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Wirgbrauchen eiIe geeignete Darstellung'von Gârdings Ungleichung, urn Nichtoszillations-
kriterien für die aligemeine elliptische Diffcrentialgleichung gerader Orcinung 

	

(1) D[Ap(x)DPu] = O •	(x EY  
II.IpIo 

von bekannten Nichtoszillationskriterien für die häufiger betrachtete Gleichung (— 1) 4mu 
+h(x) u = 0 (x E Q) abzuleiten, woQ cin unbeschranktes offenes Gebiet des 1R8 ist: 

• YnoTpe63n!fl ouaii 113 noxoniiwx B311HT0B nepaaeHcraa ['opjunira (GArding) mbi EIoxaaeM, 
HaKMoxHo BHBecTI4 HOBbiTCOCMbI HeocI11J13iRIuh1 JIJIH 06UHX 3J1J1I4nT11 qecIHx ypaBlfeinift 
qeTIloI'O nopa 

	

(_t)ll D[A(x) Du] = 0	(x E 11) •	 - 

113 w3necTI1Iix 'reopeM HOC1MJ1J1J1UH11 Ana 6onee qacro u3yaeMoro ypaBHeHHfl	1) m A mu
+ h(x) u = 0 (x E Q), rge Q nBifleTcfl HeorpH11'1HHb1M OTxpbiTbIM noJMHoHecTBoM 1R8. 

Using an appropriate version of Gârding'sinequality, we show how to deduce new, non-oscil-	.. 
lation theorems for the general even-order elliptic equation	/	 S 

	

E (_1) 11 D[A(x) Du] = 0	(x € 0)1 

from known non-oscillation theorems for the more frequentlystudied equation (.!)m Jrnu 
± h(x) u, -2 0 (x € Q), where Q is an unboundçd, opeti subset of ERt. 

1. Introduction. Several writers (see, 'e.g., [2, 3, 5, 8, 9]), have obtained non-oscillation 
-theorems for various forms of the elliptic partial differential equation 

(_1)m	D[ap(x) Dflu] ± a0 (x) u = 0	(x E Q 9 ER8) 
II=IPIm - 

in an unbounded open set Q. In a recent paper [6], by using a version of Poincaré's 
inequality, the author obtained non-oscillation theorems for the more general equa-
tion -	 1• 

(_1)m f D"[A(x) Du] + E B(x) JYu.= 0.	• 

	

I=ITh=m	 Im 
In the present paper, by using an appropriate version of darding's inequality, we 
• -will 'extend the results in [6] to the equation 

L'u :=	(_1)141 D[A(x)Dflu] = 0	(x € D 9 ER 8); •	'	(1) - 
•	- -	IaI.l$IO  

	

-	 -	•	-,	:



/	 .	
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where the coefficient functions A m p -are real-valued and sufficiently*  smooth. (The 
niulti-index notation employed here is the same as in [11.) Our. main result is a com-
parison theorem, whose proof, based on a suitable version of Gârding's inequality, 
will show that every knOwn non-oscillation theorem for the equation 

(-1)mu+h(x)u=O - (x	R") .	 (2)
gives rise to a new non-oscillation theorem for (1).  

2. Definitions and preliminary results. Throughout this paper, 0 will denote ary non-
empty, open (possibly unbounded) subset of Q. If k is any non-negative integer, we • '	define the 'seminorm •j kG ' the weighted seminorm	and the norm II'IIkG as 
follows:	 .	 .	 . . 

. I U IkG = { .	f Du I 2 d1 hI2 ,	'	. V	 (3) 
J . 

E f (k!/a!) Dul 2 dxl h '2 ,	 V	 (4) 

	

LI=k C	 J 

	

1k 1 12	 J 

	

= I E 11jI
j	

(5)

The definition Of' l . J k.G.W is motivated b11 the following fornula, which is valid for all 
real-valued t in C000 (0):	"	.	.	 .. 

	

0,1m dx = (-1) f 0 (i Dk2) 0 dx	. 
C	 C-

=(_1)mf(m!/!)Dødx 
C kI=m 

fD"[(m!/cd)D]dx • -	 . .	 II=m C 
•	.•	 .	=	f(th!/!)IDI2dx.	 .V 

To compare the seminormsl . I mC and klm.Cw, we let  
c0 = max (m!/a!: jal = m}.	.	r.	 (6) 

	

• Then it is easily seen that	• 

	

•	IimG .	I U ImGw	C01	 /	 .	 (7) 
We also note that,. in (3) and -(5), when there is no danger of confision, we omit the 
subscript 0. Let cBk (0) = {u E Ck(G): jUIIk.C.< oo}, and let Hk(G) nd Hk°(0) denote 
the completions of CBk (0) and C0 (0), respectively, with respect to thenorm jkC• 

If 0 is bounded, and if there exists a non-trivial function U- in 11m°(0) fl C2, (G) 

such that (1) holds, then 0 is called a . nodal domain. for L or a nodal domain for (1). If 
• . for all positive r the region {x E Q: IxI >. r} contains a nodal domain fo- L, then (1) is 

said to be nodally oscillatory (or strongly oscillatory) in Q. 
Using integration by parts, we cnVeasily show'that if -U is any non-empty, open 

(possibly unbounded) subet of Q, then for. every real-valued 0 in C0 (0) we have 
f (J)LØ dx =	. f A(x) D"(PD0 dx + f 02A(x) dx  

•	 C	 I=I$=-m C	 - C	 - -	 • - 
-	 2m-1-	-	 -V -	 •.	 •	

V 

	

-	/	

••	+.E	fA,D1)DPdx. .	-	•	V -	(8) 

	

-	.	 II+IPI=I C	V	-	-	-	V
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The standard proof of the global version of Gãrding's inequality [1: Theorm 7.61' 
now yields the following result. 

Lemma 2.1: Let E0 denote the ellipticiycónstant 
of the di/freatial operator L; in 

other words, let  

E=jfl4 E 
•	 LI!=IPI=m	-. 

Supposi that the principal coefficients A 5 (I a I = = m) are uni/ormly'continuous 
on Q, and that the remaining coefficients A,p Gal +1#1 < 2m - 1) are bounded and 
measurable on Q. Let U be anynon-empty, open subset of D. Then there exist constants 

- c E (0, on) and'c2 E [0, ) such that, for every real-valued J) in C00)(U), we have, 
2m-1	 • 

,5	fA(x)DDI-dx+	' f A (x)DJDdx ^ c1 E0 j	—c2VJ;. 
II=lflI= m G	 II+IPI=1 G 

The 'constant c depends only on in and n; the constant 'c 2 depends only oi m, n, B0, 
sup {IA(x)l': x E Q; 1 +lfll 2rn 11' and the nz6dulus of continuity for the 
principal coefficients.

 
3. The main results. Using Lemma 2.1, we will first obtain a comparison theorem; 
which we can then employ to obtain new non-oscillation theorems for (1) from .all 
known non-oscillation theorems for (2). '	•' '	 I 

Theorem 3.1: Let M be the differential operator defined by 
- Mu	(_1)m c4 AMU + [A00(x)-- c2] t,	 U	 (9) 

where'  
c4 ,= è1 E0/c0 ;.	-	, :	 ' 	(10)

U 

and, co is defined by (6). If (1) is nodally oscillatory in Q, then the differential equation' 

Mu = 0.	 , ,	 (11) 
is also nodally oscillatory in £2.	 S ,• 

Proof: If (1) is nodally oscillatory in £2, thenfor every positive number r the region 
{x E £2: j xj > r} contains a nodal domain U for the differential operator L. Thus, there 
exists a non-trivial function u in 11m0(0) n C2m (G) such that (1) holds. Furthermore, 
(8), Lemma 2.1, (9), integration 'by parts, (4), (7) and (10) imply that, for every 4i in 

we have	
U	 •	 ' 

fLPdx_fbM'Pdx	-	 '	
• 'U 

G 

	

• > [c, E0 1111 2 - c	lo2 + A 00 cPl O2] --[c4	+ (A - c2)
 1102] 

= 1E0 1111m2 - c4l,G,-^ c 1 E0 ll, 2 - C4 lliGw

> [(c 1 E01c0 )'_ c4 1	= 0.	 '	'	 (12) 
•	 sing (1), (12) and a contiriuity , argumerit, we obtain 0 = f uLiu dx 'f uMu dx. 

	

•	 U	 G	 C	 U 

Therefore, the smallest e'igenvalue of the eigenvalue problem • Mv = Ày, v E I1.0(G) 
• n C2m(G),is non-positive. Hence, we can 'apply a known monotonicity prinCiple [4] 

to show that G has a non-empty open subset 0' such that zero is the smallest eigen-
value of the eigenvalue problem MW = ,UW, IC E 11,°(G') n &m (0') Thus, we have 
shown that, for every positive number r, the' equation Mw, = 0 has a non-trivial 
solution w, with a nodal domain i'	G	{x E £2: jxj > r}	'	•	 ' ,	 U'
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To illustrate how Theorem 3.1 may be employed to obtain new non-oscillation 
theorems for (1) from known nOn-osCillation theorems' for (2), we now generalize the 
non-oscillation portion of [8: Theorem 11. (In [7] we showed how to obtain new oscil-
lation theorems for, (1) from 'known oscillatiob theorems for (2).) 

Theorem 3.2: Consider. the polynomial  
rn-i  

/7 [r+[(n_2rn+41)12]21Ebkrk.  
j=O	 ,	 k=O	 - 

If n > 2m, or if n < 2m and it is odd, then, (1) is nodally non-oscillatory in Q if there 
-exists a positive number r0 such that /or every x in the region jx E Q: lxi > r 0} we have 

-	 m 
•	[A(x) - c2 ]/c4 > - 1 x 1 2m ,' [(2k - 1)!!] bk!41' log21' xi.	 (13) -	 k=O 

Proof: Suppose to the contrary that (1) is nodally oseillatoryin-Q. Then it follows 
from Theorem 3.1 that (11) is nodally oscillatory in Q, contrary to the fact, proved in 
[8: Theorem 1], that (11) is nodally non-oscillatory in Q whenever (13) holds I	 -' 

We invite the reer to f9rmulate appropriate generalizations of other known non-
oscillation criteria.	 '	 S 
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