Elliptic Oscillation Theory

V. B. HEADLEY

Wir gebrauchen eine geeignete Darstellung von Gardings Ungleichung, um Nichtoszillations kriterien für die allgemeine elliptische Differentialgleichung gerader Ordnung

$$
\sum_{\substack{i=1\\i,j\in\mathfrak{b}}}^m (-1)^{|x|} D^{\alpha}[A_{\alpha\beta}(x) D^{\beta}u] = 0 \qquad (x \in \Omega)
$$

von bekannten Nichtoszillationskriterien für die häufiger betrachtete Gleichung $(-1)^m 4^m u$ $h(x) = 0$ ($x \in \Omega$) abzuleiten, wo Ω ein unbeschränktes offenes Gebiet des Rⁿ ist.

Употребляя один из подходящих вариантов неравенства Гординга (Gårding) мы покажем, как можно вывести новые теоремы неосцилляции для общих эллиптических уравнений четного порядка

$$
\sum_{|\beta|=0}^m (-1)^{|\alpha|} D^{\alpha} [A_{\alpha\beta}(x) D^{\beta} u] = 0 \qquad (x \in \Omega)
$$

из известных теорем неосцилляции для более часто изучаемого уравнения (-1)^т $\varDelta^{m}u$ $h(x)$ $u = 0$ ($x \in \Omega$), где Ω является неограниченным открытым подмножеством \mathbb{R}^n .

Using an appropriate version of Garding's inequality, we show how to deduce new non-oscillation theorems for the general even-order elliptic equation

$$
\sum_{i,\vert\beta\vert=0}^m (-1)^{\vert\alpha\vert} D^{\alpha}[A_{\alpha\beta}(x) D^{\beta}u] = 0 \qquad (x \in \Omega) \neq 0
$$

from known non-oscillation theorems for the more frequently studied equation $(-1)^m \Delta^m u$ $u + h(x)$ $u = 0$ $(x \in \Omega)$, where Ω is an unbounded, open subset of \mathbb{R}^n .

1. Introduction. Several writers (see, e.g., [2, 3, 5, 8, 9]), have obtained non-oscillation theorems for various forms of the elliptic partial differential equation

$$
(-1)^m \sum_{|\alpha| = |\beta| = m} D^{\alpha} [a_{\alpha\beta}(x) D^{\beta} u] + a_0(x) u = 0 \qquad (x \in \Omega \subseteq \mathbb{R}^n)
$$

in an unbounded open set Ω . In a recent paper [6], by using a version of Poincaré's inequality, the author obtained non-oscillation theorems for the more general equation

$$
(-1)^m \sum_{|\alpha|=|\beta|=m} D^{\alpha}[A_{\alpha\beta}(x) D^{\beta}u] + \sum_{|\alpha| \leq m} B_{\alpha}(x) D^{\alpha}u = 0.
$$

In the present paper, by using an appropriate version of Gårding's inequality, we will extend the results in [6] to the equation

$$
Lu:=\sum_{|\alpha|,|\beta|=0}^m (-1)^{|\alpha|} D^{\alpha}[A_{\alpha\beta}(x) D^{\beta}u]=0 \qquad (x \in \Omega \subseteq \mathbb{R}^n), \qquad (1)
$$

where the coefficient functions $A_{\alpha\beta}$ are real-valued and sufficiently smooth. (The multi-index notation employed here is the same as in [1].) Our main result is a comparison theorem, whose proof, based on a suitable version of Gårding's inequality, will show that every known non-oscillation theorem for the equation

$$
(-1)^m \Delta^m u + h(x) u = 0 \qquad (x \in \Omega \subseteq \mathbb{R}^n)
$$
 (2)

gives rise to a new non-oscillation theorem for (1).

2. Definitions and preliminary results. Throughout this paper, G will denote any nonempty, open (possibly unbounded) subset of Ω . If k is any non-negative integer, we define the seminorm $|\cdot|_{k,G}$, the *weighted* seminorm $|\cdot|_{k,G,w}$, and the norm $||\cdot||_{k,G}$ as follows:

$$
|u|_{k,C} = \left[\sum_{|\alpha|=k\sqrt{G}} \int |D^{\alpha}u|^2 dx \right]^{1/2}, \tag{3}
$$

$$
||u|_{k,G,w} = \left[\sum_{|\alpha|=k} \int_G (k!/\alpha!) |D^{\alpha}u|^2 dx \right]^{1/2}, \tag{4}
$$

$$
||u||_{k,\mathcal{C}} = \left[\sum_{j=0}^{k} |u|_{j,\mathcal{C}}^{2}\right]^{1/2}.
$$
\n(5)

The definition of $|\cdot|_{k,G,w}$ is motivated by the following formula, which is valid for all real-valued Φ in $C_0^{\infty}(G)$:

$$
(-1)^m \int\limits_G \Phi \Delta^m \Phi \, dx = (-1)^m \int\limits_G \Phi \left(\sum_{k=1}^n D_k^2\right)^m \Phi \, dx
$$

= $(-1)^m \int\limits_G \Phi \sum_{|\alpha| = m} (m!/\alpha!) \, D^{2\alpha} \Phi \, dx$
= $(-1)^m \sum\limits_{|\alpha| = m} \int\limits_G \Phi D^{\alpha}[(m!/\alpha!) \, D^{\alpha} \Phi] \, dx$
= $\sum\limits_{|\alpha| = m} \int\limits_G (m!/\alpha!) \, |D^{\alpha} \Phi|^2 \, dx$.

To compare the seminorms $|\cdot|_{m,G}$ and $|\cdot|_{m,G,w}$, we let

$$
c_0 = \max \{m!/\alpha! : |\alpha| = m\}.
$$
 (6)

Then it is easily seen that

$$
|u|_{m,G}\leq |u|_{m,G,w}\leq c_0^{1/2}|u|_{m,G}.
$$

We also note that, in (3) and (5), when there is no danger of confusion, we omit the subscript G . Let $C_B^{\ k}(G) = \{u \in C^k(G) : ||u||_{k,G} < \infty\}$, and let $H_k(G)$ and $H_k^0(G)$ denote the completions of $C_B^{\ k}(G)$ and $C_0^{\infty}(G)$, respectively, with respect to the norm $\lVert \cdot \rVert_{k,G}$.

If G is bounded, and if there exists a non-trivial function u in $H_m^0(G) \cap C_i^{2m}(G)$ such that (1) holds, then G is called a *nodal domain* for L or a nodal domain for (1). If for all positive r the region $\{x \in \Omega : |x| > r\}$ contains a nodal domain for L, then (1) is said to be nodally oscillatory (or strongly oscillatory) in Ω .

Using integration by parts, we can easily show that if G is any non-empty, open (possibly unbounded) subset of Ω , then for every real-valued Φ in $C_0^{\infty}(G)$ we have

$$
\int_{G} \Phi L \Phi dx = \sum_{|\alpha| = |\beta| = m} \int_{G} A_{\alpha\beta}(x) D^{\alpha} \Phi D^{\beta} \Phi dx + \int_{G} \Phi^2 A_{00}(x) dx
$$
\n
$$
+ \sum_{|\alpha| + |\beta| = 1} \int_{G} A_{\alpha\beta} D^{\alpha} \Phi D^{\beta} \Phi dx.
$$

 (7)

The standard proof of the *global* version of Gårding's inequality [1: Theorem 7.6] now yields the following result.

Lemma 2.1: Let E_0 denote the ellipticity constant of the differential operator L ; in *other words, let* The standard proof of the global version of Garding's inequality [1: Theorem 7.6]

now yields the following result.

Lemma 2.1: Let E_0 denote the ellipticity constant of the differential operator L; in

other words, le

$$
E_0=\inf\left\{\sum_{|\alpha|=|\beta|=m}A_{\alpha\beta}(x)\xi^{\alpha+\beta}|\xi|^{-2m}\colon 0\neq \xi\in\mathbb{R}^n,\,x\in\Omega\right\}.
$$

on Ω *, and that the remaining coefficients* $A_{\alpha\beta}$ $(|\alpha| + |\beta| \leq 2m - 1$ *are bounded and measurable on* Ω *. Let G be any non-empty, open subset of* Ω *. Then there exist constants reasurable on sz. Let* G *be any non-empty, open subset of sz. Then there exist cons*
 $c_1 \in (0, \infty)$ and $c_2 \in [0, \infty)$ such that, for every real-valued Φ in $C_0^{\infty}(G)$, we have **2m-1** • ppose that the principal coefficients $A_{\alpha\beta}$ ($|\alpha| = |\beta| = m$) are uniformly Ω , and that the remaining coefficients $A_{\alpha\beta}$ ($|\alpha| + |\beta| \leq 2m - 1$) are botasurable on Ω . Let G be any non-empty, open subset of Ω . The standard proof of the global vers

now yields the following result.

Lemma 2.1: Let E_0 denote the elliptic

other words, let
 $E_0 = \inf \left\{ \sum_{|\alpha|=|\beta|=m} A_{\alpha\beta}(x) \xi^{\alpha+\beta} | \xi \right\}$

Suppose that the principal coefficients

$$
\sum_{|\alpha|=|\beta|=m} \int_{G} A_{\alpha\beta}(x) D^{\alpha}\Phi D^{\beta}\Phi dx + \sum_{|\alpha|+|\beta|=1}^{2m-1} \int_{G} A_{\alpha\beta}(x) D^{\alpha}\Phi D^{\beta}\Phi dx \geq c_1 E_0 ||\Phi||_{m,G}^2 - c_2 |\Phi|_{0,G}^2.
$$

The constant c_1 depends only on m and n ; the constant c_2 depends only on m , n , E_0 , *principal coefficients.* $\int A_{\alpha\beta}(x)D^{\alpha}\Phi D^{\beta}\Phi dx \geq c_1E_0$

and *n*; the constant c_2 depends $\{2m-1\}$ and the modulus of 2.1 , we will first obtain a com

in new non-oscillation theorem

(2).

ential operator defined by
 $\int_0(x) - c_2] u$,

The constant c_1 depends only on m and n; the constant c_2 depends only on m, n, c_0 , $\sup\{|A_{\alpha\beta}(x)|: x \in \Omega; 1 \leq |\alpha| + |\beta| \leq 2m - 1\}$ and the modulus of continuity for the principal coefficients.
3. The main results. 3. **The** main results. Using Lemma 2.1, we will first obtain a comparison theorem; which we can then employ to obtain new non-oscillation theorems for (1) from all known non-oscillation theorems for (2). **(a)** \therefore Ω ; $1 \le |\alpha| + |\beta| \le 2m - 1$, and the modulus of continuity for the ents.

all **c** and Ω .

all **c c** Ω **c** Ω **c**₂ *i* **c** <u>c</u>₄ *c c*₄ *c c*₄ *c c*₄ *c c*₄ *c*₄ **ain results.** Using Lemma 2.1, we will first obtain a comparison theorem,
 α can then employ to obtain new non-oscillation theorems for (1) from all

on-oscillation theorems for (2).
 α em 3.1: Let M be the differe *is principal coefficients.*
 3. The main results. Using Lemma 2.1, we will first obt

which we can then employ to obtain new non-oscillation

known non-oscillation theorems for (2).

Theorem 3.1: Let M be the different

Theorem 3.1: *Let M be the differential operator defined by*

$$
M u = (-1)^m c_4 \Delta^m u + [A_{00}(x) - c_2] u, \qquad (9)
$$

where'

(10)

U and, c_0 is defined by (6). If (1) is nodally oscillatory in Ω , then the differential equation

$$
Mu=0
$$

Proof: If (1) is nodally oscillatory in Ω , then for every positive number *r* the region ${x \in \Omega : |x| > r}$ contains a nodal domain G for the differential operator L. Thus, there exists a non-trivial function *u* in $H_m^0(G) \cap C^{2m}(G)$ such that (1) holds. Furthermore, (8), Lemma 2.1, (9), integration by parts, (4), (7) and (10) imply that, for every Φ in $C_0^{\infty}(G)$, we have Φ is $\Phi^{\mathcal{U}}($ (8), Lemma 2.1, (9), integration by parts, (4), (7) and (10) imply that, for every Φ in $C_0^{\infty}(G)$, we have *y in* Ω .

lly oscillatory in Ω , then for even is a nodal domain G for the differentiation u in $H_m^0(G) \cap C^{2m}(G)$ is

egration by parts, (4), (7) and
 $\int_G \Phi M \Phi dx$
 $-c_2 |\Phi|_0^2 + A_{00} |\Phi|_0^2] - [c_4]$ *A*₀₀(*x*) - *c*₂] *u*,

(1
 lally oscillatory in Ω *, then the differential equation

(1

rry in* Ω *, then for every positive number <i>r* the region

(1

rry in Ω , then for every positive number *r* the region

$$
M u = 0
$$
\n
$$
u =
$$

Using (1), (12) and a continuity argument, we obtain $0 = \int uLu dx \geq \int uMu dx$. Therefore, the smallest eigenvalue of the eigenvalue problem $Mv = \lambda v$, $v \in H_m^0(G)$ $\cap C^{2m}(G)$ is non-positive. Hence, we can apply a known monotonicity principle [4] to show that G has a non-empty open subset *0'* such that zero is the smallest eigenvalue of the eigenvalue problem $Mw = \mu w$, $w \in H_m^0(G') \cap C^{2m}(G')$. Thus, we have shown that, for every positive number *r*, the equation $Mw = 0$ has a non-trivial solution *w*, with a nodal domain $G' \subset G \subset \{x \in \Omega : |x| > r\}$ Using (1), (12) and a continuity argument, we obtain $0 = \int uLu \, dx \ge \int uMu \, dx$.

Therefore, the smallest eigenvalue of the eigenvalue problem $Mv = \lambda v$, $v \in H_m^0(G)$

n $C^{2m}(G)$ is non-positive. Hence, we can apply a known mono

To illustrate how Theorem 3.1 may be employed to obtain new non-oscillation theorems for (1) from known non-oscillation theorems for (2) , we now generalize the non-oscillation portion of [8: Theorem *11.* (In [7] we showed how to obtain new *oscil*lation theorems for, (1) from known oscillation theorems for (2).)¹. **y**. B. HEADLEY
 **strate how Theorem 3.1 may be employed to obtain new non-oscil

for (1) from known non-oscillation theorems for (2), we now generalize

lation portion of [8: Theorem 1]. (In [7] we showed how to obtain n** EADLEY
 how Theore

from know
 portion of [8]
 for, (1) from
 : Consider *t*
 + [(n - 2m an
 iumber r_0 su
 - c_2]/ c_4 >

ose to the cose ¹ To illustrate how Theorem 3.1 may be employed to obtain new non-oscillation from storms for (1) from known non-oscillation theorems for (2), we now general non-oscillation portion of [8: Theorem 1]. (In [7] we showed $\begin{align*} \text{rate how T1}\ \text{for (1) from k}\ \text{ion portion}\ \text{terms for (1)}\ \text{m 3.2:} \text{Cons} \ \text{for (1)}\ \text{in 3.2:} \text{Cons} \ \text{of}\ \text{in} \ \text{for if}\ n < 2\ \text{in} \ \text{$

Theorem 3.2: Consider. the polynomial

$$
\prod_{j=0}^{m-1} \left[r + \left[(n-2m+4j)/2 \right]^2 \right] = \sum_{k=0}^m b_k r^k.
$$

If $n \geq 2m$, or if $n < 2m$ and n is odd, then (1) is nodally non-oscillatory in Ω if there *exists a positive number r₀ such that for every x in the region* $\{x \in \Omega : |x| > r_0\}$ we have

eorems for (1) from known oscillation theorems for (2).)
\n
$$
\lim_{j=0}^{m-1} [r + [(n - 2m + 4j)/2]^2] =: \sum_{k=0}^{m} b_k r^k.
$$
\n
$$
\lim_{j\to\infty} \sigma_j \text{ if } n < 2m \text{ and } n \text{ is odd, then (1) is nodally non-oscillatory in } \Omega \text{ if there}
$$
\n
$$
\lim_{j\to\infty} \sigma_j \text{ if } n < 2m \text{ and } n \text{ is odd, then (1) is nodally non-oscillatory in } \Omega \text{ if there}
$$
\n
$$
[A_{00}(x) - c_2]/c_4 > -|x|^{-2m} \sum_{k=0}^{m} [(2k - 1)!!] b_k/4^k \log^{2k} |x|.
$$
\n(13)

/

Proof: Suppose to the contrary that (1) is nodally oscillatory in Ω . Then it follows from Theorem 3.1 that (11) is nodally oscillatory in Ω , contrary to the fact, proved in [8: Theorem 1], that (11) is nodally non-oscillatory in Ω whenever (13) holds \blacksquare **Example 10.1** is note to the contrary that (1) is nodally oscillatory in *Q* whenever (13) holds I
 Example 10.1 is nodally non-oscillatory in *Q* if there
 $\prod_{j=0}^{m-1} [r + [(n-2m+4j)/2]^2] = \sum_{k=0}^{m} b_k r^k$.
 $\prod_{j=0}^{m-1$ Theorem 3.2: Consider the polynomial
 $\prod_{i=0}^{m-1} [r + [(n - 2m + 4i)/2]^2] =: \sum_{k=0}^{m} b_k r^k$.
 $\iint n \ge 2m$, or if $n < 2m$ and n is odd, then (1) is nodally non-oscillato

exists a positive number r_0 such that for every x in *•* $\prod_{j=0}^{m-1} [r + [(n-1) + (n-2) + (n-1) + ($ $\prod_{i=0} [r + [(n - 2m + 4i)/2]^2] =: \sum_{k=0} b_k r^k$.

If $n \geq 2m$, or if $n < 2m$ and n is odd, then (1) is nodally non-oscillatory in exists a positive number r_0 such that for every x in the region $|x \in \Omega : |x| > r_0$ u
 $[A_{00}(x) - c$ $[A_{00}(x) - c_2]/c_4 > -|x|^{-2m} \sum_{k=0}^{n} [(2k-1)!!] b_k/4^k \log^{2k} |x|.$

Proof: Suppose to the contrary that (1) is nodally oscillatory in Ω . Then

m Theorem 3.1 that (11) is nodally oscillatory in Ω , contrary to the fact

Theo Proof: Suppose to the contrary that (1) is nodally oscillatory in 2. Then it follows

in Theorem 3.1 that (11) is nodally oscillatory in 2, contrary to the fact, proved in

Theorem 1], that (11) is nodally non-oscillatory

We invite the reader to formulate appropriate generalizations of other known non-

Acknowlédgenieiit. This work was supported by an operating grant from the Natural : Theorem 1], that (11) is nodally non-oscillatory in Ω whenever (13) holds
 **We invite the reader to formulate appropriate generalizations of other known non-

cillation criteria.**

Acknowledgement. This work was sup Acknowledgement. This work was supported by an operating grant from the
ences and Engineering Research Council of Canada.

FERENCES

Acutos, S.: Lectures on Elliptic Boundary Value Problems. Princeton (New Jer

Nostrand 19

REFERENCES

- [1] AoMoN,S: Lectures on Elliptic. Boundary Value Problems. Princeton (New Jersey): Van
- [2] ALLEGRETTO, W.: Nonoscillation theory of elliptic equations of order $2n$. Pac. J.; Math. 64 (1976), $1-16$.
- [3] ALLEGRETTO, W.: A Kneser theorem for higher order elliptic equations. Can. Math. Bull $20(1977), 1-8.$
- [4] HEADLEY,'V. B.: A monotonicity principle for eigenvalues. Pac. J. Math. 30 (1969),- $-663-668.$
- [5] HEADLEY, V. B.: Sharp nonoscillation theorems for even-order elliptic equations. J. Math. Anal. Appl. 120 (1986), 709 722. ALLEGRETTO, W.: Nonoscillation theory of
64 (1976), 1-16.
ALLEGRETTO, W.: A Kneser theorem for hi
20 (1977), 1-8.
HEADLEY, V. B.: A monotonicity principl
663-668.
HEADLEY, V. B.: Sharp nonoscillation theor
Anal. Appl. 120 (3) ALLEGRETTO, W.: A Kneser theorem for higher order elliptic equations. Can. Math. Bull.

20 (1977), 1-8.

(4) HEADLEY, V. B.: Sharp nonoscillation theorems for even-order elliptic equations. J. Math.

(5) HEADLEY, V. B HEADLEY, V. B.: A monotonicity principle for eigenvalues. Pac. J. Math. 363–668.

HEADLEY, V. B.: Sharp nonoscillation theorems for even-order elliptic equations.

Anal. Appl. 120 (1986), 709–722.

Math. Nachr. 141 (1989), For the Reservation of elliptic equations of order $2n$. Pac. J. Math. (1916), 1-16.

(3) ALLEGRETTO, W.: A Kneser theorem for higher order elliptic equations. Can. Math. Bull

(4) HEADLEY, V. B.: A monotonicity principle
	- [6] HEADLEY, V. B.: Nonoscillation theorems for nonselfadjoint even-order elliptic equations.
Math. Nachr. 141 (1989), 289-298.
	- [7] HEADLEY, V. B.: Oscillation theorems for elliptic equations of order 2m (submitted for publication).
[8] MÜLLER-PFEIFFER, E.: Über die Kneser-Konstante der Differentialgleichung $(-\Delta)^m u$
	-
	- 2m. Atti Accad. Naz. Lincei Rend., Cl. Sci. Fis. Mat. Natur. 59 (1975), 57-64.

Manuskripteingang: 29. 03. 1989; in revidierter Fassung 02. 11. 1989

VERFASSER:

Prof. Dr. VELMER B. HEADLEY Appl. 120 (1986), 709-722.

LEY, V. B.: Nonoscillation theorems for nonselfadje

Nachr. 141 (1989), 289-298.

LEY, V. B.: Oscillation theorems for elliptic equat

tion).

The EV CRET CONTINET CONTINUES:

THE PETTER E. User Nachr. 141 (1989), 289–298.

Nachr. 141 (1989), 289–298.

LEY, V. B.: Oscillation theorems for elliptic equations of order

tion).

ERPETETER, E.: Uber die Kneser-Konstante der Differentialg
 $u = 0$. Acta Math. Acad. Sci.