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G: BrrrHOFF [2] hatte 1938 auf dem Weg iiber niodifizierte Riemannsche Summen eine Theorie
der Integration in Banachriumen entwickelt. In der vorliegenden Arbeit verallgemeinern wir die
Birkhoffsche Integration, indem wir ihr eine beliebige (in natiirlicher Weise gerichtete) Menge -
von ,,u-Zerlegungen' anstelle der Menge aller ,,u-Zerlegungen* des gegebenen MaBraums (F, )
zugrunde legen. Unsere Technik beim Arbeiten mit unendlichen Riemannschen Summen und
Limites von gefiltcrten Familien solcher Summen verwendet vorteilhaft die 1-Punkt-Vervoll-
standlgungt;n gewisser partieller universcller Algebren, dle von G. _ GRMEISEN in [13] diskutiert
wurden. . .

B 1938.roxy I'. Bupkroo [2] co3nan TeopHIo HHTerpUPOBAHMA B GAHAXOBBIX NPOCTPaHCTBAX
uepes’ MopuduuIpOBaHHble cymMu Puvana. B aToM craTbe MH 0600llaeM MeTON MHTCrPUPO-
BaHuA Bupkroda Tem, u4TO MOJOMKHUM eMy B OCHOBY NPOW3BOJbLHOE, €CTECTBEHHHIM 06pa3oMm
HAMPABICHHOE MHOMKECTBO ,,u-PasiodeHuN‘’ BMECTO MHOMECTBA BCEX ,,u-pasioxseHuit‘’
3aJaHHOr0 HPOCTPAHCTBa ¢ Mepoll (F, p). Hama Texunka paboThl ¢ GeCKOHEUHBIMI CYMMAMM
Pumana n npepenamMn QuAbLTPYIOIMXCA ceMelicTB TAKHX CyMM YIOTpebiaseT ¢ nonb3oi 0fHO-
TOYCYHBIE JOMOJHEHNA HEKOTOPHX YACTHUHHX yHHBepcalbHHIX anrebp, Korophe paxee o6-

.cysxpaauck I'. TPUMERCEHOM [13] K ) ; ~

In 1938, G. BIRKHOFF [2] developed a theory of integration in Banach spaces- which uses the
approach via modified Riemann sums. In our paper, we generalize Birkhoff’s integration by
basing it on an arbitrary set of “‘u-partitions” (being directed in a natural way) instead of the set
of all “u-partitions” of the underlying measure space (F, p). Our technique of working with
infinite Riemann sums and limits of filtered families of such sums takes advantage of the 1-point
completions of certain partial universal algebras as discussed by G. GRIMEISEN in [13]: .

If one leaves, in the theory of integration, ordered’ spaces (as spaces, where the inte-

" grands assume their values), in particular two methods to define an 1ntegral Jfdu

of a function f defined on a measure space, say (F;u), into the space, for the follow-
ing a Banach space E, seem to be approprlate

a) Approximate, first, f by means of a sequence (f,) of certain step functions f,
(whatever one means by “approximation”); secondly, define.f f du as the limit (w.r.
to the norm topology) of the sequence of the integrals [ f, du, those being defined in
a natural way [see DINCULEANU [4, p. 120] (where “approximation’ refers to “point-

-wise convergence u-almost everywhere’), there in a much more general situation
-than here, or ZaaNEN [28] (defmmon of the Bochner integral on p. 219, where “appro-
ximation” refers to ‘‘convergence in mean”)].

b) Spcmfy, first, a system X of countable partitions (called u- partmons) of F
(being in some way compatible with the measure u); define Riemann sums belonging .

to /, each ¢ € X and each choice function ¢ € P X and mtroducef/d,u as an appro-

1), Der abschheBende Teil IT dieses Beitrages wird in Kiirze ebenfalls in dieser Zeltschnft, erschex-
nen. o
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(
priate llmlt of Riemann sums. [Implwzlh, this method”is used by BIRKHOFF [2],

" where X consists of all u-partitions of F, but the Riemann sums are replaced by sums

which we call later Birkhoff sums (see Definition 5-and Rémark 6), explicitly, e.g:
by KurzwerL [21], MawrIN [23], McSEANE [25] (in a less general situation, where u
need not have all properties of a measure) and S1oN [27] (in & much more general
situation), where (in all four references) % consists of certain finite u-partitions of F.

(For more references for the generalized Riemann integral, see MAWHIN [23] -and
McSHANE [25].)]

In the present paper, the authors apply the method b) and allow (the “u-partition
system”) X to be arbitrary except for being directed by a natural relation < between

_ the u-partitions of ¥ (for u-partitions ¢, y of F, ¢ < y) means intuitiv ely that y is

“finer” than r, see Definition 4); this leads us to ah integral ¥f - du, which, in the
case that X is the class of all u-partitions of F, extends the Bochner integral and coin-

cides essentially with the Birkhoff integral (see [2, Defmltlon 41])._.In order to handle -

“limits and unconditional (infinite) sums (in pa,rt,lcular infinite Riemann sums) ina

convenient way, we use a technique prepared in [13]. Indeed, we do not work in the
“partial algebras” (E lim,), (E,*}y) (where "}, and 7 denote the unconditional
summation of mappings y: I-— E (I countable and non-empty) and the norm topo-
logy on E, respectively) but in their.1-point completions (€, (lim;)*) and (G, (* ) )

(see [13, p. 123] For the next, let f: F — & (instead of f: F —> E). Actually, our

integral X[ . dg maps GF := {g|¢: F - &} into. €, while ¥ - du induces an F-ar .
2 M {g Y

partial operation ([ - du)V in-E (see [13, p. 121]). A representation of this paper in
the classical. terminology (working 1mphc1bly in partial instead of full algebras) :
would be p0551ble but would turn out to be very cumbersome: On many places,

‘quantifiers like ““for almost all u- partitions of E” (whatever this means pre01se]y)
and phrases like “if z(¢ 'E) is the limit resp. the unconditional sum of ..., then zis -

the limit resp.. the unconditional sum of . » would be, then, unav01dable )
As another unusual aspect of our approach to integration, we raise the question,
how the integral 3[ du.behaves under a change of X. [Even in the numerical ana-

lysis, the similar (much more specnal) questlon arises, which set of “subdivisions”
of F suffices in order to.obtain a “good” approximation (via a limit of a sequence of -
Riemann sums) of an mtegral which.might be defined by means of “all subdivisions”
of F, whatever “subdivision” might mean for the special 1ntegrat10n (see Remark 10

"in Part 11 [6] of this paper).] The answer (see Theorem 4) is, that, given two u-parti-

tion systems X’ and X" of F, X' C X" implies ff/d;u c¥ f fdu. In other words » if-

. X' € X", then the partla,l opera.tlon (¥f - du)V in E is a restriction of the parmal

operation (z [ +du)V in E, i.e., then the mtegratlon w.r. to X' is stronger than that
w.r.to X',

Furthermore, ¥ -du is a pomtw1se mtegral (for this notion, see [12, p. 94], ]
there for an mtegratlon based on' the extended real line instead of E), i.e. (in parti- R

cular) if ¥f f d,u is non-empty, then ¥f f du is the limit (in a precise sense) of the family

(R(f, L ot ) )ge£ of Riemann sums for each (choice function) ¢ € P X, where
(£.X)ES

{(z, X )|t € Xand X € 1}, the ¢'s bemg considered as “points” (see Theorem 11

in Part IT). While in the definition of ¥f - du, the choice functions (i. e. the elements

“of U P X) are involved in the limit process (see Definition 5), this result says

2

reX Xex

~ that “the choice functions can be drawn out from the limit process’’. This fact allows

to represent each iterated integral as a limit of a certain family of iterated Riemann
sums (without using anything about product measures) (see Theorem 14 in Part II).
[Also this result has some relationship to a situation, one encounters even in the nu-

_merical analysis when one evaluates iterated,Riemann'integrals.] Proving Theorem

o~ - -

~
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- 14, one necds to interchange limits with unconditional summation without having
available uniform convergence; this interchange can be handled by means of Theo-
rem 7.in [13]. Exactly the treatment of iterated integrals was the first motivation to
introduce our integration via' Riemann sums (method b)).
- Because of its length; we divide this paper in Part I and Part II. So far this intro-
’ duction dealt with the whole paper. o : - R
. - In the present Part I, § 0 contains a collection of basic definitions and simple facts
proved elsewhere or following inimediately from the definitions. In §1, .2 certain
_extension LIM of the usual limit operation w.r. to the norm topology in E to the
class of all filtered families in R E is studied. For so-called “zco-nested” nets (g, I, <)
in RE, LIM (g, I, <) can be characterized in a nice way (Proposition 4). In §2, a
certain extension of the unconditional summation in E to all sequences in RE (which
-occurs,_ already in BIRKHOFF’s paper [2]) is investigated, especially the ‘question,
whether and in which sense the operation assigning to each subset of -E -its closed
convex cover can be interchanged with this extended summation (the answer being’
given in Proposition :15). §3 contains the definitions of Riemann sums, Birkhoff
" sums and of the (u, X)-integral. Certain families of Birkhoff sums turn out to be rco-
nested (Corollary to Proposition 21). Based on this result, firstly, the monotonicity
\ of the integral ¥ fdu w.r. to X can’be proved (Theorem 4),.and, secondly, the rela-
‘tionship between Birkhoff’s integral in [2] and the (u, X)-integral can be cleared up
.(Remark 7). : ) ’ L o

. L
s g -

. -‘This paper (Part I included) has a long history: A part.of it was ready, before first-mentioned
author started to work on his dissertation for the Dr. rer. nat. (see ERBEN [5]). After he had clear-
ed up essential open questions, ‘both ,a'ut-hoi-s agreed to write a common paper on the “Repre-
sentation of the Bochner integral by means of Riemann sums”. In the final version of this paper
(for which-we chose another title) as it is submitted now for publication, special cases of results ‘
of the. mentioned dissertation (being unpublished yet) are included. - ’
A remark of the secorid-mentioned author: Unfortunately, Dr. Erben was hindered by pro-
fessional duties to participate in the procedure of writing down this paper. Besides his-agreement
to use freely the results of his dissertation, he provided me with sketches of proofs for the Pro-
positions 13, 15 and.the essential Proposition 21, which is the kéy for the results in § 4. . .
Remark on-some generalization: After a suitable modification of the notions of summation and
of integration, many results of this Part I and some of Part 1T [6] of this paper (at least all those
indicated by references to.the paper [5]) can be established (under certain suppositions) for locally
convex spaces instead of Banach spaces (as it has already been done by ERBEN in [5]). The
authors have refrained to develop this paper in such a generality, since, in such a framework, the
preparations being necessary would require much more space than here in order to discuss-addi-
* tional notions’(which could be avoided here) in an adequate way. The authors hope to present ~
such a generalization of the integration theory developed here in another publication.

.

~ § 0 Terminology A ' ' o

In this section, we collect some definitions and facts mostly presented élsewhére, in
order to facilitate the reading of the present paper. ‘ :

a)' Let E be a set. Then, throughout this paper, & denotes the set {X |-X < E and

card X < 1}. Let I be a non-empty set and 2 an I-ary partial operation in E, i.e. a

- mapping from E’ into E [see'b) below]. Then QA denotes the I-ary operation in G,
defined by : : B ‘ '

- e

Q/\q,_—_{erlay)e Eq)(i)(x=9¢)}'foralf g€ @, s
i€l o ' o

31+ o : ~ ' . N
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where P ¢(i) denotes the Cartesian product of . Conversely, if @ is an I-ary opera-
iel . ’

tion in € having, for all ¢ € §7, the property
if O¢ =+ 0, then @(#) +0 forall icl,

then the I-partial operation @V in E is defined by lettmg, forally € E' and allz € E,

(w, z) € OV if and only if {af’ O(yy )s

where 7 (¢) := {(¢)} for alli € I. One has MV =Qand (OV)" = O (foramorege-
" heral statement, see Theorem 5 in [13]). The I-ary algebra (&, 2/)is called the I-

point completwn of the I-ary partial algebra (E, 2). (See [13, p. 123].) We define a
mapping e: {{x} | x € _E) > E by letting e({z}) = z for all x € E. The mapping e is one-
* to-one, and e~ is an isomorphism of the partial algebra (E, 2) into the algebra (€, 2/)*
(for a more general statement, see Theorem 6 in [13, p. 123]). ‘

b) “For any relation (in particular, for each mapping) R, Dmn E denotes the do-
" main, Rng R the range of R. Given classes 4 and B, we distinguish between mappmgs :
f from A into B (Dmnf S 4) and mappings f on A into B (Dmn/ = A, symbol
f: A - B). B4 denotes the classof all f: 4 — B. Often, we speak of a.“family (,l'(a )a“
in B” instead of a “mapping f: 4 — B*. For each set M, ®(M) denotes the class of
all filtered families in M, a-filtered family in M being defined to be an ordered triple
(g, K, b) consisting of a non-empty set K, a mapping g: K — M and a filter b on K.
Let (E, t)-be a Hausdorff space, T its topology. (We use the word “topology” as a
synonym for “closure operator’”.) Then, B.: E — PPE denotes the neighborkood
" operator induced by T, lim, (or lim) the limit operation induced by T (which is a mapping
from ®(E) into E). The mapping lim,* (or lim”") on @(€) into € is defined by

limA (g, K,b) = {:i |z ¢ E and,for some B € b and some f € P g(k),
B . . keB

T = lixrll (f, B, b,,)}

for all @9, K, b) € @), where bg denotes the “tra,ce” bp={CnB| ‘C € b} of the
filter b in B. (Most often, we write lim (g, K, b) (— 5lim g(k)) instead of lim* (g, K, b)

(— 5lim A g(k)) F urthermore, we omlt the superscrlpt “b” in the expresswn "hm g(k),
keK

if K =N and b = FIN (N being directed in the natural way). But we refrain from’
'doing so if K is an arbitrary directed set and-b = FK.) Obviously, one has for all
(9, K, b) €EDE

- limA 9, K, b) = limA (g | B, B,bg) for all Beb. (0~1) -

In a certain sense, (E, lim) can be considered as an M-ary partial algebra (where
denotes the class of all filtered sets) and (G, lim”) as an -ary algebra, called the

~ 1-point completion of (E, lim). (See [13, p. 120—123].) — If a is a filter on a set / and
P(i) is a set-theoretic formula (see Mo~k [26, p. 15]), where ¢ occurs as a free variable,
then we say “P(s) holds for a-almost all i € I” if there is an A € a such that P(z) holds
forallig I. Furthermore, a denotes the set {C | C S I and, for alld € a,Cn A0},
being called the grill assoczated to the filter a. y

c) Let (E, H [I) be a Banach space, || - || its norm. Then 7 denotes its topology induc-
ed by || - ||l.  denotes the field of scalars of E. Without any danger of confusion, we

denote by 0 the number zcro and the zero vector of E as well. For each ¢ ¢ R with_.
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. £ >0, the symbol B,(0) stands for the get {x€ E | Ilel < ¢}. For intuitive reasons, -
we write the scalar multiplication as & right-side multiplication: We extend theaddi:
tion + in E and the scalar multiplication by letting, forall X, ¥ € PBE and allx € I,
X+Y={x+ylzxeX and ye€¥Y} and Xa = xochEX and accord-

ingly ‘we define X — Y. Furthermore, we extend the mappmg |-l to a mappmg fI-0*: .

BE — PR by lettmg, for all X € PE,

IXI* = {lell | = € X},

where we omit the superscript * in the sequel. In several situations we refer to the
Banach space (R, |-|) with the usual norm |-|. Then, tacitly,.all the agreements made
~ for (£, ||-]l) will be applied in the spe01a] case. The letter R will then denote the set

"{X|X SR and X < 1}, replacing € in the special case. — Given mappings g, k:
F—>@E j:F >X and « € J, the mappings g + %, g — h gx, gji: F — € and |igll:
F — R are defined pointwise; the same agreement holds if (& and R are replaced by
E and R, repectively. — The relation < onR will be extended on PR in two dlffer-
ent ways: Let, forall X, ¥ € PR, . .

X <* 7Y iff, for all z,yeXxY, z<y;" »
X SOVY iff, for each x € X,thereisay€ ¥ such that z < y.

[The relatxons <* and <, are reflexive; So is tra.nsmve but not antisymmetric;
<*fails to be transitive or antisymmetric.] Instead of X <* ¥ we writealso X < ¥; .
if Y is a singleton {y}, often X < ystandsfor X < Y and X <, y stands for X =<, Y.
. — All agreements made here for the relatxon < shall be valid also for the relatlon
< onR. -
d) Given a mapping g, we denote by Pq; the Cartesxan product P (p(k), where K

= Dmn @ (see MoxNk [26, p’ 55]). Furthermore, we defme two mapplngs '&® and-@Q
.onY (— class of all sets) into V by letting, for each set 4, -

" PA=Pa
a€Ad
and.. S ' -
QA = P b where S:= SA(= S'a) (seee) below)

(a,b)eS acd

" (for the notation, see [12, p. 74], where we used § and « instead of the symbols &£
and @). We call # and @ the choice operator of the first and that of the second kind, .
respectively. In accordance with usual conventions for mappings defined on a rela-
tion, we agree to denote, for each ¢ € @4 and each z € 4, by ¢(z, -) the mapping
defined by ¢(z, -) (y) = @(z, y) for all y € z. One has ¢(z, -) € Pz. (Recall the defi-
nition of a set (see MONK [26, p. 14]).) — For later use, we observe that, for sets 4,
B with 4. B, the following holds: If ¢ € @4, then there is & p € @B such that
p| LA =¢. e @B, theng|FfA€c Q4. ~

€) Let (K;)ier be a family of sets K;, its domain I being a set. Then S K; denotes

the set {(¢, k) | 4 € I and k € K}, which is called the direct sum of (K ).51 We defme a~
mappmg & on ¥ into UV by lettmg, for each set A

‘FA =S a.

acA

.Let a be a filter on I'and (b Yier & family of filters b on the sets K. Then eS b denotes
tel’

the a- /zllered sum’of (6 ).el, bemg defined to be the fllter onS K; genera,ted by the
“ fel



\

" tely from the definitions:

" paper, we erte consistently J; instead of “3; and, for each ¢ € Dmn Y, we writc ’
“also Z' @(¢) instead of }; ¢. Furthermore, for each ¢ € €, we write also Z @(3) in-
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. fllterbase{ S q)(z) |4 €a and ® E P b; (Use of Satz 13 m [8]) In the speclal case
that b; =0 (flxed), thus K; = U b holds for all i €1, “S b; is called the ordznal pro-.'

duct a®bof aandb. Furthermore, we recall the not,atlon of the cardinal prodmt

*Pb; of the filters b; and its special case *b’ (if b; = b for all' i € T) used in [13
i€l

p. 116] and agree to denote (in the special case I = {1, 2}) the cardinal product of 'bl

‘and b,; which is a filter on K, x K,, by b,(* x) b,.

.f) For the notion of a “directed set””, we use the terminology used in KELLEY s

book [18, p. 65].Given a ditected set (M,°<), the filter on M generated by the filter-
base {K(x) |z € M}, where K(z):={y€ M |z < y} for each z ¢ M, is called the

filter of perfinality on M w.r.te < and will be denoted, in general, by F(M, £) or

M. In particular, if / is a non-empty set, the set el := {K | K finite and non-empty

subset of I} together with the relation  [el is a directed set. We denote the filter of

perfinality on eZ, F(el), by e’l. The statement (0.2) ; formulated next follows immedia-
. /
If (M, S) is a directed set and KeFM, S) then (K, < | K)
j is a directed set, and one has F(K, < | K) = (J’(M <)) o (0.2)

g) Lét agam E be a Banach spacc Then the unconditional summation “J,,-

where I is a non-empty countable set is.an-I-ary partial operation in E. In this

stead of Z’, @, any confusion being avoided by the ch01ce of p. One has the followmg
relatlonshlp between 3y and lim” (sce [13, p. 128] ,

b For eachq: € G, Z,'; @ =®limA ¥ ¢ ) (0.3)

Keel ieK

Next, we collect some mmple assertions (which, except for (0.4) and (0.9), are _]ust'

translations of classical-facts into-our language). For those assertions, let (I, a)-be

a filtered set, (g, I,-a) € @G, (h, I, a) € O, (Ar)xexs (Bi)iex families in € with non-

empty countable domam K, and o € K. Then, (0.4)— (0. 13) hold = -
I/g(z) c h(z ) for a-a.a. (i.e., /01- a- almost all) ie 1, then -

e “llm g(z) o °]1m k(7). . S . (0.4)
A-mmgm amnmgcﬂmq()+km) 'j ) ‘ (0.5) -
i€l (13 . B .
(“lim g(i)) x < °lim (g(s) ). ' ' , (0.6)
el " - el _ . E e
‘?'.irlngm”gal,imug(z')u, | S (X N

I/g(z)Sk(z) for a-a.a. i€ I, then. L

~

"hm 9(5) < “llm h(é), provided that E = R (then (& = i}%). © (0:8)
~1/ A,,CBkjorallke K, thenZAkCZBk o - (0.9)
. keK keK . -

ZA,, + )_’,‘B,, c Z (A + By) . (see [13, Theorem 16]). 1 (0.10) -

T keK
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(ZAI:)"‘CZ(AI:“) - / ' ) ‘((').114)

keK -
|| Z A= 5 1, - -0
. I/A,,SB;,/mallkéK thenZAkSZBk, . - (0.13)
ke K . . :

A

provided that E = R (then € = R).

Throughout this paper, we will use the agreements and /acts, collecled in this sectum,
often tacitly. In the set-theoretic terminology; we follow Moxk’s book [26] almost
completely Deviating from [26], e.g., we denote the cardinality of a set X by card X.
Up to some exceptions (concerning the axiom of ch01ce) we will never mentlon the
use of axioms of set theory. , ) . oo

-§ 1 Sums of‘set sequences, limits of filtered families of sets

F or the whole paper, let (F, II I) be a Bana.ch space We recall the agreements in §0

Defmltlon 1 (cf. BIRKHOFF [2 p- 362], and [5,2.1 2]) Let I be a non-empty
' countable set. Let )" be the mapping assigning.to each @ € (PE)! the set
2o ={ xEFIPq)CDng,and for'some p € Py, ——Z‘,w

~TInstead of X" @ we write also Y ¢( z), which notation does not glve rise to confusnon
(see Remark 1/c). _——

~

‘Remark 1: The most natural extension of the I- -ary partial operation’ Z, m E to an I-ary
_operation in ‘BE seems-to be the mapping 2, bemg defmed by .

Zro=1Zvlye(Dmn )0 Py for all @€ (BE).
Then, one has for all ¢ € (‘BI;‘)’ .- oo A .
) N qz—Z, q)mthécasethathcDmnZ’,and PN zp—QJelse
For this reason, Z‘, @ could be called the “reduced sum” of ¢. Of course, the followmg state-.

_ments ‘(a)—(c) hold:

(a) If I is finite, then ):, 2r. S ‘ - ,
(b) X7 q;C >* (pforall(pE(‘BE)’. ’ ) ' - .
© SAE =ZrC=ga. -
Definition 2: Let LIM, denote the mapping on ¢(‘BE into RE defined by
letting, for each (f, I, a) € #(PE) and each z ¢ E ' ~

~

z € LIM, (f, I, a) iff, VU € Bz, 0.f(5) & U for a-aa. i€la
Instead of LIM, we wrlte mostly LIM, mstead of LIM (f, I, ay also “LIM f@@)..

~

Clearly, this definition can be formulated in every topologlca.] space Since 7 is a

- Hausdorff topology, the first assertion in the following proposmon ho]ds (for. the -
_ definition of lim inf, see [13, p. 116]). -~ -

Proposnlon 1: Onekascard LIM (/,I a) £ land LIM, (f, 1, a) Cllmmf (/,I a)
/or all (f,1,a) € ®(RE), furthermore LIM, (f,1,a) =lim (f,1,a) for all f, 1, a)

- .-

- - . LI - . N
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X CE, then co X denotes the convex cover of X and aco X the absolutely convex
cover of X (as defined, e.g., in KOTHE’s book [19, p. 173]); we consider co and aco
as mappings on PE into PE. Recall that v: PE — PE, and that X denotes the
closure of X. We define zco, raco, and cot to be the mappings r o co, 7 o aco, and
coov, respectively.

- The following statements (1.1)— (1.9) (which are listed for later use w1thout any
intention to reach- completeness) hold forall X, Y € Fandalla € X:

e co(X+Y)—coX+coY _ (1.1)-

X + ¥ S X + ¥). ) B (1.2)
X+ 1¥ =2 X +Y)if X or ¥ is v-compact. . - @)
co (rco X) = vco X. o : o (1.4).~
tco X 4 7c0 Y S reo(X + Y). ‘ CE (1.5)‘
acoXCco (Xu (- X)U(Xy)u( X;)) if <7C C wlwrey—-}/_l,

and aco X S co(X u (~X)) i K =R. - (1.‘6)
I/K is a non- emq)ty/mztesez @: K-> X and 2: K—>JCwith
: ); [A(k)] < 1, then z¢(k);(k) €acoX. - -7 (1.7)
(coX)a = co (Xoc) R S ' (8

(%) & = v(Xa). ) o s (19) .

Next, we return to the discussion of LIM,.

~ Proposition 2: Let (f,1,q) € ¢(§BE’) Then, (a) and (b) are equwalent
(8) LIM (f,1,a)+ 0°

(b) For all ¢ >0, there is an A € a such that @ + [(d) — fE < & holds for all -

(¢, k) e A x A.
Proof: 1. Proving (a) = (b), one uses the trlengle inequality. 2. Assume (b)

« Then, there is an A4 € a such that @< ||f(s) — f()|l < 1, thus f(i) & 0, holds for all .

(4,7) € A X A. Let y € P(f| A). By (b), for each ¢ > 0 there isa C(e) € a, (for the no-
tation, see §0/b)) such that ]
(1) 10 £3) — 1) | < 6/2 f°r all (i, 7 e Cle) XC(S),

hence

(2) lx(d) — 2G)ll < e/2 for all (4,7) € C(e) X C(e). N

. Since E is- complete there is an z € E such that z = lim,(y, 4, aA)

Let ¢ > 0 Then, in view of (2), one has
(3) Ill(z) -l = 8/2 for all’i € C(e)

* Let i € C(¢) and y € f(3). Then, by (1) and (3), one has ||y — x\l < &, therefore by the

choice of y, @ = ||f(i) — {z}l] < ¢ holds for all i € C(¢). Thus, by the chowe of e,
z € LIM (f, 1, a), and o (a) ]

RS
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'

If (I S) isa du'ected seb M is a set and f: I — M, then we call the filtéred famlly‘ '

(H1,FU,; <)) anet in M and denote it by (f, I, <).
For the remainder of this section, let (f, I, <) be a net in BE.
Definition 3:(f, I, <) is called to be zco-nested if (a) holds:
(a) Forallé,je I,ifi < 7 and f(s) % 0, then @+ f(j) & zco /(z)
Remark 2 By (l 4),(/, 1, S) is Tco- nested if and only if (b) and (c) hold:

(b) For all 1,,7 €I;if 1 < j and f(3) + 9, then /(7):#: 0.
(c) Foralls, j €1, if { < g, then tco /(]) C Tco'f(1). .

Condition (c) says that the mapping rco o f is a homomorphism of the directed set (/, <) into

the partlally ordered set (BE, (&71) | BE). This fact is the author’s motlvatlon for choosmg the

adj ]ectlve ‘zco-nested”’.

There are many trivial examples of rco-nested nets (f, I, S) Wthh are not nest- !

ed”, i.e., which do not have the property that, for all 4,5 € I i<y 1mphes mes f(z)
- For & non-trivial example, see a certain net (of “Birkhoff sums”) occuring, e. g in
the Corollary to Proposition 21.

Proposwlon 3: Let (f, 1, =)be rco-nesled Then the statements (a) and (b) are equi-
valent: . -

(@) LIM (f,1, <)+ 0. _ _ : -
(b) For alle > 0, @ ||f(2) — f@) < € holds for some i € 1. . -

 Proof:1.(a) => (b) follows from Proposition 2 by means of the triangle inequality.

2. Assume (b). Let e > 0. Choose i as in (b). Leb kel w1th P57 and ¢ < k. Then, '

one obtains
0 =+ [If(7) — /(k)ll S |lrco f(t)\— Tco f(z ll = ||1f<20 f(5) — f(®)) )| = £

where one uses in thls order (b) and (b) in Remark 2; (c) in Remark 2; (1.5), (1.8),
(1.9) and the right side inequality occuring in (b), saying that f(s) — f(z) < B,(0).
In view of Proposition 2 and of the choice of ¢, we have showed (a) 8

Proposxtlon 4: Let (j, 1, <) be rco-nested. Then, for every z€ E, (a) and (b) are
equivalent: .

(@) z€ LIM (f,1, £).
(b) Forall U€ Bz, 03 f(i) & Uholdsfor someze I

Proof: 1. (a) = (b) follows immediately from. the deflmtlon of LIM. 2. Assume
(b) Let V € B,x; we choose ¢ > 0 such that U := B,(z) and U < V. Choose ¢ as
in (b). Let i < j € I. Then, by (b) in Remark 2, one has @ & f(j) & 'tU since f(3) — {z}

C B,(0) implies zco (f(2) — x}) = rco (/(z)) — {2} S *B (0) (use of (1.1) and (1.3)).

Thus (a)
Proposition .5: Let (f, I, <) be rco-nested. Then, one has (8):

-~

(@) If K S I and K is directed by < | K (= restriction o/ Sto K); then LIM (f | K, .

K, S]K)CLIM(/,I <). -

Proof: Thé net (fIK,K, =| K) is rco-nested.. Applymg Proposmon 4 tw1ce,
" one gets the asserted inclusion

Proposition 6: Let (f, 1, <) be rco-nested Then’(a)z’m@lies (b):

(8) LIM (f, I, =) =+ 0. .

(b) LIM (£, 1, S) =1 {rco(f(z)) | 4 €1 and veo(f(s)) # 0}

\

AN
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A

. Proo{: For abbreviation, let g(i) = TCO(/ ) for all ieland K = (i€ 1| g( + 0}
(= {z € I|f() == @}). Assume (a). Then, by Proposition 1, one has card LIM(f, I, <)
= 1, and, by Definition 2, K is non-empty. — Let z = e(LIM (f, I, <)) (for the ter-
minology, see §0/a)). 1. Since (f, I, <) is rco-nested, (K, < | K) is a directed set, and
for all ¢,7 € K, ¢ <4 implies g(5) S ¢(é). Chooge ¢ € Pg(z) Then (¢, K, < | K) is a

net in E. 2. Let, for the remainder of this proof;e > O By Defmmon 2, there is an’

g € I such that -
1) @ % f(5) = Bt/g(x) holds for-all 2 € I with 4 < 4. "' i
- Therefore, . - N : .
. (2) g(i) € B.(x) holds for all i € K with 4, < . o ’ -

"~ 3. Let 4, € K. Since i, € K (by (1)), there exists (by Part'1 of thls proof) an z, €K
such that 4,, 4, < 4,- By (2) and the choice of ¢, _ -

"(3) @(é) € g(i) S Bi(x)-holds for all i ¢ K with 4, <i. . ST -
~ In view of the choice of ¢, we obtain z = lim, (¢, K, < | K), thus z €.g(3,) by (3),
since g(¢) S g(¢,) for all ¢ € K with ¢, < 4, and ¢(4,) is z-closed. 4. Let y € N {g(3) |
. i € K}. Then, (since ¢, € K) one has y € g(i,), thus (by (2)) 4 € B.(x), therefore.(by
th'e choice of ¢) y = z, and so (by the choice'of y) N {g(¢) | i€ K} S LIM(f, I, <)

e

§ 2 The interplay‘l)ctwee'n sums of set sequences and the closed convex covers of sets

For this section, let I be a countable non-empty set and (4 ),61, (B;)icr be Tamilies in
SRE. Preparing the dlscusswn of the subject indicated i in the headline, we collect some
simple properties of the summation of set sequences.

Propos1t10n 7: The following assertzons (a) and” (b) are true:
- (a) ) A; is non- empty zf and only if P A; S Dmn ) and A; is non- em/pty for all
sel - t(f
i€l
(b) If ZB is. mmemxptyand 0-‘—A S B; holds for all i€ I, tken 2 A; is non-
N sel
empty.. - : . . |

Proposwnon 8:If 3 A; isnon-empty and @+ K S I, then 3 A; zsnon~emply

134 €K

———

Proof Use of Theorem 17[b in [13] and Proposition 7/a 1

/

- Proposition 9: If Z’ 4], where the summatwn is (taken in the sense of De/mz-
tion 1, but) related to the Banach space (R, | - |), is non-empty, then 3" A, is non- em/pty
iel .

Proof: Use of the fact that absolute convergence implies uncondmonal conver-
"~ gence (Theorem 14 in [13])) 0 .

Proposition 10 (cf. [5, 2.5.6)): Let\ZA and )__,’B be non- ewpty Then, one }zas g’
(&) and (b): T A

) XA +ZB —Z(A +B)

fer -

(b)(,_— ;) Z(Aoc)fmallocéc%’
Ner ).

el

Proof: Use Proposition 7/&, (0.10) and (0.11)R ~
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. For the next consnderatlons (in Lemma 1 and PropOSItxon 11),let (L;)kek be a family
m BRI bemg one-to-one (as a mappmg) such that {L; | k € K} is a partition of I. - -

. Lemma 1: I/Kzs/zmteandA e@foratézel thenZA =23 XA,

tel k€K 1€Ly
Proof: Use of (0:3) and Theorem 17/b i in [13] II o
‘ \Propositio'n 11: One has (a) and kb): - ) B o
(a) If Z‘ A, is non-emply, then Z 4; =kzl’( é’ 4; .
€ €Ly
( If K zs/zmle then S A, =) A |
N - et keK €Ly : .

-~ Proof For abbrewatlon we set, for each k € K- M, = ZL' A;. . .
. ) i€Ly

-Ad (a) Assume Z A+ @. Then, for ea.ch @ E P M,‘, t,here exists a y, € P A (we
~ keK - -
fix one) such that 0 =§= Z 7,,(2) Z {@(k)}. (Indeed, given @, there is a famlly (¥e)kek
kek

with Y E P A; and {q;(k) Z {ye(2)} for all k € K. Define y, by’ U ye. Then, use
3 A=+ 0 and Theorem 19 m [1'3]) Therefore, P Mk € Dmn 2k Smce 2 Ai+0,

sl . . tel
the set M isnon- -empty for all ke K (by Proposmlon 8). Thus, by Theorem 19in[13],
one obtains ¥ A; S 3 M,. —Conversely, let z € 3 M,. Then, bhere is‘a p.€ P M,

iel kek - kek keK
such that {z} = } {p(k)}. Therefore, one hasx € Y A;, since } i <p =27 Yo € Z A,
kek . kek
Ad (b): By means of Proposmon 7/a and Lemma 1, one obtams that Y M,, +0
) 1mplles 2 A4;=0. Therefore (b) holds by (a) ] ’ o keK -
. i€l

.~ For later use, we note here a mmple consequence of Proposmon 11:

- . Le K be a non-empty proper subset of I. Let A = {0} ’ )
‘ for all i€ I\K. ’l‘henZA——)_',‘A o S .(2.1)

i€l

Proposition 12 (cf. [5, 2 5.7 and 2. 2.6)]: I/ Z‘A and ZB are non-em/pty, then

2 (4; v B;) is non-empty. B I iel
© i€l '

Proof: 1. Smce by the premise, the sets P4; and P B; are non- empty, P (A u B; ) '
. 134
is non- empty Choose for the next, ¢ € P 4; and 1p E PB;. 2. Let y € P (A u B)
i€l i€l -

K := z€I|/(z)€A tand L:=INK.IfK =0 or K =1, thenonehas(bythe

premise) y € Dmn ;. Assume @ 5= K == 1. Then, by the premise, the mappings (¥ | K)--

Su(plL)yand (y | L)u (y] K) are members of Dmn J;,' therefore, by Theorem 17/b
.. in[13},(x | K) € Dmn S’k and (y | L) € Dmn ZL By Lemma 1, one obtams, there- - -
' fore, y € Dmn 3/ 8 ) ‘ N

Lemma 2 ~Let I be infinite. If ¢ € Dmn Z,, then, forall € > 0, there i3 a Ko € el

 such that p()| < ehotds for all Ky, Ky & ol with K, S Ko € Kyand Kot K,.
iEK.\K,

~ 1Y

Proof: Use of 0.3) 1 s
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° B
- Proposition 13 (see BIRKHOFF [2, p. 362], and [5, 2.4.3)): Let I be infinite and
A;= O for all i € 1. Then the following statements (a) and (b) are equivalent:
A
(@) ) 4;%0. g

sel

(b) For each & > 0, there exists aK € el such that sforall L € e(I\ K), ” “ <e.
f€L -

Proof 1. Concludlng from (b) to (a), one uses Pr0p081t10n 7/a, the completeness
“of E and (0.3). 2. Assume (a) and non (b). Then, there is an ¢ > 0 and a family (L;)ier

in el such that L; n L; = @ for all ¢, € I with ik j, furthermore (smce all 4; are -

non-empty) a famlly (g:,),s, with ¢; € P A4; foralli e I- such that
jeL
(1) e<”Z¢p,(7 “ forallic 1. '

(We have used that card 7 — N, and applied recursion.) Let M= U L;. Choose .

y € P A; and define ¢ = (Uq),) (w1 (Z\ M)). Then ¢ € PA,, thus ¢ € Dng, by
iel

(a). Now, choose Ko as in Lemma 2. Since K, is finite and I infinite, thereis an i € I

such that KynL; =0. Define K, = K, and K, = K,u L,. Then, with these data,

the 1nequa11ty in Lemma 2 contradlcts mn

Corollary: Let I be infinite and Z’ A; be non- em(pty Then, for all ¢ > O, there is a
K¢el sucktkat“an Z(p ” < skoids/orallL € elwithK S Landallp € P A,
N l€l
. there/ore }_',' A; & B,(0) holds for all such L.-

_ Proof: Let 6 > 0 and choose K as in Proposition 13/b for ¢ = 6/2. Let ¢ E P A

and K & L € el. Then, one obtams, usmg Lemma 1, (0.3), (0. 7) and Proposxplon
13/b t,ogether with e( \ L) € e(I \ K) in this order:_ '

“Zl P — Z'P(Z)” = ”ZI\L ?l (I\L) ) =
< = 9lim, Z¢(Z)" < é,

TR N€B IeN .

where a:=¢eI'NL),B:=e¢(l\L)and ¢ denotes the Euclidean topology of R

“llm, Z ‘P(") ”

Proposition 14 (cf [5, 2.6.1 and 262]) Let ZA be non-empty. Then, (a) zs’

’

equwalent to (b) for all ¢ > 0, therefore, one has (c): g
(a) There is an « € R such that Z’ A; € B(0) «. . o

(b) There is a f: I —R such !hat A; = B,(0) p(2) holde forall i e 1.
(¢) X A; is bounded if and only if A;-is bounded for all j € 1.
il . -

Proof (cf. [5, loc. cit.]): .The assertion is clear if I is finite. Let I be infinite.

1. Assume (a). Let j € I; choose ¢ E P A; (use of P A3+ 0) Then X; :=- 3 {p(¢)} is
i€l i€Nj)
a singleton, say {x}, since ZA =+ 0 By (a) and Lemma 1,0ne has 4; S ' 4; — X;
' tel

€ B.(0) « — X;. Define ﬂ(y) =« + (1/e) llzjl; then 4, < cB (0) B(7). Therefore: (b).
2 Assume (b). Since Z A; == 0, there i is (by the Corollary to Proposmon 13)a K € el
such that Y. A; CB(O) Thus (by Proposmon 11/b and (b)) 3 4; = Z A; + 3 4;

i€INK sel L €K

c B (0) &, where x = 1 + E lﬁ(z)l Therefore (a) @

\ ) . - o ) -

s

PR

1
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"Proposition 15 (cf [6,2.9.5 and 2.9.6]): Assume ZA 5 @. Then; onée has (a)
axnd (b): i€t
(a) B ZtcoA € tco } A; (see BIBKHOFF [2 p-.363]). . .

i€l el

(b) 3 raco 4; +0. . ' B

i€/ . -

Proof: For finite I, (a) is-clear by (1 5), whlle (b) is then trivial.-Let I be infinite.
Ad (a):1.Let ¢ > 0. By Prop. 13, there exists a K € el such that Z A; S Bies2(0),
thus (by (1.5)) . ,

Yoo Y rco 4; S vBi.e)(0) E B,(O) holds for all L € e(I \ K);

(3

therefore since A; =+ O for all ¢ € I, one has by the choice of ¢ and Proposition 13
(applied to (zco:4;)ic; instead of (4;)ies), the inequality Z 760 A; # 0. 2. Let ¢ > 0.

For abbrevxatlon we define Co, C, — Cg and, for all L € eI C\(L)—C4(L) as follows

—zlwoAi, zA 4 Bu(0),
"€ )
Cs =< (co (Z4)+ _Baew)), Cs = 7c0 (g{ A.-) + Bul0),

i€L

CUl) = (I veo i)+ BL0),  Cull) = oo (5 4)) 4+ B0),
"Cy(L) = 5 A; + B.(0). - ' I

- Then, the chain C,(L) S Cy(L) S vco Cy(L) holds for all L € el by (1.5). Proving
the chain vco C; = C5 S Cs, one uses (1.1) and the definition of v by means of ||.||.
By the Corollary to Proposition 13, Cy S Cy(L) holds for e/-almost all L € el (use
of C’o=%= 0), and Cy(L) E C, holds for e®I-almost all L € el, since 3 A; 4 0. Summariz--

134
ing, one obtains €, S C, since e°l is a filter. By the choice of ¢, we ha,ve proved

the validity of the sign S in ().

Ad (b). Usmg (1.6) for eachi€ I (replacing there X by A4,), and the monot,omcmy
of T w.r. to S, furthermore the Propositions 10/b-and 12, finally (a) [apphed to
(A u(—4; )),51 instead of (4;)ic; in the case ¥ = R and snmnla,rly (see (1. 6)) in the
case K = (E] one obtains (b) by means of Proposmon 7 /b U

83 u-partition systenis, Riemann sums, Birkhoff sums, (g, l”)-integral

For the remainder of bhls paper, let, (¥, u) be a non-empty measure spa,ce with a
measure u on & o-algebra G S PF, Dmnpu =& (for the terminology, see BAUER
(1, p. 16]: “o;Algebra”, or HaLMos- [15, p. 24]): “o-ring & & PE such that F ¢ &”).
"Each countable partition ¢ of F with the properties § & Dmn,u and X < 4+.00
for all X € g is called a u-partition. Denote by Q(u) or just by Q the class of all u-
" partitions of F The set 2(u) is non-empty if and only if the measure u i3 o-finite.
- Since we are interested only in the case 2(u) =+ @, we assume for the sequel that u
be o-finite. (Remark: There is a finite u-partition of F' if and only if uF < + 00.)°

Definition 4: (a) For all ¢, §) € Q(u), let,g < v hold ¥f for each ¥ € 1) there exists
an X € ¢ such that ¥ & X; furthermore,let gvy ={XnY | X €y and Y € 1 and
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XnY% 0} (Remark (.Q(,u), _) is'a directed set, and ¢ v y) is‘ the i-)supremum of

{x, mh)- :

: (b)- Let ¥ & 2(u). The set X is called a ,u-pamtzon system if (%, < | X)isa dxrect,ed
set. ¥ is called, to be v-closed if y v 1) € X holds for all g, t) €X,

" F¥or (c)—(f), let X be a u- partmon system.

- (¢) The filter of per/malzty on X w.r.to S | X is denoted by F X (in accord with the
notation introduced in § 0).

(d)- Forall(g, ) (9,%) E S J’a,let (T:%) =* (v, W) hoId ifr<y. WeputS (7’; = ."k#

Qu
(Remark: (X#, <# | X#), m partlcular (Q(Iu)# S #) is a dlrccted seb for the nota-
tions, sec § 0.) .

(e) The filter of perfinality on X% w.r. to < #| X** is denoted by F(X#*) or FX¥ (m —
accord with tHe notation introduced in §0).

f) If ¢, p e EL ‘with g <- t), and X € g, then the scL {Y ¢ t) | ¥ S X} is denoted
by hx.

Rcmarks 8. In (d), one has J%# = 0S¢ with a = J& and (p(g) {Py} for all g E & where
aSg denotes the a-filtered sum of @ (see § 0). 4. Clearly, if a subset X of Q(u) is non- -empty and _
* v-closed, then it is. also & p-partition'_system. In [12, p. 76], where a “‘u-Zerlegung’ is not"
subjected 'to any finiteness condition w.r. to u, the analogue to our u-partition system (the “u-"
éerlegungssystcm ’} is required to be v-closed. In this paper, we require the v-closedness only
in parts of § 5. In fact, the most natural examples of si-partition systems, namely Q2(u) and, if
,uF < 4+ o0, {r € .Q(,u) | xis flmte}, have this propert,y

Proposition 16: If X isa ,u-parlzlzon system and ) € Jf’c then 5)) isa ,u-partzlz(m
system; and one has FY = (FX)y and FP#F = (J’X**)n# .

Proof: In view of (0. 2), it suffices to show that 5})# € FX*¥. Since ) € FX, thereis
an.go € ¥ such that 8 :={r € X |, < g} 9. Since 8 € FX, B is a p-partition sy-
stem (by (0.2)), and 8% S 9* S X* (because 3 &9 = X). Choose ¢, € Pr,. Then,

B* ={(r,p)|1€B and g € Py} = {(x, @) € X#* | (xo, o) =* (z, P} € «T&‘*", therefore
P¥ ¢ FEX* N . o S

For the remainder.of thls paper, let X be a u-partition system of F and f (e‘:cept
for § 8) be a mapping on F into . For allX C F, f[X] denotes the set U{f(z) | x € X}
(= {ef(x) |z € X and f(z) + = 0}) (for the deflmtxon of € and e, see § 0/a)). We call f to
be singleton-valued if f(u) == @ for all uw € F. : -

We have now made all preparations to define an 1ntegra,l of /-

‘Definition 5: (a) For each ¢ € 2 and ¢ € Py, the set R(f, 1, ¢) = 2/(¢(X)) pXis

called the . Riemann sum of f. belonguzg to u, t, and . Most often, we write R(x, p)
instead of R({, ¢, ¢). : i

(b) The set ¥[ fdu = T lim R({, t, (p)rls called (,u, X)- zntegral of f. The mapping
(o)X
assigning to each g: F-— € its (x, ¥)-integral If g du is denoted by . d,u and called
(u, X)-integral. Occasmnally, we wrlte ¥ f(u) du instead of ¥ fau. (see § 8).
- "ueF

{e) Let g € 2. The set B/, = Z X)X resp. € x) = SH{(1X) #X)X“)] is

" called the Berho]/ sum [resp. u,eak Bzrkho{f sum] of f bel(mgmg to p, and . Most~
often, we write B(x) [resp C(r)) instéad of B(f, ) [resp. C(f, x)]. (For the definition
of Y;*, sce Remark 1) o : o T
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Remarks: 5. Riemann sums with countably ma.ny summands have been mtroduced and used
to represent by means of them measure integrals of functions ranging in the extended real line
already by HanN and RoSENTRHAL [14, p. 183 —184]. 6. For the explicit introduction of the sums
B(f, ) (occuring in Definition 5/c), see [, p. 53] (called there “Riemann-Sumnien’). BIRKHOFF
[2, p- 367] has, implicitly, introduced the sums B(f, 1) and has used them for the introduction of
an integral of mappings on F into £. Birkhoff’s integral of a mapping g: F — E coincides essen-
tla]ly with our (i, 2)-integral of the mapping g defmed by g™ (u) = {g(u)} for all € F (for a more
precise statement, sce Remark 7).

"The simple re]atlonshlp between Riemann sums, Birkhoff sums a,nd weak Birk- .
_hoff sums is described in the following

* Proposition 17: Letg € Q. Then the /we stalements (a), (e) (d) => (c) A(f) (b) A (f) -
> (d), (c) = (b) kold, where (a)—(f) are defined next:

B

(a) Bx) S C); . (b) B(r) = C(r); -
(¢) B(x) + 9; o (d) R(E, @)= O for all 2 '5 ‘7)2» -
(&) Cx ) U R(E, ®). (f) f is singleton- wlued

. Proof: One uses the followmg remarks For each p € P f[X] ,uX there is a @€ 5’;

such that y)(X) € /( (X ),uX holds forall X € . If () holds then for each ¢ € J’g,
the mapplng (ef(q;(X)) /.LX)XQE is a member of P f[X] pXi

- We recall that for all non-empt,y countable sets 1 and all @: I -, )_-,' q)(z) +0

1mplles that @(i)=%= 0 for all i€ I (see Theorem 17/b in [13] or Proposmon 8).
Similarly, one has for the (x, X)- 1ntegral

Prop051t10n 18: If 3 fdu 0 then f is smgleton valued

> )
Proof: Assume that the premlse be true, but the conclusion be false. Choose z’
If fdp and w € F such that f(u) = 0..Let U € B,x. Then, there exists an ro€ X such
' that, @< R(f,t,9) S U holds for all't € X with gy < ¢ and all ¢ € Pr. Choose an ¢
. with gy < r. Then, there is an Xe T such that u € X. Choosea ¢ € ‘7’; w1th (p(X) =u.
Then; one has R(/, L =0. This is a contmdlcmon B .

~ Co rollary: (¥ - du)V. is an F-ary partial operatzon in E, and one has ( xf dy)V)/\
= ¥ . du (for the terminology, see § O/a)).

- Proof Theorem 5in [13] ]

ﬁs 1mmechabe consequence of Proposmon 16 and (0. 1), we obtain

Proposition 19: I/ 5}) € FX, then SQ is a p-partition system, and one has ‘3ffd/4
= ¥fdu.

This is a first answer to the quesblon how our.integral behaves under the change of -
X. How does it depend on & in general?

“Our next aim is to show that the mappmg assigning to each u- pantition system‘D
the set 9f f du is monotone w.r. to &. For preparatlon we prove the following two -
propositions. (The sum occuring in Propositian 20/b is of course understood-to be.

" taken w. r. to the summatlon 2vy in the Banach space R.)

~ -

: Pr0p051t10n 20:. Let ¢, t) €2 witht £ and X € t. Then, one has (a)—(c)
8 {(yx|Xe€gisa partztzon of 9.
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(b) Ny is a.pamtum of X and (thus) 2 uY = ,uX : . S
Yenx .
() Zf[Y]ﬂY S zeo (fX] pX).

Proof: (a) and (b) are clear. Ad {c). In view of (2. 1), we may assume that rY+£0
holds for all ¥ € yy. Let z € Z/[Y],uY Then, -there is a <p€ P f[Y] such that

z€ Z {@(¥)} pY. For all K¢ e(t)x) one has (Z(p(Y),uY)(Z,uY) 1€ co f[X),

_~_tberef0re, by (b), (0.3), (1 8) and (1.9), z € zco (f[X]uX)D -

- Proposition 21 (cf..[5, 4.3.1]): Let f be singleton-valued, ¢, € Q and B(f, r) be
bounded and non-empty. Then, t < v) implies 0 + B(f, 1) & rco B(f, ©).

Proof: Put, for abbreviation, S(L) = Z/[Y]/;Y for all L with @3 L S y.
Since f is singleton- valued one has f[Z] % 0 for all Z with 0 Z & F. We recall

the terminological agrccments in § 0/c. — Assume <. Usmg this, we shall apply .

Proposition 20/a, b tacitly in the following.

1. We show first that S(y) == @. This holds trivially, if 1) is finite; assume t) to be :

mflmte Let ¢ > 0. By Proposition 15/b, the set 2 raco (f[X] yX) is non-empty;

therefore (by Proposmlon 13), if ¢ is infinite, there eXJSts a set K € eg ‘(which we fix
for the fo]lowmg) such that

(1) ES Zraco (fIX] X)) B,;2(0) forall L¢ e(g\K) -~

CIf ¢ is finite, let K =  for the followmg ' ‘ -
Let X € K. In view of Proposition 14, the boundedness of the non- -empty set B(f, )
implies the boundedness of [ X]uX, and this (in the Banach space R) ): IAY] Yl

= 0. Thus (by Proposition 9) one has S(t)x) = 0. Therefore (by Proposwlon 13),if hx
is 1nfm1t,e there exists a sct P(X)e et)x (whlch we fix for the followmg) such that :

(2) 8+ IS < (¢/2) (card K)1 for all-L € elox \ P(X))

If yx is finite, let P(X) = yx for the following. — - Proceeding so for all X € ¢, we have,
defined a family (P(X))xex.

Let N =U {P(X)| X € K}; then N €ey. Let Q€ e(h \ N). In order to show that
Sy) =+ 0, it suffices (by. Proposition 13) to prove that ||S(Q)|| < & holds. For abbre-
viation, we put, for each X € ¢, Qx = {¥ € Q| Y < X}, furthermore L, = {X € ¢ |
Qx + 0} and Ky = K n'L,. Then L, is fmlte and non-empty, one has Q .= U {@x |
X € Lo} and (Ly\ Ky) = (g N K) Clearly, @x & tx holdsforall X € L,. By Proposi-

tion 11, one has ||S(Q || = S(@x)|]- Now, we consider the following three cases:
XEL €

Case a). Let KO:#= @. (This holds, eg . if Ky = L,.) Then, one has [since QX
€ e(yx \ P(X)) holds for all X €. K,] by (2) the inequality . A

. “ PN S(QX)“ < (card K) (¢/2) (card K) 1 = ¢/2.

Case b). Let L, = Ly \ Ko+ 0. (This holds, e.g., if Ko — 0.) Then, one has [in view

of (1:7), (1.8) reformulated for “aco” mstead of “co”, L1 €e(x\ K) and (1)] the chain
” Z’S(Qx)“ <o “ 2. vaco (f[X] #X)” < ¢f2. -
XeL, Xel . : .

)
'

~
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" Case c).. Let Ky+=0and L, \ K=+ 0 Then oné obtains [by Proposwlon 11 bhe tri-

. angle inequality, the combination of the cases a and b, and the transitivity of the rela.- ’

tion =,] the chain .

\ 2 S(Qx)” <o | x S(QX)” <.

Xe L, GoKo

Summarizing, we have shown ||S(Q)|| < ¢ in the general situation. (Remark In v1ew
of Proposmlon 7/b, one is allowed to replace in this Part 1 of the proof ‘raco’ by
“aco’ everywhere ) ’
. We show now that B(f, 1)) S zco B(f, . If one uses, in this order: Proposmlon
20/a, Part 1 of this proof and Proposmlon 11; Proposmon 20/0, (f, ) # 0 and Pro- -

_ position 15; Proposition 15, one obtams the cham

" B(f, ) CZS(t)x Z,' zco (f(X] uX) & zco B(f, v 8

Corollary Assume f lo be smgleton-mlued Define g by g(g) = B(/, )for all ge X-

and K by K = (1 € % | g(z) non-emply and bounded). If K =+ 0, tken(g|KK < IK)

s a tco-nested net, and one has LI\I (9, X, ) = LIM (g | K, K, < | K).
Proof Use that for each (h J,b)¢ (D(‘BE LIM (k| B, B; bB)»= LIM (h, J; b)
for a]l B €D (for the notatlon see § 0/b)) I . e o o

L]

§4 The (u, ) _integral in terms of Bu'khoff sums '_ : - s
Iflisa non-empty set'and O is an I-ary partial operatxon in E we define, for each
family (Z;)ics in RE, 9 Z; by letting, forallz ¢ B, z € 0 Z; if’ P Z, < Dmn O and -
iel .
x—Otpforsomequ PZ Then, LfZ € € for all iel, 0 ((Z).e,) QZ €€ (see

iel

_§0/a) or [13 p- 121]

Proposition 22: Let (O¢)cx be a /amzly of t-ary partzal operations 05 in B and a
a filteron X. Put for abbrevzatzon K = S Prand b= S {Pr} and define the mappings

'S and T by letting, for all g € X and o7 (L, 9) € K, S(g 0; fX] ,;x and T(t, 9) -
.= 0; /((p(X)) uX. Then, one has (a) and z// is singleton- valued (b)

@ flim T¢) SLIMSE),  (b) LIM S(z)g nnm. T, 9).

: (zw)eK .

Proof: 1. Let z be a member of the left sude of (a) Let U € 23,2: Then, there is anl
A € a such that N -

(1) 0+ T(x,9) S U for all g€ 4 and all qoée?g

Letpc Aandye€ P /LX) uX. Then, there i a g € Py such that f(p(X)) uX = {p(X))

for all X € . Thus, by (1)7 0 == 05 WX} =Tk ¢) & U, therefore @# Sk s U.
By the choice of U, we. ha.ve shown that = € “LIM S( )- 2. “Assume f to be smgleton- '

valued. Let x € SLIM S() and Ue B,z Then there is an A € a such that ,
- g€X . . . .

@) 0+'8(x) S U holds for all g ¢ 4:

.82 Analysis Bd. 9, Heft 6 (1990) ~ . . ) ' N ’ X
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. Letg € Aand g € J’g By the assumption on f, f (q;(X)),uX is non- empty for all X €L;
let y;(X) = e(/ ),uX) for all X € x. Then y E P IX]uX, therefore (by (2)) ©
=+ OX{q;(X)} ’l(g p) € U, and so, by the chorce of U,z is element of the mght-‘.
hand side of (b) s ’ '

Corollary: One has'(a) and, if f is singleton- valued (b)

(a) 3 f du S d ’ELIM B(f, 1), (b) ¥ fdu = ‘”LT\I B(f,1)-

" First proof In Proposrtron 22, define a = J& and for all € X, O; P
Second proof Combine Definition 2 and Definition 5 with Proposmon 17.1

Theorem 1 (cf. [5,4.4.3)): Let z € E. Then, the statement (a) implies lhe stalement
(b); if f is singleton-valued, the statements (a) and (b) are equivalent:

@ ze¥ fdu.
(b) For each U E Bz, there is an g € X such that @+ B(f,t) = U.

.
a

Proof If (a) holds then f is singleton-valued by Proposition 18. Therefore, we
may (and do) assume that f be singleton-valued. We show that (a) is equivalent to
(b).-We refer to the definitions of g and K in the Corollary to Proposition 21. Define
(c) to be the statement z € LIM (g, X, < |¥). If (b) or (c) holds, then K is non- empty,
. therefore, by the mentioned corollary, the net+(g, K, < |K)"is rco-nested, thus, by
" Proposition 4, (b) and (c) are equivalent. Furthermore, one applres the Corollary to

Proposmlon 22 ] . ~

. Theorem 2 (cf..[5, 4. 4 4]): The statement (a) zmplzes the statement (b); if f is-single-
ton-valued, the statements (a) and (b) are equivalent: )

(@) ¥ fdu+0.

(b) For each ¢ > 0, @= ||B(f, ) — B(f, Nil<e holds for some g E X

Proof: Copy the precedmg proof, e‘(cept for.defining (c), now, to be the statement
LIM (g, X, < | X) = @ and referring, now, to Proposition 3 instead of Proposition 4 N

Theorem 3: If ¥ fdu is non-egpty, then ¥ f du =N {zco B(f, ) | ¢ € X and B(f, 1)
is non-empty and bounded}. , . :

" Proof: Use the proof of Theorem 2 partly and refer, now, to Proposition 6 in-,
stead of Proposition 3 i . . _ ) N

Remark 7: Let £ = Qand g: ¥ — E; assume that f(u) = {g(u)} for all ¥ € F. By Theorem 13
in BIRKHOFF’s paper [2, p. 367), g is “integrable” (in the sense of Birkhoff) if and only if (b) in our
Theorem 2 holds; and in this case, the (single) element, of the right side of the equation in our
Theorem 3 is called, by Birkhoff (see Definition 4 and Theorem 12; both in [2, p. 367)], the “inte-
gral” of g. In this sense, the Corollary to Proposmon 22 gives a representation of Birkhoff’sinte-
_ gral of g by means of Riemann sums.

By the preceding remark, it is j\ustifred to call, from now on,
"f du also the Birkhoff integral (belonging to.u).
. Now we can formulate a result, being indicated as a.goal before Proposmlon 20.
;, Theorem 4 (cf. [5,4.8.4]): Let 9 be (beszde X) a p-purtition system. Then,
X S implies 3f-fdu < U fdu: ‘ ‘
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Proof: Use Proposmon 18 and Theorem 2, the latter apphed flrst for X and then
for9) 1

Examplc 1: Let ,uF < + o0.'The classical examples for X and 9 bemg in the relatlonshlp
XS Pare ¥ = {g| s a finite p- pirtition of F} and §) ='Q. - .

For an illustration of Theorem 4, see Remark 10 in § 6.

Definition 6: f is called an X-step function if there is an g. € ¥and a 'm'apping 7:
T — € such that f(x) = y(X) for all (X, z) € Fy. If f is in such a relationship ‘with g
and y, we say that f is the X- slep /unctzon determmed by (r, ). (For the definition of £,
see § Ofe).) -

.The next statement (4.1) follows immediate]y from the definitions:

1f / is the X-step function determined by (t, x), then, for each v) € X with
T <, thereisal: y —> € suck that f is the X-step function determined -
Cby (4. : B3 1)

In many approaches to mtegratuon the_definition of an 1ntegral is based on an
elementary 1ntegral’ defined for step functions (mostly having fmltely many steps)
'via a procedure of- ¢ ‘completion” (whatever this word mlght mean in a partlcular :
theory). In the present approach, the “‘elementary integral” is already contained in
the general case in the sense of the next theorem (which, roughly speaking, says that -

the (X, u)-integration extends uncondmonal summatlon)

Theorem 5 (cf. [5,4.92): Letx € X, 7: ¢ —> €, and / be’ lhe X-step /unctwn deter-
mined by (r,-x). Then, one has , . -

¥ fdu —Z/c(X uX.
Proof: 1 One has ¥ fdu = Z‘,{(X) #X, since for all y € X \Vlbh I=<y and all-

_ @ € Py the following ¢hdin [where one uses in this order: Propos1tlon 20/a and Theo-
rem 19 in [13] or Proposition 11; the’ supposmon on f; a distributive law; Proposi-
tion 20/b] holds: BN :

R(/,t)tp‘:Z Zf(wY));uY Z Z,((X)#Y

= Z’ (X)) JopY = Z x(X) ﬂX
. XE! Ye Dx '
2. For abbreviation, put {r} =9). Then, one has ¥/ du & ¥ fdu by Theorem 4, while

?)f/d,u = Z /(X) ,uX holds since R(/ 1 (p) Z 2(X) uX is true for allg € Pr B

~

\le\b we answer the question to which extent the (u, X)-integral of f can be re-
presented by means of the-weak Birkhoff sums C(g) belonging to ¢ € X (see Defini-
tion 5). . o ~ .

Theorem 6: One has (a) and (b): B o N ‘
I/ff/d#—TLo:henfj/d,t—”LIMC(g) e

(b) If f is sznglelon -valued and there exzsts an go € X such that B(go) is non-emply
_and bounded, then "'ILIM Cx) ¥ fdu. . - -

Proof: Ad (a). Assume ¢ dy = 0. Then, by Proposition 1 and the Corollary to
Proposition 22, one has ¥f f du = ¥ ELIM B(x). Letz¢ ¥ fduand U € B, . Then, there
, 2eX _ - Lo

30+ -
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PRI

'ié_all To€X shch that
(1) @ %= B(x) S U holds for a]l r €. X with go <r.

7

‘ Let x € X with go < . Then, by (1) and Proposition 17, B(x) = C(x), therefore by (1)

_ and the ch01ce of U xe? 5LIM C(t)) Furthermore, use Proposmlon 1.

~

Ad (b). Assume'the premlse within (b) and choose Lo as there Let x ¢ 7¥LIM C(g)
and U-€ B.x. Then, there is an 1, € ¥ with y, <y, such that - ‘ reX

(2) 0 + C(g) U holds for all ¢ € X with gl < x.

- . -

Proposition 17) we have B(z) = C(x), therefore (in view of (2) and. the choice of U)

ze? zLIM B(y), and so (by the premlse within (b) and -the Corollary to Propo- .

smon22)x€§f/d/4l_ L g
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