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On the Singular Behaviour of Fluid in a Vertical Wedge	I 
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I	 -	 • 

/ Es werden Losungen der Gleichung ffir Kapillarflachen fiber Gebieten mit Eck betrachtct. 
Dabei wird angenommen, da13die Ecke durch zwei Kurven begrenzt wird, die einen inneren 
Winkel-2a haben mit 0 < 2c < 7t und x ± y </2, wobei y, 0 <y </2, der Kontaktwinkel 
zwischen der Fläche und der Containerwand ist. Es wird eine asymptotische Formel für Lo-
sungen in der Umgebung der Ecke angegeben.	 S - 

Hccieyiorci peweHllH ypaBneHRR HB[1HJ1JIHH0CTH B 06.IIacTHX C YrROBbIMH ToqHaMll. 
flpeluloilaraeTca , 'ITO yrioa To4Ra oHattMJHeTcF! L1BYMH HHBb1MB BMerOUHMH BJryTpeHHutl 
yroi 21x TaKoS, 'ITO'O <2a < n it + y </2, re y, 0 <y </2, HBJIHeTcH yraOM 
MCHIy HoHTa!THofl noBepxllocTblo 11 rpaHHtefi oöJIacTIl. LoHa3l,lBaeT6fl aduMrlToTMqecHaa • '	ropMyJ!a Aan peuleHun B OXpCCTROCTU yrJionol TOq HH.	 - 

•	Solutions of capillary surface equation over domains with corners are considered. It is assumed: 
that' the corner is bounded by curves which make an interior angle 2a with,0 <2x <r and 
oc + y < r/2, where y, 0 <y	z/2 is. the contact angle between the surface and the container 
wall. An asymptotic formula for the solutions near: the corner is given. 

•	 -	/	'	. 

1. Introduction. We consider the nonparametrió capillary problem in the presence 
,- of gravity. One seeks a suface 8: u = u(x), x = (x1 , x2 ), defined-over a bounded base 
- domain Q	R2 , .such that S neets vertical cylinder walls over the boundary Q in 

a prescribed constant angle y, 0 '-p	z/2. The problemwhen a tube of cross-section	S	 -' 

£2 is placed into an infinite reservoir leads to the equations (see Fn-N [3]) 

divTu=,cu- in S?,	-	 S	 (1.1) - 

v Tu = cos y on the smooth parts of OQ,	-	"	'	(1.2)

where Tu = Dull/i - + IDuI 2 ' x = const > 10 and v is he exterior unit normal, on - -	'
 

al?. By DA we denote the gradient of u. -	.	•• 
- -	Let the origin x = 0 be a corner of £2 with the interior angle 2a satisfying 0 < 2 

• Z z. We assume that the cprner'is bounded by two sufficiently regular curves and - - 
- that each curve makes an angle,x with the positive x1 -axis, see ' Figure 1.	. 

- In fact, it is enough that the curves belong to C' for some u E (0, 1 ). tWhen the' 
curves are lines near the origin, then CONCUS and- FINN [2] have shown that uis 
unbounded at the origin if and only if-a + y< ir12 holds. In this paper we are inter-
ested 'in.thi singular case. Thus, we suppose that oc '+ y <r/2 in what follows.' 
Let r, 0 b6—polar coordinates centred at x = 0, set Ic = sin a/cos y and define •	 •	 - S -' 

-	 u0(r, 0) = (cos 0 —'l/T2 — sin20)/xkr . -	•	'	. •	( 1.3) 

') See foot-note on r 433.' -	•	 -	 .	 -	 S	 ' 

30	•-	-'	•'	-	 ._	 .	;-.. 
•	•	:
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Then, using a method of Concus and Finn, we have shown in [4] that' 

= UO(T , 0) ± 0(rt)	 .	 (1.4) 

holds 
I 
near thcbrner for an E> 0 when the corner is bounded by lines'near the origin. 

That IS, x2 = tan .• x1 is he.upper curve and x 2 =, —tan a . x 1 the lower pne which 
define the corner. The leadirg singular term u0 (r, 0) was discovered by.Côwcus and 
FncN ([2] and [3, Theorem 5.5]). The expansion (14) shows that for fixed 0 the func-
tion u(r) is asymptotically a hyperbola. For 0 =^-±a one obtains the curses of con- 
tact on the container wall, compare FtNN [3, Note. 4, p. 1311 with respect to an. 
experiment performed by TAYLOR [5].  

x21 /r6:cco:t

Fig. I 

The aim of thisnote is to obtain an expansion like (1.4) in the case when the corner 
is bounded by. curves instead by lines. Under the stronger assumption 0 < < z12 
we "Obtain . by the same method that 

(x) = u(s,O) + (0) + 0(s')	 (1.5)	- 

holds. Here s, 0 denote curvilinear coordinates and q is the (unique) solution of a two-
point boundary value problem fora regular second order ordinary differential equa-
tion, see the next sections.  

Acknowledgement. I would like to• thank Professor Robert Finn for initiating my 
interest in capillary problems and for useful discussions.  

2. Curvilinear coordinates. We- use curvilinear coordinates x 1 = x, (s, 0) and 
oc •	 x2 = x2 (s, 0) (—	0	oc; 0	.s	s0, S small enough). Here 0 = const yield the •+ 

curves parsing through the origin and s denotes the are length on these curves méa-
sured from the origin, see Figure 1. More precisely, let 

x2	11 (x) =tañ oc x, + a1 x 1 2 + 0(x1 3 )	 .	 (2.1) 

be the upper curve and	 -.	S 

/2 (x1 ) = —tan oc . x 1 -l- a2x1 2 + 0(x1)	:	 (2.2) 

the lower 'one which define the orner. We set -	-	- 

X2(X1, 0) =	(i + :: ) /(x) ± -- (i - tan ) 
12X1	 (23)

tan 11 
and  introduce the are length instead of x 1 through	.	'• 

-- - - s	f 11 + xj, 0) d	- -	S	

•	 :. - 

-	 •	 --	

•.'.	 I	
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which defines x1 = x1 (s, 0) and x2 = x2 (s, 0), where we denote S x2 (xj(s, 0), 0) by 
x2 (s,0) again. We find the coefficients g 1 , 92 in the expansions 

x,(s 0) = s cos 0± 82gj(0)	O(), ' 	(2.4) 

x2 (s, 0) . = s sin 0 + S2 92( 0) + 0(8)	 •(2.5) 

as follows: Inserting (2.1) and (2.2) into (2.3) and then (2.4) for x 1 , we obtin X2(8,, 0). 
Comparison of coefficients with (2.5) yields	 1 

92 (0) = g1 (0) tan 0 + 2-' cos2 0 . G(a,, a2 , a, 0),	(2.6) 

	

•	where 0 is defined by	.	-'	•	.	 .	.	 S

I 
G(a,a2 , , 0) = (1 + tan 0/tan a) a 1 + .(l - tan 0/tan a) a2.  

From (2.4), (2.5) and x3 . x =1 it follows that  

91(0) = —92 (0) tan 0	 •	 ,	(2.8) 

holds. Combining this equation with (2.6), we obtain	 - 

g,(0) = _21 sin 0cos3 (0) . G(a,, a2, a, 0)	.	(2.9) 

	

•	and,  

. 92 (0) = 2cos4 0 . G(a,,a2 ,a,0)	.	 .	(2.10)

Set x =(x,, x2 ) and D = dét (xis x2.a) From (2.4), (25) we see that 
x i e x2.o 

• x0 = 2 + e(0) 3 + 0(84),	... 

rr /(0) s 2 + 0(s3),	S 

D = s ± e(0) s2 + 0(s),  
where	 •	 •	 . 

e(0)= —g1 (0) sin O + g2(0 ) COS O, 
= —g, (0) sin 0 + 92(0)eos 0. 

We mention that e = /' holds because (2.8). Finally, we obtain fron (2.9),-(2.10) for 
fande	'-	

0 

/ = (1/2) cos3 0 . G(a,, a2 , a, 0),  

e= —(3/2) sin 0 cos 2 0 . G(a,, a2 , a, 0) + (cos 0/2'tan a) (a, — a 2 ),	(2.12)

where 0 is defined by (2:7). 

3. The asymptotic formula. For 0 < o <oo, o small enough, ve set Q = 2 n Be, 
= (Q fl Be)\ {O} and 1 Q n aR, Here Be denotes a disc with radius and the 

centre at the origin. The proof of the asymptotic formulas (1.4) and (1.5) is based on 
a method of Concus and Finn, see[3, proof of -Theorem 5.5], which relies on-the follow-
ing comparison principle. We give here a special version which we need in our case. 
For the constant x> Olet Nv = div Tv — ,v. 

Theorem 3.1 (CoNcus and FnN [11): Suppose thätNw Nv in S2, V W on 
F, and V.TV v . Twon1hold. Then  ^tWiflQe.
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With the abbreviation	 - 

R =D2 + u82 + x0 x0w3 2 - 2x3 . x9w3w0' 
-	 n 

we have in curvilinear coordinatess, 0
'S 

1 I / xo . x0w3 - x3 . x0w0 \	/ w0 - x3 . x0w8 \ d1vTw=j.{	
•'	 v 

and

V_- Tw t(wo  - x3 . xow3 )/}I	on the upper curve (0 =a)

=(—wo +.x . x9w8)irR. on the lower curve (0	—a). 
For

h(0) = (cos 0 - yk2. - siñ2 0)/kx,	 -.	(3.1) 

where- k = sin /cos y, let w = s'h(0) + q(0) - As for a function q E C2 	- 
a constant A =l=.0 and  constant A. > 0. We define 

Lq ='(A 20)  q ')' + A 1 (0) q',	 (3.2) 
•	'- where A 2 = h2(h2 + h' 2 )-3!2 and A 1 = 2hh'(h2 -f- h 2) 3I2 , and set 

•	 F(0) = —2(h2 + h' 2 ) 3/2 (eh3 + 2ehh' 2 + /h13)	 S 

± [(h2 + h' 2)-3 / 2 (fh3 - eh'h2)]' + eh(h2 + h')_112 

e[h'(h2 + h'2)-112]'	 S	
(3.3)' 

with e and / frdm (2.12) and (2.11). After some calculation, we obtain that 

divTw = xs'h(0) 4- Lq - F ± 0(AZ) + 0(s)'-	 5 

•	holds, provided that 2	1 and IA! 2	K0 are ätisfied for a constant K0 > 0: 
Hence, since s'h(0)	w - q(0) + As3, it follows 

•	 div Tw = xw + xAs 1 + 0(A),s1) + 0(s) '	(3:4) 
if q is a solution of	'	 S 

Lq—cq,+F==O on(—cc,a).	 S	 (3.5) 

Again, after some calculation, -one firds  

v : Tw	cos y - A2hh'(h2 + h' 2 )- 312 . 811 + 0(82 )	 (36)

on the upper curve (0 = a) and  

	

Tw = cos y + A2hh'(h2 +' h'2)-3!2 4-1 + 0(52 )	 (3.7)

on the lower , one (0 = —a), provided that q satisfies 'the boundary condition's 
"	q' + /h - eh' =0 for 0 = —c a and 0 = a.	 ' (3.8)

Asibove,we assume also here that JAI 2 K0 and 2 1 hold. 

Lemma 3.1 There exists a unique solution 'to the two-point boundary value problem 
(3.5),.(3.8).	 • 

Proof: It is enough to show that the homogeneous problem hasonly the solution 
q = 0. Let q0 be a solution to the homogeneous problem associated to (3.5), (3.8) and 
u a solution to (1. 1), (1.2), when the origin is a'corner' which is bounded by lines and 

1'
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each line make,an angleo with the positive x 1 -axis. By the same argument as in 
• [4] one finds it = r'h(0) + q0 (0) + O(re ) . Here r, 0 denote polar coordinetes. Thus, 

sináe (1.4) holds too,-it follows that q0(0) = 0 on [—tx, x} U 

• Theorem 3.2: . Let u be a solution to (1.1), (1.2) and suppose that 0 < 2x <yr, 
o <'y </2 and a ' + y </2. Then, for an e > 0, it = u0(s, 0) + q(0) + 0(s e) near 
the corner, where q . is the solution to the boundary value problem (3.5), (3.8) and u is 
defined through (1.3).  

Proof: Since 0 <y <t/2 holds it follows 'from the definition (3.1) of h that 
h E ] and h) = —h'(---) > 0. Let, w  s'h(0) + q(0) - Ash, where 
the constant A is positive, then one obtains from (3.4), (3.6) and (3.7) by the same 
argument as in [4, prof of the theorem] that there are positive constants'A, Q and 2 
not depending on the particular solution u considered such that div Tw - xw 0 
in Q., w u on r and v . Tw cos y on E hold. Then, Theorem 3.1 implies. 
it ^! u0 (s, 0) + q(0) — As in Q. Bythe same argument it follows it u0(s, 0)'+ q(0) 
+ As' for possibly other positive cohstantsA, Q and 2. Here the . comparison fthiction - - 
w = sh(0)+ q(0) + AsA , A > 0, is used. Thus, the the'orem is poved U 

• . Not added in proof. More recently,-the correction term q(0) was being calculated 
numerically by Di Berndt and Dr. Janassary. from the University of Leipzig.	•'• 
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