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On the Interior Regularity of Weak Solutions 
to Nonlinear Elliptic Systems of Second Order	 .	 . 

J. DAIEEK  

.Es wird die C' .Regularitat der schwachen Losung (mit dem Gradienten im BMO-Raum) 
eines nichtlinearen elliptischen Systems partjeller Differentialgleichungen zweiter Ordnung 
• untersucht. Das Problem 1st unter-der Vraussetzing losbar, dal3 das System die verallgemci 
nerte Liouvillesche Bedingung im BMO-Raum statt wie gewohnlich im L-Raumerfüllt Zum 

•	Schluf3 wird gezeigt, daB die Liouvillesche Bedingung im Fall des 112 gilt. 
'FIccJIexyeTcn C"-peryalp11ocTb cia6oro pewe	(C rpaluIelLToM B BMO-npocTpaHcrBe) 
1IeJntIIe1Hofl DJlJlllnTll4CCH0n ducTeMbI JU144epeIiI4IIaJ1b!Ib1x ypaBHeHHft BTOOF0 nopnxsca. 
Ilpo6JIeMa nOJTOxuiTeJIbHo paapeuiva B Hpejfl0J1O+ceIIflH, qTO CucTeMa 

•	06o6ueiIuoMy YU10131110 JIIIyBHJLThn B .BMO-npocTpaHcTbe BMecTo iax 06ui10 B L°°-npo-
• cpacne. B IOHEW oHaaaHo, 'ITO yciioue 11IIyBIIJIJUI BbInoJTbIleHo B ciyae R2. 

The interior U'-regularity for a weak solution (with gradient in the BMO-spaco) of a non-
linear second order elliptic system is investigated. The positive answer is obtained on the as-
sumption that the elliptic system satisfy the generalized Liouville condition considered in the 
BMO-space instead of the usually used L-space. Finally it is proved that the Liouville condi-
tion holds in the case of R2. 

•	0. Introduction  

In this paper, which is a modified version of the thesis [4], we prove regularity for a 
weak-solution (with gradient in the BMO-space) of the-following nonlinear elliptic 

-	system (i = 1,..., N):	 - 

	

7_Da1a (x, u, Du) + a 1 (x, u, Du) = —D,/1 (x) + /(x),	 (0.1) 
• where x belongs to a bounded open set Q of R', n - f^ 3, u: Q - RN , N >-1, u(z) 

= (u1 (x), ..., u''(x)) is a vector-valued function, Du = (D 1 u, ..., Du), D 
we will use the summation 'convention aver repeated indices.. - 
- In [6-9, 121 the so-called Liouville condition (L) is formulated in terms of the 

space L. On ' the other hand, the proof of L-boundedness of the gradient of a weak 
solution for the system (0.1) has not yet been achieved.in reasonably wide extent	- - 
and the possibility of this proof is questionable. 

The following definition is a generalized form of the Liouville property from [7, 81 
and reads as follows.	- -' -	 - 

•	Definition 0.1: The system (0.1) satisfies the Liouville property -(L) if forevery 
x° E Q and everyu E R N the only solutions v in 1V1 to -	 -. 

_Daj (x0, u, Dv(x)) = 0,	(i = 1,..., N) •	 '	 (0.2) 

with Dv E BMO(R") are polynomials of at most first degree.	-, -
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The main result of this paper is the fact that if system (0.1) has property (L), then' 
Du is locally Holder continuous in Q. To this effect it represents a generalization of 
[7,8]. Because it is easier to verify that the gradient of the solution is an element of 
the BMO-space'(L BMO)', the generalization reached in this paper has a funda-
mental meaning; The approach stated in' this .paper has been used in [15], which deals 
with quasilinear parabolic systems. 

•	1. Notations and definitions  

•	In the sequel Q will be-a bounded open set of R" with Lipschitz boundary Q. The - 
meaning of Q0 Qis that the closure of 920 is contained in Q, i.e. Q0 Q. For the 
sake of simplification we denote by 1 .1 and (., .)-the norm and scalar product in R' as 
well as in RN and R'. If x E W' and r 5is a positive real number, we set B(x, r) 
= {y ER": I —xl <r}, Q(x,r) = 92  B(x,r) and Q(x,r) will be the cube jnR"' 
with the center in the point x and length of the side r.	•, 

By Pk , k ^! 0 integer, we denote the set of all vector-valued polynomials P = (P', 
..., PN) with real coefficients Mined on It" such that the egreeof Pi is less than k for 
each i= 1,...,N.	 '	 - 

Beside the usually used HOlder and Sobolev spaces' (for detailed information .see, 
e.g., [3, 6, 12]) we will use the following ones.	 - - 

•

	

	Definition 1.1 (Campanat-Morreg spcues): Let 2 E. [, ii], p E [1, co). The space

LP-2 (Q) is the subspace of such functions I E L(Q) for which 

Ill IILP.A(ø) = 5 sup r2 f /(4l P dy'IP <co.  
IVET>O Q(z.r)	 J	 - 

Let k be a non-negative integer and 2 E [0, n + (Ic +1) p].- The space '.k'1(Q) is 
the subspace of such functions f ELP(Q) for which 

= l/IIL P(D) + [/]Ikp.1(Q) < co, -,	-	' 	(1.2) 
where

=5 sup {r 2 inf f If(y) - P(y)IP dyll,1IP. 
xE,r>O [	P€.	Q(x,r)  

With the norms (1.1) and (1.2),'LP.A(Q) and ."k'1()' are Banach spaces. We will 
work mainly with the spaces L2,a, !o"2 and 112.1; instead of Y0 2 - 1 we will usually 
write y2,1 .	•	 '	 '	 -	 '	 •	 - 

In our considerations we make use of the fact that for each function u E 1k2'1(QY, 
each x° € Q) 0 < r diarn Q, there exists one and 'only one polynomial P € 'k, 
P(x) = P(x, x°,r, u) such that	• -

	 =	• 

inf f u(x) - P(x)j2 dx = f lu(x) - P(x, x°, r, u)I' dx.	- 
- PE-O ft Q(z°.r) -	 •	 Q(x°.r)	-	 '	• 

- For Ic = 1 we will write this polynomial P in the form	- 

•	P(x, x°, r, u) = b°(x°, r, u) +fr(x°,r, u) (x - Xa°)  
--	

= b°(x°, r, ii) +(b(x°, r, u), (x	xe)),	
• 

and for for Ic = Oit equals the constant	•	 - 

UZO.T
• '-	

-	= f 'u(y) dy = (neas B(x°, r))1 f u(y) dy,	• 

•	'B(x°r)	 B(x'.r)	 -	 '
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where meas B(x°, r) mans the .n-dim 'nsional Lebesgue measure. Denote further	V - 

U(x°, r) = f lu(y) - Uzrl2 dy, and define BMO(R) as the set of Vail measurable. 

functions non R" for which the set?! = U(x,r):x E R", r >0) is bounded, setting 
iiUIiBMo(g')	SUf 'it.	-	 -	 - 

At last, let H'()(Q), A	 B E [0, nJ be the anach space of all functions u E H'(Q), 
Du E 121 (Q) with normV 

	

•	 ikiIni.A(D) = IUIIL'(Q) +E lDuIiz2, ( Q ) . 

- Proposition 1.1: We have the following important properties o/ . lhe spaces defined 
• abbve:	 - 

• (a) L22(Q)= . 2 (Q), 2 E [0, n),	 - 
(b) . 22 (Q)= % 1 21 (Q), 2 E [0, fl + 2), 
(c) Z2 "(Q) c L2 '(Q) c L21(Q), 0 :_5 	< 2 < n,	

V 

- (d) L2 (Q) = L°°(Q) .2n(Q)	 V	 V 

(e)1P (Q)	.OsM(Q) = BMO(Q) for all p.s E [1, oo), Q being a cube, 

	

V	(f)IJI.(fl)(Q) c: C°(Q0) for each Q0	Q, y E (0, 1) and	 - 

1111C0 . y(Q,) ^ c(n., v ' diam Q, dist (00 , 3Q)) iliiH1,(fl)(Q). 
V 

For the proofs and more detailed information about the Campanato-Morrey spaces V

 see, e.g., [1-3, 6, 121. In the sequel we will denote all important constants by the 
symbol and other ones by c.	-	 V 

A function it E Il'(Q) is called weak solution of (0.1) in Q if -	-	-	-	 - 

	

•	f a(x, u, Du) Dq(x) dx + fa(x, u, Du) (x) dx	
- 

=f f(x)D(x) dx + f /(x) (x) dx	for all *9) E Coco (S?)	(1.4)	
- V 

V where dj ,	 are functions fulfilling for each (x, t, p) E Q X Ri" X RnN with 
Jul	L the following conditions:  

a1 ", a 1 E C'(Q X RN VX RN),	
V	 -	

-	 (1.5) 

V V

	
Ia(x, u, p )I, a(x, u, )i	1(-L) (1 +	l) ,V	 V	 -	 (1.6) - 

-	

a,a(x, U, p)/ap,I, lea(x, u, p)/ap/l ;5 1(L), -	V	

-	 (1.7) 

V	
V	 Ia(x u P)/Uk l Ia 1 (x u p)/ax8I	V	 - V	 V 

	

1 (L) (1 +p1),	 (1.8) 
I8c(x, u, p)/eUkI, Iea. 1 (x,u, p)/ax3 I	 V 

•	aa(x, u, p)/ap/ is unifornilcontinuoiis on Q x RN X R",	 (1.9) 
V 

	

V	
V aa(x, u, p)/ep, —kd(x, u) as lI -^ oc, for all (x, u) E S2  RN (1.10)	V 

V	 f E f11Q(Q),	fi E jJ1.q/2(Q)-	> nV	-	• -

	

(1.11)	• - 

	

/	V	

iiIiiiHl.Q(Q) ± Z IIfiIiii.i	2,	-	-	 .•	 (1.12) 

- 3a(x, u, p)/,9p	^ v(L) 1I2	
- 

for all	E RnN,(x, it, p)EQXR'XR7N .	V	

V	 (1.13) 

- It is known that it E F1 0 (Q) if the function it fulfiles the conditions stated above 
(see, e.g., [3]).

'V
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2.-The results 

•	Principal result of this paper is the following theorem. 

Theorem 2A:Let it E H'( )(f2) be a weak solution of 
the system (0.1) and suppose 

that the conditions (1.5)—(1.13) hold If the system (0.1) has the Liouville property (L), 
•	then u E Gt(Q). 

There arise two natural questions:	 -	- 
1. Do there exist system of the form (0.1) with weak solutions in the space H"(')(Q)'? --	- - 
2. Under which assumptions has the system of the form (0.1) the Lionville pro -

perty (L)?  
A partial answer on the first question is given in [5]. The problem of the H'-(

regularity of weak solutions is studied in detail in [3]. The second question is posi-
tivély answered in the case of n = 2 and N5> 1 by the following 

Proposition 2.2: Let the system (0.1) 'atisfy conditions (1.5)—(1.8), (1.11)—(1.13) 
and let n = 2. Then it has property (L). 

In the case n ^! 3, N-> 1 some conditiors under which linear elliptic system with. 
Lw-coefficients, quasilinear or nonlinear systems, respectively, have property (L) 
are shown in [11], [13] and [101, respectively. From [14] it follows that there are non-
linear elliptic systems without property (L). 

3. Lemmas -	
- 

The following two lemmas concern the estimate of the coefficients of the polynomials - 
from (1.5).	 - 

Lemma 3.1 [1: pp. 140-1441: Let P E k' S E [1, oo) and E be a measurable subset 
of the ball B(x°, r) R' satisfying the condition. meas E ^! Ar', A a positive constant. 
Then there is a constant c = c(n, k, s, A) such that for each niultiindex a we have 

[DP(x)]=,I8 ^5 (/rn+kI8)f IF(x)1 8 dx.	 --

Lemma 3.2 [1: pp. 146]: Let u E J2fl+2(Q) Then there exists a constant c.= c(n) 
such that for every x E Q and for all * r, r0 , 0 <r 	diam Q, we have 

I b°(x, r0). - b°(x, r)I	cro[u].r2.n+2(D), 

-	fr(x, r0 ) - fr(x, r)I	c(1'+ In (ro/r)) [U]i2..+2(0) 

for all a = 1, ..., n, where b°, b, are defined in (1.3). -	 -	- 

Another important result needed for the proof Of Theorem 2.1 is the following - - 

Proposition 3.3 [2: pp. 373]: Let-Q be convex. Then there is a constant c = 
- diam Q, meas Q) such that for each 2 E [0, i? + 2] we have	-	- 

•	H1•"(Q)	252.a+2(Q)	 -	 - 

-	IIUIIZ,2.2+2(Q)	C IIU IHI.UHQ	for all u E Hl-(')(.Q). •	 •	 - .	 -
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Now we prese'nt a fundamental result concerning the partial regularity of weak 
solutions to the quasilinear elliptic systems of the type	 - 

D[A'(x,.u) Dui} + A,(x, u) Dpul = —Dg1 + g,.	 (3.1) 

' Assume that the coefficients A IP are-uniformly continuous, A' are continuous in 
,- Q x Rh', gj E L(Q), g, E L12(Q), q > n and that (c, a> 0 constants) 

•	 ' AfJ .+ f JAI +,f 19 j II L + ,E IIg1ILq12	C, 
ía	 i 

A7(x, u)	u	for all (x, u) E Q X Ri",	E RnN. 

- Consider the solutions to the system (3.1) belonging to the space H 1 n 
Proposition 3.4 [12: pp. 147-149]: Let u be a weak solution of the system (3.1). 

• Suppose that U(x, r) - 0 as r 0+ uniformly ii each compact set K Q. Then 
u E c?(Q) with a = 1 - n/q and the a-priori estimate IIuIlco.K	c 1 (, c, K,dist (K, 
ES?)) hlds.	 - 

4. Proof of the results 

Let Q0	£7, x0 E Q0 be fixed, J? = min {1,dist (90) eQ)}. For R E (0, R0) and

u E JL'((Q) (u is a weak solution of the system (0.1)) we define 

y = y(x) = (x - x°)/R,	 (4.1) 
u,(y) = (u(x° + By) - b°(x°, R) -. R(b(x°, B), y)) /R,	 (4.2), 

where b°(x°, R) = b°(x°, R, u)E RN and b(x°, B) = b(x°, R, u) E RN are the coeffi-
cients of the polynomialP(x, x0 , H, u) from (1.3) since u E..'i2n+2(B(x0, B)) , for each 
B(°, B) c £7 due to Proposition 3.3. From (4.1) it can be seen-that for each a> 0 
there exists R(a) E (0, R0] such that for all R E (0,-R(a)) we have B(0, 2a IQ	O

(OR is tile image of £7 through the transformation (.1)). From (4.2) it follows that 
there ejsta constant c > 0 such that for each r > 0, y° E R' and all B E (0, R(?°)) 
(R(y°) = R0 in the case y° = 0) we have	 - 

f Da,(y) - (DuR)11 o ,T1 2 dy	c[D]I2.n(Q) r'  
B(y°,r)	 -.	 - 

and the equation (1.4) has the following form:	- 

f a"(° + Ry, b°(v°, B) +'Ru5 (y) ± R(b(x0, B), y), b(x°, R) + Du5(y)) D(y) dy 

+ f Ra(x°+ By, b°(x°, H)-+ Ru(y) + R(b(xO, R), y), b(x°, R) + Tht5(y)) (y) dy 

= f f(z° + By) Da tp1 (y) dy + f R/1 (x° + By) V4 (y) dy, for all p E Coco (OR )	() 
Oft	•	-	 on	•	•	 - 

Aspreviouslysaid, u E H' (Q) and with respect to (4.2) also UR E H?0(O5) .Then it 
follows that VR = DuR satisfies the equation in variations	 - 

f	+ Ra1 '/u"(b, 7 + vk) + Raa/axr) Datp dy • • - 
O ft	 - 

+ f (Raa11pDv,' + R2aa1/auk ( bk + vRk) + R23a1 1ex) VI dy 
OR - 

f (R11 1a2D	+ R2 //ex) V4 dy	for all 1/) E Co' (0).	(4.5) 
on -	 -	-
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In what fol1ws we are going to prove that for each a> 0 the set 41 0 = 
0 <B <R(a)} is bounded in 112(B(0, a)) by a constant depending only on a..For this 
reason it is enough to prove the boundedness of sets i1t0 and c1112 = {D2 uR : 0 <1? 
<R)}iq L2(B(0, a)).' The set it 1	{DUR : 0 <B <-R(d)} is then hounded accord-
ing to the Gagiiardo-Nirenberg Theorem(ee e.g., [3: pp. 25]).	-	 __--

•I First, let us prove the boundedness of 412. FOr ci> 0 denote B(a) = B(0, a).  
Further choose i € C0"(B(2a)) such that 0 ^—, 77 ^5 1, 77 = 1 on B(a) and I D,71 I— c/a. 
Substituting for 7p, in the equation (4.5) the function (y) = 2[v(y) - (VR)0.2 ], we 

•	have for each e > 0 from the assumptions (1.7), (1.8), (1.i1)—(1.13), Young's inequa-
lity, Proposition 1.1 and -properties of the function- that	-	-	- 

	

• - v(L)fi 2 IDvR j 2 dy	 - 
8(0. 20)	 --

Ec(L) f 12 Dv81 2 dy + c(, L) a2 f IV - (vR)0.201 2 (ly -	 - 
B(0. 2a)	 B(0. 2a)	- 

+ c(e, L) {w(1 + b(, B) 1 2 ) I IDunI 2 dy + B2 f _I DiiR 1 4 dy 

	

-	B(0. 2a)	 B(0, 2a)	 - 

- 
+ R2 (1 + Ib(, R) 1 2 + Ib( R)) a" + B2 f 1 D71 2 d + B4 f 1D11 2 dy,	(4.6) 

-	 B(0, 2a)	 8(0. 2a)  

here / = (/'), / = (/), L = L(dist (Q0 , aQ), diam Q; lajlyi.(n)(Q)); in the case q < 4 
it is necessary to replace the last integral in (4.6) by	f D1jI2 dy. Choosing e > 0 

• - in (4.6) small enough, we obtain - -	•- -	 -	- 

fIDvnI 2 dY	-	-	 •'•	-	 - 

B(0.a)	 -	-	 -	 -	- 

c(L) {a_2f 1V8 - (v8)o 201 2dy + B2(1 + b(x0 ,R)I 2)f I DuRI2dy 

	

B(0. 2a)	 -	-	 8(0. 2a) 

•	
+ R2 f ILUR I 4 dy + R2 (1 +- Ib(x°, R )1 2 + jb(x°, R)j 4 ) a 

-	B(0. ga)-.	- 

- +R2IIDTI2dY+R4IIDII2dY};	 '•	 - 

B(0. 2a)	-	8(0. 2a)	 -	 - 

	

• =c(L){A+B+C+D±E±F}. -	- --	- -	 - 

Estimate now the individual terms in brackets. Since Thc E . 2 "(Q), we have 
-	

A =a2	f I3uIx	(aU1X)x02ORI2'dx	c[Du]2.fl (Q) an - 2 .	--




B(z°.2aR) 

Further from Lemma 3.1, Lemma 3.2 and the fact that Du € L2 -2 (Q) for each A E [0, n) • - 

(according to Proposition1.1/(c)) w obtain  

•	 B =(1 + Ib(x°, R)12) R- 1 2 f - Du —b(, B) 2 dx'	- 
•	•	-	 -	B(x.2aR) 

c[R1 "(1 + Ib(x°, B) 2) a2 + R2 (I b (x°, B) 2 + Ib(x°, R)14)] a"	 - - 

':5-- c(A,	(1 + in4 B) R 2 "(a1 + a") IIUIIHI.(fl)()  
c(A, B0 , IIuIIH1.nQi) (a1 + a"),'  

-S	 -	 -	- 

•	 - -
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where E (n	2, n) is arbitrary. In estimating the term C we use the fact that 
Du E L8 U(Q) for each cube Q Q, s.E [I, co), fz.E [0, n) (see Proposition 1.11(c)) 
and we proceed analogously as in the estimation of term B and obtain C :E^c(2, R0, 
IIuIH(1.n)(m) a2 , where 2 E. (n - 2, n) is arbitrary. From Lemma 3.2 it follows that D 

	

c(R) a" and from the assumptions (1.11), (1.12) we have E:!9 .c(l?o, '2) 
n(1-2Jq )	- 

F :!E^ (R0, 2) 00-41q) in case q > 4 and F	c(R01 2) in case .q	4. From these

estimates it then follows - 

f IDvR 1 2 dy	é( 2 , R0 , diam Q, 11411H1,(fl)(Q), a)	c(a)	- 
B(O,a)  

for each R E(O, R(a)).,Hence f D2UR 2 dy c(a)ior any R E (0, R(a))-and the bound- 

	

B(O.o)	 - 

eclness of the set 4t2 is proved.  
Now we are going to prove the boundednessof to . From Lemma 322, Proposition 

3.3 and (4.1), (4.2) we have 

fIu y)I 2 dy='R"2 f u(x) - bQ(x°,-R) —(b(x°, R), (x - x))1 2 dx'• 
B(O.o)	 B(x'.oR)  

2a"2(aR):"2 f u(x) - b° (x°, aR) - (b(x°, aR), (x - e)) 12 dx 
fi(X°.OR)' 

+. 2R12 f b°(, aR) — b°(, R)	' 

	

B(x°.oR)	.	 . 

-	:	-	+ ((b(x°, aR) —b(x°, R)), (x — x0)) 1 2 dx 


- C[U]!2.n+2(B(z,.oTh)(l +'1n2 a) Max {a", an+21 ;5 [Da].r2.n(Q) c(a). 

Hence f UA(y) 12 dy c(a) for any R E (0, R(a)) and the boundedness of ato in 
B(O.a)  

H2 (B(0, a)) is-proved. 
Compactness of the imbedding of H2(B(O, a)) into H1 (B(0, a)) llows us to choose 

a sequence Rk -- 0 such that URk –>z inHh(B(O, a)). Using the diagonal process we get 
a subsequence (we use th6 dame' notatiOn for it) such that 

	

lim UR = z in F1(R"),	urn DUR = Dz	a.e. in R".	(4.7) 

	

k—co	-	 k-*oo  

Accordingto (4.3) we obtain that there exists a constant c > 0 s - uch that'for each 
y? E H", r> 0 there holds  

	

f Dz(y) - (Dz),I 2 dy	c[Du]12.n(Q) r".	 (4.8)

B(?.') 

Further we deduce from (4.4) the equation for the limit function z. 'For passing to 
the limit in equation (4.4) the behaviour of sup {b(x°, Rk):k = 1, 2, . . .} is important. 
Remember for the following considerat,ibns that Rb(x, R) – 0, b°(x°, R) ---> B° E RN

/ 
as R -* 0+ exist due to Lemma 3.2 and from the definition of UR follows boundedness 
of the -set (u,: R> 0) by a constant independent of R. 

(a) Let sup {(x°, Rk)I : k = 1, 2, . . .} be a finite nurnber.In this case there exists a 
subsequence (we use the same notation for it) {b(x°,,Rk)} such that b(x°, Rk) –p-B E RnN 

as k	Co. According to (1.6), (1.12), (4:7) and the Vitali Convergence Theorem we 

can pass to the limit with k -> 60' in the equation (4.4) (for the fixed function- V). We 
see that the second integral on the left-hand side and the integrals on the right-hand - 
side in (4.4) tend to zero. Thus we obtain that B + Dz(y) is a weak solution of the 
system  

a(x°,B°,B + Dz) D,tpdy = 0 - for all E H01(R").
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Now from the Liouville property of the system (1.4) it follows that z is a polynomial 
of at most first degree. 

(b) Let sup {jb(x°, Rk)J: k = 1, 2 . . .} be infinite. In this case we can suppose 
b(x°, Rk)l — oo as k , --> oo. Denoting in the sequel bk = b(x°, Bk ), bk° = b°(z°, Pk), 

Uk(Y) = Unk(y), Wk(y) = Rk(un(y) + (b(°, Rk ), y)) we can rewrite equation (4.4) as 
follows:	- 

[a1(x0 + Bky, bk° + wk(y), bk + Duk(y)) - a1(x° + Rky, bk° + Wk(y),bk) 
R

± a(x° ± Ry, bk° + wk(y), bk) -	± Rky, bk°, bk 

+ a(x° + Rky, bk°, bk ) - a"(x, bk°, bk )] D,tp(y) dy  

± Rk f aj(x0 + l?ky, b° + wk(y), bk -f- Duk (y)) VI(y) dy	-	 - 
Rn 

/(x°+ Rky) D,tp(y) dy + Rk f 11 (x° + Rky) tpi (y) dy	for all V E G0(R). 

Using the theoren on the mean value in the integrals from the previous system we 
can rewrite this system in the following form: 

f . f a 1 1p/ (x0 + Rky, bk° + Wk (Y), bk + tDuk(y)) Duki (y) D(y) dl dy 

+	ff aa1a/au8(a ± Rky, bk° ± t Wk(y), bk) wks(y) D(y)dl dy	- 14  

1	 - 
+ Rk f f ea a /ex (x° ± tRy, bk°,bk) yD,ip(y) dl dy 

R"O 

•	± Rk f aj(xo + Rky, bk° + wk(y),bk + Duk(y)) Vi (y) dy 
Rn 

= f j(x° + Rky) Dip(y) dy + 14f f(x° + Rky) Vi (y) dy	for all v E Coco (R"). 

Taking into account (1.7), (1.9), (1.10), (1.12), (4.7) we can pass In the previous equa-
tion to the limit with . k -> cc (for the fixed function )and we have that the second; 
third and fourth integral in the left-hand side and the integrals on the right-hand side 
tend to zero. Due to (1.10) and the assumption Ib(x°, 14)1 cc as k - 00, we obtain 
that the function z satisfies the equation 

fd7f(x0, BO ) Dpz1Diptdy 0	for alhpE C0(R'). 
R. 

It is a linear elliptic system with the same constant of ellipticity and constant coeffi-
cients and by means of (4.8) we have that 1)z E BMO(R). In this case z is a poly-
nomial at most first degree again. 

Returning to the x-coordinates, we prove that for each x° E Q0 there exists a 
sequenäe 14 -* 0 such that 

lim	IDu(x) - (DU),-.R, 12 dx = 0.	 (4.9) 
Rk-+O B(x.Rk)	 -
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We have

f Du(x)	(DU)XO Rk I 2dX = f IPu(y)— (DURk)O. i 1 2 dy 
B(z°.R)	 8(0. 1) 

-	
- 	-f.IDuRk —tj 2 dy	for all tERN. 

-	 8(0.1) 

Now we put I = Dz (Dz is a constant) and, passing to the limit, we see that (4.9) 
'holds.	 - 

Now let us consider the equation in variations for the system (1.4) in 00 . If we de-
note by v the derivative D7u, we get as before that.	.	 . 

f (a/p,fl Dv.). + aa/auk v 4- eaI/ax?) D dx 

-' -F f (a1 /apf Dpv 5 + aa1/auk Vr + 8a1ax) q dx	. 
Q•  

= f -(f/	D' + //ax	) dx	for all p E C0 (Q0), y = 1, ..., n 
-	 -	-	- 1A 1C1\ 

Set	 -'	-	 -	 - 
Af(x,v) = a1 /p,fl (x, u(x), v),	AP .(x, v) = aa/8p/ (x, u(x), v), 

= _.aa1 /uk (x, u(x), Du(x)) v(x) - aa,"/ax7 (x, u(x), Du(x)) + /1'/ex(x), - 
g1 (x) = _a1 /3uk (x, u(x), Du(x)) v .,k (x) - ea.1 /ax (x, u(x), Du(x)) + a11 /ax7 (x). -	-

From the assumption of the theorem it follows that A qfl are uniformly continuous and 
bounded in Q0 )( R, A, are continuous and bounded in 920 x It',	L(Q0) and

g,' E LQ/2 (Q0 ). Then the system (410) can be rewritten as 

•	f 6o[A7(x, v) Dpv, l Dafl' + A,(x, v) Dflv75 qoJ dx 
•	£2, 

= f [g1 "°(x) Dpo + g,°(x) 99o i j dx	for all 99 E C0 (Q0).	- 
•	£2,	-'	 - 

Thus v is a solution of a quasilinear system of the type (3.1) for which partial regu-
larity (Proposition 3.4) holds ((4.9) guarantees that theassumption of Proposition 34 
is satisfied) I 

Proof of Proposition. 2.2: Let v E II 00 (R2) with Dv E BMO(R2 ) -be a weak 
solution in 112 of	-	- 

f a1 "(x°, u, Dv) D T (x) dx = 0 - for all E C000 (R2 ).	 - 
K' 

The equation in variations is	-	 •	 . - 

f	(x°, u, Dv) DV' D-p' dx = 0 • for all E C0 (R2),	(4.11) 

where v = Dxv . Now we prove that Dv E L2 (R2 ). Let y° E 112, T> 0 be an arbitrary 
constant. Setting 99i =.,2(vt - (v,,')vo.2T), , E Co°°(B(y0, 2T)), 0 ^ ^ 1,	= 1 in 
B(y°, T), D 1 1 ^ cIT in ejuation (4.11), we get, f IDv dx	c for y = 1,..., n, 

•	 B(y°,T) 

where c is independent of y° and T. It is known that a sequence {}	C0(R)

- exists such that Dçv -- Dv in L2 (R2 ) and therefore from (4.11) we have 

f a 1 /e 1p(°, u, Dv)Dv 1D,v' dx = 0	 -


and together with the condition of ellipticity (1.13) gives the result I
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