sup u(e) = —o.o.  
S	

,	 8	,	 . d-*-	8 

(iv) The mapping ER 2	W2 1 (F': {c, d} i- w d is continuous.	 S 

	

To prove- Lemmal we remark that the index x of the considered Riemann-Hilbert	S 

problem is zero. Hence the assertions (i)'—(iii) immediately follov froth Theorem. 3 
in [7].  
"We merely sketch the basic ideas for proving (iv). According to [11] the boundary. 

value problems(4.6), (4.9) are reduced to fixed point equatioifs for compact opera-
torsSNdc acting iii W2 1 . Each operator has exactly one fixed point with Leray-Schat-. 
der fixed poi1t index 1. Sincthe operators Ndc depend continuously on c and d (if) 
some sense), it follows from the stability of the fixed point index (with5respect to a 
suitabl'e chosen small ball; cf. [14]) that the fixed points of Nd' are continuous func- 
tios of c and d. This implies (iv). For more detail we refer to'[9: Proof of Theorem 21, 
where an analogous result was derived for a similar problem I 

- Our concrn is now to find values of the parameters c and d so that the correspond-
ing solution WdC of the . Riemann-Hilbert problem (4.6), (4.9) given by Lemma 1 
satisfies the condition wdc (0)	0. For this end at first we vary d. For any fifed 
c 6 [R we define curves La-by L, 	{wdc (0): d 6 R}. In virtue of Lemma 1/(iv) and
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the mean value formula 

w/(0) =	J w(e') d	
:	

(4.10) 

the curves L are Jordan curves. Additionally, by Lemm'a']./(iii), any vertical inter-
sects each curve L. Due to Lemma 1/(ii) we have 	 : 

u(0) - u(0) = ± f[u (&8) - u (el8) ds> 0	 (4.11) 
-	2	 0 

if d1 > d2. Further, taking into account the definition , of the curves• M3c and the 
continuous differentiability of the function F,- we obtain the existence of constants 
K, such that  

- v(e i8)j < K c[u(e i8) - u(ei8)]  

This implies the 'estimates	 0 

• 0	 ''	 ,	
5'	 S 

v,(0) - ed. 
(0)1	-f Iv (e 18 ) 

7- v(e I8 )I ds 

0	
-i--- f[ied ,(e i 8 ) —u(e'8)]ds -	- 

•	

0	
-j	 /	 -	

••-	 0 

•	 0	 '•,	 -	 C	 0,_ 

-	 0	 =	[ua(0) - Ud.(0)] .	 (4.12) 

From (4.11). and (4.12) we conclude the existence of Lipschitz continuous functions 
•	-2 such that L	{u + iv E C: ' = ).(u)}. These functions A, satisfy the estimates 

AE	2c(u1)c(u)	A—E-,	u 	 .,'	-	(4.13) 

•

	

	if c1 > c2, wl'e?e A, .f, P- are the above defined mean values of the functions A, 
F', F-, respectively.' The outer inequalities immediately follow by integrating the 
estimates (cf. Fig. 1)	 0	

5 

- 0	

A(s) - F+ (8)	vdc(ei8) ;5 A(s) - F- (s)  

•	over I'. To prove the middle inequality in (4.13) we introduce the followingriotations. -	• - 

We writs w MC if for he continuous holomorphic function w the values w(&") lie 
above or on the curves 43 c for any s € [—yr, 2r]. If additionally w(eis) lies actually 
above , M3 c for at least one s, we denote this by w > M c . Analogously we write w(0) 
^ L if the value -w(0) lies above or on the cürveL,and w(0) .>Ti means that w(0) - 
lies above  

Lemma 2: Let w be a holomorphic function with boundary values from W 2 (f'). If 
w ^. M C , then w(0)	L. Further, if w ^ M C and w(0) -E'L, then w(e) € M5 1 for all 
5, i.e., w	wdC for some d.	 0	 -• 

	

The probf of Lemma 2 *ill be given below.	•	 -	

5	 / 

	

'Now c 1 > c2 yields wdC.	M since the curves M['lie above Or on Ma f9r any s. 
From Lemma 2 we conclude wa(0)	L. This implies 2,(u) ).(u) for u = Re 
W(0) . Vaying dover R we get the' middle'inequality in (4.13).	 '
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If the function F(s, p) is even strictly mo'nothne in p for some 8, we have Wd> Mc, 
and consequently the second part of ,Lemma 2 yields wd"(0) >	This implies the 
strict inequalities	 V 

- + <() <2,(u) <A - F-,	u E R.	 (4.14) 

At last we investigate the behaviour of the curves L as c - + co. For any 'it E ER - 
the relations	 -	- 

Thm 2('u) =A — F,. urn A(u)=A-F	 (4.15) 
•	 c-+oo 

hold. We only prove this for bounded functionsF, F, otherwise the proof has to be 
•	modified in an obvious way: For any e > 0 we choosea r'eal-valued 2r-periodic func-

tion h ishich is continuously differentiable aiid satisfies the ineua1ities 

'	1	
"	

A(s) - F(s) <h(s) <A(s) - F)-j-'e. 

Further we define the holomorphic functions 'ib d by their boundary values 

wd (e 18 ) = Hh(s) ± ih(s) + d,	d E R.	 -, 

Since Re Wd is bounded, we have 'i1d ^! Me for sufficiently large c. Taking into account 
that Re Wd(0) = d Tm wà(0) <A - F + e, from Lemma 2 and (4.13) we obtain the 
inequality  

•	 SI	 A2c( 	AEe.	 l 

Since e is an arbitrary positive number this-yields the first relation in (4.15) with u = d. 
The second estimate can be provedin an analogous manner.	/	

S	 • -

Closing the preparations for the general existence theorem for the flow problem we 
still have to prove Lemma 2. Let w-b a holomorphic function with boundary values 
from W

ill

 which sàtisfie u ^ Mc . We must show that either w ' = wdC for some d or 
w(0) > L. Evidently the point-iv(0) can lie above, on, or below the curve L. In the 
first case w(0) >-L there is nothi-ngto prove. In thd second case w(0) E Lc there 
exists a real number d with w(0) = wdc(0), i.e., the function w0 = w'— w/ satisfies 
w0(0) ,= 0. From the ge'ometry of the curves M,c it can be seen that the boundary 
values of w0 belong to the complex plane slitted along the negative imaginary axis: 

w0(e) E S-u {0},	S = -{w E C \ {O}: arg w	—7/2}.	 (4.16)

If w0 is not a constant, then in virtue of w0(0) = 0 there must exist a point z 0 in a 
neighborhood of the origin such thatw0(z) = --ia with a sufficiently. small pOsitive. 
a. From (4.16) we see that the -,'indQ number of the function w0 ± it is zero. But 
then the function w0 + is Can not•vanish at z0 . Therefore w0 is a constant function; 
wo = w0(0) = 0, i.e. w = wdc . In -the third case there exists a positive number 6 with 

-w(0) ± iô E L. As in the proof of the second case this implies w ± i6 = wdC for some 
•	

- d. But this is impossible because w(e) = wd'(e),— iô would lie below the curve Mc 
in contradiction tà the assumption w Mc .	- 

Remark 7: In the paper [8] of the first author it is shown, that Lemma 2 can be extended 
- to more general situations. 

•	 :	 - 

We are now ready to formulate the main existence theorem.
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Theorem 3: Let the +I uiction F satisfy the above assumptions. Then the following. 
• assertions about ' the solvability of the Rie-inann-Hilbert problem (4.1), (4.2) for the holo-

morphic function w with boundary values .jrom W 2 1 (I') and the real constant c hold: 
(i) If either, A> F or A < F-, then there exists no solution.'- 
(ii) If FT <1<	then the problem- is solvable. The function w is uniquely deter-

niined.  
(iii) If the function F(s, j) is strictly monotone imp for at least one 'value of s, then the 

function w and the constant c are uniquely determined. A solution exists if and only if 
F-<A<F..  

Proof: 1. According to (4.13) the curves'L lie completely in the strip T = {u + iv 
E CuEER,A — F	v^A—F}. This proves (i).	 - 

2. In virtue of Lemma- 1/(iv) the, rnapping ER2 —i- T: {c, d}	wd'(0) is continuous. 
Further, by Lemma 11(u), (iii), the curves'L run from—co to +00. Finally,by.(4.13), 
the curves L depend monotonically on c arid by (4.15') they extend up to the both - 
boundaries, of the strip . T. Therefore the curves L eompletely exhaust the interior 
mtT of T. That means, since 0 E mtT in case (ii), there exists a function wdC satisfy, 
ing wdc(0) = 0.  

Let further w and itfdl, be two solutions 'of the problem. If c = c2 , then.Lemma 
1/(ii) implies d 1 = d2 . If on the other hand c,' > c2 , then we have w: ^:! Mc (cp. Fig. 1)

	

- -	and w :(0) E L, since w2(0) = 0 = w(0) E La,. Hence Lemma 2 implies ivdcl, = 
- fof-some d. But wdc must be equal to w as we just proved. Conseuently we hae 

	

-	
'  

3. Let the function F(s0 , p) be strictly, monotone in p for some s0 'E [ —yr, yr]. By 
(4.14) the curves L lie cQmpletel r. in the interior of the strip T.-Hence solutions can-

• not exist if .4= F- or X= P;  
If w and w: are two solutions of. the pi'obiem with o > c2 , then we have w: > Mc 

and again w:(0) E La,. Hence, by Lemma 2, the rlation w :(e1 ) E M3c holds-for all 
s But v,c:c'8) lies above M This cont ,adiction shows that c 1 = c2 I 

	

Remark 8: In case of a semi -permeable surface (wher F(s, p) = 0 if p <0, for instance)	- 
only the statements (i),(ii) of Theorem 3 apply.. In particular, if 0 < A < i", we have a uni-
que solution w of (4.1), (4.2), but the pressure constant c may not be uniquely determined. This 
seems plausible also from the physical point of view (cf. also the remark to the uniqueness 
theorem in [13])	 '	.  
Remark 9: Comparing the obtained existence theoreths for th flow problem we point out 
that in the Theorems 1 and 2 we always have F = — cc, F+. = +00, so that under the assump-, 
tions of these theorems the problem is solvable for any vatue of - ,! = Q/2a. In contrast to 
this, for finite F, F+ the existence cohdition in Theorem 3 is it natural restriction to the magni-
tude of the total mass flux through the surface'of the cylinder;  
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