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Es wird die Diskussion des im Teil I eingefihrten (u, ¥)-Integrals fortgesetzt: Wir untersuchen
die Beziehungen dieses Integrals zum Haupb—Aumann -Pauc- Integral zum Pettis-Integral und

zum Bochner; Integral. Ferner behandeln wir die Darsbellung 1tenerter Integrale als Limites
gefilterter Familien von iterierten Riemann- Summen

Ilpopomkaerca NUCKyCCHA O (u, X)- HHTerpae Bseneuuou B qac'm I Mu uccneuyeu o'mo-
meHNA 2TOro MHTerpana k murerpary Iaynr-Ayman-Tlayka, k marerpany Ilerruca u k HH-
rerpany Boxsepa. [Janee MH 3aHHMaeMCHA IpeRCTABJICHREM HTEPHPOBAHHHX HHTErpajoB B
BHJLe IeNleIoB (b}mb-rpyxomnxcﬂ CeMeHCTB HTEPHPOBAHHEIX CYMM Pumana.

The discussion of the (u, X)-integral mtroduced in Part I is continued: We mvestngaw the
relationship of this integral to the Haupt-Aumann-Pauc integral, the Pettis integral and the
Bochner integral. Furthermore, we deal with the representation of iterated integrals as limits
of filtered families of iterated Riemann sums.

vet '

This Part IT of the paper “Integration of Riemann sums in Banach spaces” is an im-
mediate continuation of its Part I (see [6]). All numbered references to definitions,
statements, etc., of Part I are ma.de ]ust by the numbers used in Part I without addmg
an extra hint to [61. - : 3 2

~ §5 contains a descnptlon of the behakur of f du under the transltlon of F to

a subset' 4 of F and the cortespondmg tra.nsmon of f d,u to the submtegml”

x,

f d(u4)- (Theorems 7 and 8), whichleads to the discussion of the additivity
z z

and ¢-additivity of [ - du (Theorems 9 and 10). In § 6, the relationship between [ - dy,
the Haupt-Aumann-Pauc integral and the Pettis integral is cleared up, and it isshown

that f - dp is a “‘pointwise’’ integral (Theorem 11). The relationship of | - du to the
Bochner integral is discussed in § 7. In § 8, the considerations on iterated integrals as
being made for the extended real line in [12] are translated into the present situation.

t

§ 5 Integration on subsets, o-additivity of the (i, X)-integral

In this Part IT we write the direction < qh 2(u), defined in Definition 4, cor;sistently

as S in order to distinguish it in printing clearly from the order relation =< on the
x

real line. Furthermore, for typographic reasons, we write X[ .du as [ -du and
occasionally the summation symbol J3; (see § 0/g)) also as ):'

1) Teil I der Arbeit erschien in Band 9, Heft 8 (1990) dieser Zeitschrift.
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We begin with the following , . ..: = .. . . N e

Definition 7: (a) For each non-empty 4 € Dmn;z and each y € X, the set
{AnX}Xe€ g} \ {} is called the trace g4 of £ in A. (Remark: In particular, yy in
Definition 4/f is the trace of f) in X.)

(b) For each non-empty 4 € Dmn y, the set {x, | ¢ € X} is called the trace X, of X
n A.

(c) For each 4 € Dmn y, 1et244(B) = u(B) for all B € Dmn x4 with B & 4. For
each non-empty 4 € Dmn p, <, denotes the direction defined as in Definition 4
on the set .Q(y,,) of all pA-partltlons on A4, and v, denotes the binary operation in
Q(u,) assigning to each ordered pair (xr,, 1)4) their <,-supremum; furthermore, for
each 3 € Q(u,), BA(IIA 3) or BA(a) denotes the Blrkhoff sum of f|4 belonglng to p,
and 3. . T

b Prop081tlon 23: le trace X, of Eiwn A w<u 4-partition system. The " mappmg A
X->Zx, unthl(g)—g,forallgé&wa( 1)-homomorhism_onto. If X is v-clo-
8ed then .’-BA w vA-closed and A 18 a (v, vA) homonwrpkwm

Proof The first assertion is -clear. Let, 2 be v-c]osed Then, for ea,ch g, t) € 3,
IAVAUA(—{X”Y|X€£Aandy'5t)4}\{0}) (EVU)A€£4 : ”

Theorem 7: Let I be v-closed A € U Eli and let the functum fbe .snngleton valued
: &,

Then f (f]A)d(m) = j Ul,)dy, ‘where* 1, F—>J£‘ denotes the characterwtw /unc-
tion w.r. to'4. (For the terminology, see § 0/c.) o

Proof: 1. Choose a € X such that 4 € a. 2 Let g € E with a < X Then, for ea.ch
X € ¢, .one ,has either X & A4 (in this case, (f14) [X] =(flA)[X]) or X S F\ .4
(in this case, (f 1) [X] = {0}, sincef is’.singleton- va.lued), therefore B (j 14,2) =
B4 (fl4, t4): 3. Using the v-closedness of -¥ -and Proposition 23, one obtains ‘the
followmg a) Given g, € ¥, there is, for each y € X, with (x,), <,4 9, a 3 € X such
that ) = 34 = (3 v'xova) b) Given 1,.€ X,, there is an x, € ¥ such "that

(to)s = (Lo v @)4; and, for each y € £ such that g,va <7y, one has
1)0 <,4 14. 4. By means of the Corollary to Proposmon 22, Part 3a(resp. Part 3b),

and Part 2" of thJs proof, one obtains. tha.tf (f 14) due Cf(/]A)d(yA) (resp. that
f(/IA) d(/u) =3 f ANE/] ' ' )

Remark 8 In Theorem 7, the supposxtnon that / be smgleton valued is not allowed to be
.cancelled Assume tha.t /(z) =0 ior some z e F \ A Then, by Proposltlon 18 } (/ 1 A) dp = 0
buit nevertheless it can happen that } (f14) d{(a4) == € holds, as trivial ‘éxamples show.

Proposition 24: Let te X and A € (Dmn g) \ {9}. I/ B(f, g) 8 non-empty a‘nd
bounded, then B,(f | A, x,) 18'non-empty and bounded: +:, . e :

: Proof (cf. [5, proof of 4.3.4]): Assume the premise within the assertion. Let 4- 3= F.
Then, one has ¢ S <1 U Tra€ Q(u), thus (by Proposmon 21) the set B(f, TAUTR)
is non-empty and bounded, therefore (by Proposmons 8 and 14) 80 is the set,

Bf14,c)8 ST . . " g
Theorem 8 (cf. [5 4.4.5 ‘and 423]) Let A ‘€ (Dmn;;)\ {0} Then f /d/; =%=0
X,

implies [ (/| 4) d(ua) % ©..
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Proof (cf [5, p. 58]): For abbreviation, put ffX] — f[X] = ¢g(X) for all X S F.
Assume f fdu =+ @andlet ¢ > 0. Then, there is (by Theorem 2) ang € X 'Such tha.t

_ (1)@ + B(y) — B(x) S Bal0),,
thus (by Proposition 10)

(2) 9 + B(x) — B(r) =X§;g(X)/‘X, A

R} o '

therefore (by Prot)ositions 24 and 10)’
(30 + Bu(fl4, 0 — Bilfid, T = X 9(X) i

P . 534"

We assert that
@) 5 9(X) uX S X co (g(X) uX).

Indeed m v1ew of (2), the et Z co (g(X) uX)is non-empty (by ‘the Proposmons 15
and 7/b) Let x € Zg(X) uX. Then thereisa ¢ € P g(X) ,uX such that z = 2 .
Xeg

We define a mappmg v by letting, for each X ¢ I, !p(X )= cp(X ndyif Xn A =¢= o,
and y(X) = 0 (= zero vector of E) if X n4 = 0. Since' f{X] 4 @ for each X.€ ¢
(by (1) and Proposition 7), one has p € P co (9(X) uX). Furthermore, z = )_',' v.

By Proposition 15 and (1)—(4), one gets , ‘
@ %+ B,(f|4, 1) — Bu(fl4, £4) S veo (B(x) — B(z)) S B.0)

z,
By Theorem 2, [ (f|4) d(u,) is non-empty 8
For the remainder of this section, we assume X to be v-closed and a € Xx.
Theorem 9 (cf. [5; 4.6.2 and 4.4.5)): Let a be finite. Then

z z,
[ tau =£f (fl4) dpa) -

Proof: 1. For abbreviation, let C, denote the left-hand side of the asserted equa-
tion, C, its right-hand side. We define C, ,..., C; as follows: C; = ¥ 2ZLIM B(z),

C;=3LIMB(zva), C,=*3LIM X B,(i), =z m»LIM B().
Led reX Aca Tex,

2. If there is an z € F such that f(z) = 0, then z € A for some A € q, therefore (by
Proposition 18, applied twice) C; = @ = C, holds. For the remainder of this proof,
we assume f to be singleton-valued. Then, the equations C, = C; and C5 = C, hold
by the Corollary to Proposition 22. C; = C; holds, since B(z) = B(x v a) holds for
FX-almost all ¢ € X. The equation C; = C, holds by Proposition 11, since {g4 | 4 € a}
is a finite partition of ¢ v a for each ¢ € X.

3. We assert that Cs S C,. Indeed, let x € Cs, say z = }; z, (finite summation

, Aca

in E) with z, € Z)LIM B(x) for each 4 € a. Let U € B,z. Since J is continuous,
13 4 a

there is a family (UA)“;with U, € Bz, forall 4 €.asuchthat 3 U, S U. Foreach

4€a
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4 € a, there is a {(A4) € X, such that -
(1).0 = By(x) S U, for all g € %, such that {(4) <A T

and a §(4) € X such that (£(4)), = {(4). Since a is finite, there is an g, € X such that
£(4) <, holds for all 4 € a. Now let ¢ € £ with go<g Then, $(4) < 4 %4 € X4
and therefore (by (1)) @ % B,(r.) S U, holds for all 4 € a, thus @ &= 3 B,(x,)
c3U,SU Thusz€C,. Aca

Aea
4. We have proved that Cs S C,. On the other hand, by Theorem 8, C, + @
implies C¢ == 0, since a is finite. Thus, by Proposition 1, C, = Cs

Without the supposition of the finiteness of a, the following remains true.
Theorem 10 (cf. [5, 4.6.3, 4.4.56 and 4.2.3]): One has the inclusion

x X,
[ tau EEI(IIA)d(/u)-

3

‘Proof (cf. [5, p. 60]): Put J:= [ fdu and, for each 4,€ a,J, := f (/|A)d(/4A)
Let z € J; then (by Theorem 8)J, += 0 forall 4 € a. As an ‘auxiliary mappmg we
choose a one-to-one mapping 'y on a 1nto IN. Let & > 0. Sirice.J % 0, there is (by the
Corollary to Proposition 22) a v € Z such that . o, .

(1)0.%-B(y) — J S zB.0)." . L ‘s

F or each 4 € a, there is (by the same Corollary), because of J =#= 0,a {(A) € 24 such
that

(2) @ + BL(3(4) — Ju S tBua0), where'8(4) i= ep-aid)”
Let 3 := U £(4); then 3 €:Q(ux). Let £ 1= y v 3; thenr ‘

4¢a R
@) =Uzxa- B L R
A€a
Since t) < ¢ and £(4) <, 1, for all 4 ¢ a, 5ne has by Proposition 21, (1) and (2)
0 =+ B(r) S tco B(y) and 0 By(f,) S veo B(L(4)V-A€aq, i
therefore (by (1))
4)0 + B() — J S <B,(0) e
and (by (2)) . i “ S e Co
(8) @ % By(zh) — J4 S tByp(0) forall dea. '
Since AZ 7Bs(4)(0) 18 non-empty, one obtains in view of (5) and Proposition 7/b- .
€a . : ! .

6) 0=+ Z (Balza) — J4) S BA0),

while one gets, by (3), Proposmon 11 and (4) 0 =="B(r) = J"B,(r.) .
Therefore, by Proposxtlon 10, ' ' 4¢éa - E

CL O BE) ~ I (Bied — 0= X (Bag) ~ (Bula) — T.)-
Since e/ 4 € B4(t4) — (Ba(t4) — J4) holdsforall 4 € a, one has consequently

. 0* XIS Bl - Z(BA(w ~J4) S J + ©Buu(0) : :
(by (4) and (6)),.thus, by the choice of x and e,z € 3 J, 1

4€a
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§ 6 Haupt-Aumann-Pauc integral, Pettis integral and erkhoi'! integral, some
elementary properties of the (u, X)-integral

Given an IM-ary algebra (K, B), where It is a non-empty class of filtered sets (for the
terminology, see [13, p. 120]) and a non-empty set D, we define the M-ary operation
6D in KP by letting, for each g € K? and each (k, I, a) € #(KP) with (I, a)'€ I,

g=0DHh,1,a) if gd)=06(pryoh,I,a)VdeD,

where pry denotes the d-th projection pry: K? — K. In particular, let (K 0) = (€, lim*),
thus Dmn @ = @E. Then, the M-ary operation (le")‘D' where 9 is now the class of
all filtered sets, is a natural extension of the pointwise convergence in the Hausdorff
space (E, t)? (= D-th power of the Hausdorff space (E, 1)), and one has Dmn (lim~)(?
= ®(€?). (Recall, for the next, the termmology introduced .in §0/d).) Let z € E. If
one defines D by D — @%, the mapping g, by g.(p) = {z} for all p € Q%, and the fil-
tered family (&, I, a) by I = 2 a = FX and h(p) = (R(/, T, (T, - )))gez for all p € QX,
then . T

z ejfd,u 1ff : (hmA)(m(h I a) LT ,', - ,‘“i S
Expressed in other terms, thls a.ssertxon says that the first equatlon in the followmg,
theorem holds. . .- | Crea

Theorem 11 (cf. [5, 5.6.2)): One has the equatwn ST e TR T
z o i i : v ,}',; o
f/d,u= N "'fhmR(/,I,QJ(& ))- - L . .

I peaz S ST
3

Especially, [ f dp + © implies f fdp = 7¥im R(f, 5, ¢(z, )) for oll € QX!

Proof: 1. The validity of < instead of = in the first assertion followsiimmediately
from the defmmons (For details in another setting, cf. [12, proof of Satz 6] ) 2. Let

z€ E\ f/d,u Then, thereisa U € B,randa G € $(FX*) (forthenota.tlon see §0/b))
such that

DR, t,y)n U =01orall (,p) € @.

Choose, as auxiliary mappings, x € @¥ and 1: Dmn G - Rng G such tha.t A s G.
(use.of the axiom of choice); consider that @ is & 'relation. Define a special element @
of @% by letting, for each (¢, X) € IE, qo(g, X)-= (Ar)) (X) if € Dmn G and. q)(g, X),
= x%(x, X) if ¢ € (¥ \ Dmn G). Then, in view of (1), R(f, ¢, oL, NnU=0 holds for
all £ €¢ Dmn G. Since U € B, and Dmn G € § (J’ EE), we ha.ve showed that z belongs
to £\ "rhmR(f,g, (¥, )) | IR

Remark 9: The remarks precedmg Theorem 11 Justlfy to call the (y, f) integral a *‘point-
wise integral”, the choice functions ¢ being considered as *‘points” (see the final remark in [12,
p- 94]). The special case in Theorem 11 may be interpreted also by su.ymg that the choice

functions ¢ can be “‘drawn out from the limit process.originally defining f / du_(cf..Definition
6/b).

The relationship to the classical theory of mtegratlon is clarified next
' H

For the remainder of this paper, let f d,u denote the Haupt-Aumann-Pauc inte-
gral (see [16, pp. 94 —95]), being redefined in [12, p. 85 and p..86, Beispiel 9;. there
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called the “(u, X)-Unterteilungsintegral”, where X denotes the set of all'.countable
partitions ¢ of F such that ¥ & Dmn u], now being considered (in an.obvious way)
as an F-ary pa.rtm.l operation in the ext,ended real line R(= R u {+ o0, — oo}) Let

M(p) _.{g|g€[R”'andg€Dmn(f d,u) a.ndfgd;u<+oo}

Expressed in other terms, M (,u) is the set of all functions g: F — R, which are u-
summable (in-the termmology of Haupr, AumMaNN and Pavuc (16, p 95] ¢ y-summ.ier-

bar uber F”) (Reallze that( f d,u |M (,u) is a.n F-a.ry partml operatlon in IR see
§0/&)) .
g

Theorem 12: Let (E 0l ||)_(IR | |) Then, onehas( f.-du IM(.“) f,'dl‘
(for the termmology, see §0/a)) . ‘

Proof Let 3=1{3|3< Dmnyu and 3 is a countable pa.rtltlon of F} (Observe
that 3 plays here the role of the “Zerlegungssystem’ X occuring in [12, p. 85, Bei-
spiel 9).) Let for this proof, <g be the relation on 3 being defined by lettmg, for all
'y € By g if, for all ¥'€ y), ¥ S X-holds for some X ¢ g. Clearly, (3, : <g)is
a directed set, and (<3/@2) = <. Recall that 2 + @. Choose g, € 2. Let ) = {1 € 2|
o <1y}. Then, one has §) = {3 € B1% <8 3}, thus by (0.2),

(DPeF(B, g snd FPY=5(3,Zglp- N
Let f:F — R and z € R. Define the statements @) —(5) in the following way:

s, ot

H A . . . o
(2)x€(f‘d#)"(/)-- S L R
(3) z-€ "glin;R(/;’t)', q)(t)';-)) forall @€ @Y. - § et e e
N 15 .o . L. . .

) ? . .
T4z € f fdu. ’

(5)x€f/dy

Then, by Satz 22 in 12}, (1) above, (0. l) and the remarks in § 0/d), the statement (2)
is equivalent to the statement (3). Furthermore, by Theorem 11, (3) is equivalent to
4); by the definition of 9) and Pmposmon 19, (4) is eqmvelent to (6) 8

Remark 10: Theorem 4 together with Theorem 11 mlght be even of interest in the theory.
of numerical integration: Given a classical situation as (&, ||-|)) := (R, |-]) and 9 := Q.
Let g: F — E and (rz)nen be a sequence of u-partitions of F, say with ¢, < £, forall n € N,

— 3

s'ui:h that {t,|n € N} is a p-'partition-system, say X. Then, if ‘'one can show that f g du+0
z
with g~ (u) := {g(u)} ‘for all u € F, then Theorem 4 assurés that f g~ du = f g~ du. Conversely,

if one assumes f g~ du 4 0, Theorem 11 provides us with a mean to approximate e f g~ dp)
numerically: Choose ¢ € @X and approximate & z3hm R(g™, o, ) = hm R(g s Ens P(Ens *))

(where = holds, since g, S < tnss for all 7 € N). By Theorem 11, one has 5 thm R(g , & @z, +)

f g~ du. — This procedure of approximation of an integral is well known from the classical
Riémann integral. For illustration, take. in particular, F-to be a non-empty compact subset
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of R®(m € IN), u to be the natural restnctlon of the Lebesgue measure 4, in R™ to (BF) n

n(Dmn 2,,), and g to be continuous. Then f g~ duis non-empty and e( g du/ is the Riemann
integral of g over F (by Theorem 12 and in view of the relationship between the Riemann inte-

gral and f dp (see HavupT, AUMANN and Pavc [16 pp. 189— 190]) Assume that In be finite

for all n € N and that 0 = lim max diam X. Then,- f g~ di turns out to be non- empty, and in
neN Xega

view of the statements made above, given some g € 2%, one has lim R(g™, g, ¢(E, -)) = fg du,
. neN

as it is, essentially, well known (in the classical terminology) from any textbook on real analy-

Bis. . e 5 . ' v

-'Proposition 25: Letg: F — 6. =len, one'hae~(a)‘ - SRR T el
(a) If f(i) S g(u) holds for all u € F, t}zenf/dpcfgdy '
Proof: One uses (0.3), (0.9) and (0.4) B
L& . X £

Prop081t10n 26: If g: F—»@ then fjd,u +f gdu Cf (/+g) d/; (For the ter-
minology, see § 0/c).)

Proof: One uses that (4 + B) x = Azx + Ba holdsfor a.llA B € ¢ and alla € JC
(0.3)— (0 5), and (O 10) B - -
z N ;
Proposwlon 27 Onehastke mclu.non (f /d;z) xS f (fcx) d,u (For the termmo-
logy,’see § 0/c).) - . Soov o ey i
Proof: One uses (0 3), (0.4), (0. 6), and (0.1)® - ' & DR

The (u, ¥)--integral is preserved under continuous linear mappmgs on B mto
a.nother Banach space E'; more precisely, one ha,s :
-4

Proposmon 28 (cf. [5 '4.5.1]): Let E' be ¢ a Banach space and j d/; the (4, Xx)-
integral related to E'. (m.stead of E). Let ¢: E -, E’ be a continuous lmear mapping.
Then

z . ‘\ ) z - e '
(ffd/l) S [ @o*fu,
where @ o* /s de/med by (p o* f) (u) = (p(/(u)) for all u €F. ' ’ '
" Proof: If (9> K b) € ® G and R E > E'is (v, 7 )-contmuous, then o

("hm g k)) o "hm A ylg(k)),

where lim,- denotes the limit operation w.r. to the norm:topology ' of E’ and lim;.A
is defined analogously as lim,*. Use this fact for y = @, furthermore (0 3), (0.4), and
Deflmtxon 5, furthermore the linearity of ¢ i

it
Observe that in Proposition 28, ¢ o* / is-'not the usual composition of / and ¢p,
since-Rng f &-C, butDmntp—E'v . e .

.Remark 11: We define a relation f au between EF and E by lettmg, foreach g: F > E

and each z € E, g(f dp) z if one has (a):

' - Q
(a) y(x) € f (wog)~duforally 6 E“ (= dual of E),

2 Analysis Bd. 10, Heft 1 (1991)
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where (yog)~-(y) = {(tp o g) (y)} for all y € F. If H = R, then, by Theorem 12, (a) is equi-
valent to (b): , -

b
t

(b)wogeDmn(f d,u) and p(z) = f(qpog)dyforalltpEE‘.
P . . .
The relation [ - dyu is an F-ary partial operation in E being called the Peitis integral (see HILLE
and le.urs [17, p. 77]). Using Proposition 28 and Proposition 18, one obtains (c) and (d):

(e)’ f/dp c (f d;:) (-

"(d) I (B, || 1) = (X, |- ), then [ - dpu = (f du)

Proposition 29: One kas ”f /d,u" éf (Al du , where the integration on the right-
hand side is related to the Banach space R. (For the terminology, see § 0/c).) ..

Proof: By (0.7), (0.8) and (0 12), one has the cham .

S hm R(f, , .,,)" < ¥lim |R(f, 1, «p>n < "*hm R(l!fll, L <p)l
CgeredH (o)X ) (LpIeEH "

Proposlt.lon 30: Bemde f, let be gwen g: F—->@ As.mmefand gto be emgleton
balued and f(u) = g(u) for p-almost all u € F. Thenf/d,u—fgdp R

s,

Proof Omlttmg the trivial case f = g, We assume =+ g- Then, there exmts an

MeDmn,usuchthat,uM_O M#@and”(F\M)— g](F\M) Letxef/d,u
and U € B,z. Then, there is an g, € £.such. tha,t ..

(1)0:#:12(},;,(;7) c Uforallge.Qw1thg°<g anda]ltpﬁfg

Let n=({X M | X €5} u{X\ M| X €x})\ {0} Then, , EQ(;;) and go<g,
Let g€ 2 with g,<g and @ € Pr. Let, for abbreviation, y(r) = {X € ¢ | X S F\ M)
If n() = @, then 'R(f, 1, @) = {0} = R(g, 1, @) (where '0 deniotes the zero vector of E)
gince uM = 0 and f and g are singleton- -valued. If y(¢) = O, then' ,

R(f, 5, 9) = Z' /(¢(X)) uX = Z g(<P(X)) ,uX Rg. v 9), -

where we used that uM = 0, f and g are smgleton-va.lued JUEN\ M) = g| (F \ M),
and (2.1). By (1), one has therefore @ =+ R(g, ¥, ¢) S U, thus, by the choice of g, ¢
2 St ' .o C

and U,zefgd,ul

§.7 Boclmer mtegral and Birkhoft mtegral

In order to give a self-contained representation of the relatlonshlp between the Boch-
ner integral and the Birkhoff integral (discussed by BIRKHOFF [2, p. 377} in a way
based on a:definition of the Bochner integral using “fuube-valued” step functions)

we discuss as a preparation, first, the question, in which way “convergence in mean
2z

w.r. to u and X* is compatible with the integration f - du. But we will refrain to in-
troduce such a notion of convergence explicitly. — In this section, we agree that, for
z

each j: F — R (see § 0/c)), f j du denotes the (u, X)-integral of j w.r. to the Banach
space (R, | - |).
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- For this section, let (I, a) be a filtered set and b — “(g:)ics be a' family of mappings
gi: F — €. We denote, for abbreviation, by H(f, k, a) the statement ’

X z -4
H(f,h,a): If0¢ "hnu' If — gill @u, then “hmfy. dp S [ fau,

where the fu-st sign lim stands for (lim,)" with the Euchdean topology o of R, (IR )
taken as Banach space (for the termmology, see § 0/b) and c)). -

Proposition 31: Assume that R(f, ¢, tp) X non-empty for Jf#almost all (L, p) € X*.
Then H(f, k, a)-holds.

. i
Proof By supposmon, there is an g, € £ such that o
) R(ﬂzup)#ﬂforall(z,qa)ef#wmhzo<zand¢€5’z S
Assume ' ‘

A}

2)0¢ “lig’l J I —gilldp. _ o '

Let £ > 0. Because of (2), there is a set 4, € a such that

x
(®)0 fu/—g.udp<(e/4> forall 7€ 4,.

Therefore (use of the s;gn =i= in (3)), for each 1€ A0 there is an t), € E such thet

40 + lf If — gl de — B(If — gill 2. 9) | < (/) ¥ (&, 9): 1 <E €Xpefr
We choose such a fa,mlly (i )ic 4, now (axiom of choice). (3) and (4) imply tha.t‘

(8) @ =+ R(If — gill, 1, ) < (/2)V (4, 1, p): 5.€ 4o, 9 S € 3, 9 € Fr.
2 .
Let z€ °hm f g d;t Then there exists an A4, € a such that

(6) @ + ”{z} jg, d,;” < (e/4) forallie 4,.
X

For each 7 € 4,, one has f gi dy # 0 (by the sign = in (6)), thus, there exlsts a3 €xX
such that . . _

(10 =+ ”-f'gs.d,u - Rgi,z, 9 " < ()Y @ 9):a Sg €EpePy

We choose such a family (3;)ic4, now (axiom of choice). Choose ¢ € 4, n 4, (which is
possible, since a is a filter). Choose t; € ¥ with 1, <g,, 1; <1, and 3 1. Let
t € X with 1, <7, and let ¢ € #r. By (1), one has R(f, 1, ¢) == @, by (7), one has
R(gi, 1, ) = 0. Hence, one obtains (using (0.9) —(0.12)) from (6) the chain

T (8)0=|IE(f, 5, ) — Rlgi, T, o)l S IR — gis T, @) o RUI = gillx, p) < (6/2)
and therefore (observe the definition of the relation <, in § 0)
"(9) 0 == |IR(f, T, @) — R(gi, T, @)l < (¢/2).
Combining (6), (7), and (9), one gets @ = ||{z} — R(f, 1, ¢)| < el
2‘
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: ‘Proposition 32: If (a) or'(b), then H(f, k, a) holds, where the statements (a) and
(b) are defined as follows: : . : . oo B s

(8) Each ¢ € X 8 finite.

(b) The linear space E is finite-dimensional. . .

Proof: 1. Copy the proof of Proposition 31 beginning with “Assume (2)” and
ending with the choice of ¢ € 4, n 4,. Choose g, € X with v, <t and 3 <7 Let
t € X with ¢, <t and ¢ € Px. Continue as follows. 2a. Assume (a). In view of (2),
there is an. 4, € a such that, for all 7€ 4, and all u € F, ||f(u) — gi(u)ll # O, thus
() %0 (use of Proposition'18 in the Banach'space R), therefore R(f, t, ¢) = @ since g
is finite. 2b. Assume (b). Since R(g;, £, ¢) + @ (by (7)) and E is finite-dimensional, one
has R(jlg; |, £, ) = @ (by the Dvoretzky-Rogers Theorem, see [22, p. 27]). On the other
hand, (by (5)) one has E(If — gill, £, ¢) = @, thus R(/, £, ¢) == © (by Theorem 14 in[13]).
3. For the remainder of this proof, we assume “‘(a) or (b)”.'By (7), one has E(g;, £, ¢)
=+ 0. Hence, since R(f, £, ¢) &+ 0 (by Part 2a and 2b of this proof) one obtains from
(5) the chain (8) in the proof of Proposition 31. Now, one copies the remainder of
that proof word by word 8 .

Example 2: If £ is in particular the Banach space R, the statement Ii([, ’h,.a) holds.

For each mapping g: F —E, we put g~ = e ? og. .(for the.definition of the
mapping e, see §0/a)). One has eog™ = g and, if f is singleton-valued, (eo f)~ = f.

. . . . B
Definition 8 (see HILLE and PuirLes [17, p. 78]): We define a relation [ - du by

o

T e e B . .-
letting, for each g: F — E and eachz € E, g( f . d,u) zhold if there is a sequence (gn)neN
of Q2-step functions g,: F' — E such that (a)—(d) hold: e

PR Ty Dot . e . X . B 2

Q . . S L

@ [lgIdp£0 VaeN; - (b)0¢clim [ g™ — g, 7l dy;

‘ s " neN o

<, N . . : . . . Q . .

() g(u) = lim g,(u) for y-s.a.u € F; ~(d)z € lim [ g,” dp’

neN o neN

B R A ! : - . RN Lo

The relation f - du (between EF and E) is an F-ary partial operation in E, which is

B B

B
called Bochner integral, and we write ( f . d,u) (@)= f gduifg € Dmn ( f . dy) . Fur-
B ’ B A B .

thermore, f A . dp denotes the 1-point completion f -du) of f - dp.
. ) B R L . B . ) . . X

Remark 12: In the proof of the fact that f - du is & mapping, one uses (b) twice. — From
Q .

(b) follows that.e(f Gn dy),.em‘is a Cauchy sequence in E; therefore, if (b) holds, then
Q
lim f ‘g~ du is non-empty..(But in Definition 8, we did not need this conclusion.) — Just for

convenience, we used the (u, 2)-integral of £2-step functions’in Definition 8, By Theorem 5,
these integrals could be replaceéd by certain sums. So the definition of the Bochner integral does
not depend in any way on the definition of (4, ¥)-integral. — Using measure-theoretic argu-
mentssimilar to those occuring in the proof of Proposition 14 in DiNCULEANT’S book [4, p. 130],
Siitze 3 and 4 in HAUPT, AUMANN and PavUC’s book [16, pp. 96 and 100], furtherniore Theorem 12,
one obtains that, for each.g € EF and cach sequence (g,)neN in EF, the statement (b) in De-
finition 8 implies the statement (e) formulated next, provided that the measure u is complete.

(¢) There is a subsequence (g,) of (g,) such that g(u) = lim g,,(u) holds for u-almost all
kelN ’

u € F.
Therefore, if u is complete, in Definition 8 the condition (c) is allowed to be cancelled.
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For the remainder of this section, let g: F — K. .
B
Proposltlon 33: Assume the measure p to be complete. 1f f’\ g d;t 8 mm-empty,

then f |]g || du 28 mm-empty (For the termmo]ogy, see §O/c) ) . . A

ey 'B ’ = i
Proof: Assume the premlse Choose z € [~ g~ dp Then f gdp Therefore, there
exists a sequence (ga)aen 88 in Definition ‘8 satisfying (a)—(d) there. By (¢), llg(u)li

= lim |lg,(u)|| holds for u-almost all u 6 F The functlons llgall are p-measurab e,
ReEN

thus (since u is & complete measure) 8o is also the functlon ||g|| (see HAUPT, AUMANN

and PAUC (16, p. 80}), therefore there is an r € R such that r — f ligl-du (for the ter-
mmology, see § 6, before Theorem 12). By (a) and (b) m Defuutlon 8, there is an

7 € IN'such' that thesets’d = f lg™ —g',.~|| du and B = f flg~1l dp are non-empty
Thus, one has ed = f g — g,,u du, eB = j llgal dy and f ||g|| d,; s«eA +"eB< + oo,

therefore, by Theorem 12, f |]g || dy is non-empty l

N SRL 4‘;‘

Theorem 13: Assume the meaaure/ztobe complete Tlum f"/d,u c f /d,u

Proof Let T be a member of the- left-hand s:de Then (by Defmltlon 8) / is

singleton-valued and z = f (e o f) du: By Proposition 33, one has f Ifll du % O, there-
fore R(/fl, x, ¢) = @, thus R(f, t, ¢) =0 for FX#*-almost all (g, ¢) € X# with ¥ = Q.
Choose a sequence h* = (g,)acpy 88. in Definition 8 (with g = e f). Then, by Pnopo-

sition 31, the statement H(f, k, F lN) holds, where h* denotes the sequence (g, )neN-
2

Since (b) in Definition 8 and z € lim f gn~ du hold, we have therefore z € [fdu B
“EN S

Expressed in classxcal terms, Theorem 13 says that for complete measure x the

9 A
Bochner mtegra,l f d;z is a restriction of the F-a,ry partlal operatlon ( f d,u) .

.

§ 8 Iterated mtegmls i

- . [

From now on, the symbol f is not anymore reserved for a ma.ppmg on F mto ¢

Since the doma,m of the mapping f du is the whole set (&*’ our techmque of working
in € instead of E turns out, to be quite efficient in dealing with iterated integrals:
If, na,me]y, a8 we assume for the next, a non-empty measure space (G,'») with a o-
finite measure v zng a'v-partition system 9) of G are given beside- (F ,u) and f the
ierated integral [ [ -dvdp is defmed to be the F x G-ary opemtlon m@ assxgnmg
to each f € €F*C the set . .

X 9
fgdu with gw)= [ f(u,-)dv forall ueF.
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Expressed in other terms, we have - - -, " - i . .. R

z9 X 9 .
o ff-fdvd,u:f (.fv/(u,v) dv)d,u - oL .
UeF \véG » . '
for all f € EF*C, For the following conmdemltloné, we fix some f: F X @ - € and we
defme for each g€ 0% and each 1A @) a mapping k,;, by lettmg

(B A) = Z'/('P(Z,X),w(lx Y)ukay, T
Xe€x YedX ] - A‘A: .

for all (g, ).) 6 S ‘{)3 For abbnevmtlon, we set

A'='S%P and a_s(*(é’s;))a) S St L
: R 12 2 o . . . !, .

(for the.notation, see §0/e)) We now consxder the filtered fa.mlly (k,,,, 4, a) for each

(9, v) € Q% x @Y.

—Essentially as a consequence -of Theorem 11 in the present paper and.Theorem 7

and Example 2 in [13], one obtains

g . e ‘ . v
Theorem 14: Themduewnfffdvdpcﬂhm k,,,(g, A) holds/orall (@, )6&& xasy

Proof Let (p,v) € QX xasg) For abbrevmtlon, we put j((p(g, X), tp();), Y)) = /(g,
X, 9, Y)withre %, X € 5,9 €9 YoE1;)‘Wedefmetheset,s(}'l Ceby . .0 i

C’,=”hm Z("?)hm T 15, X9, Y)vY)pX

TeX xes e ey i

02 = ¥8im- 3’ *im- Z/(g,X t), Y) uX vY S AR
. ‘xeX Xex - heY.Yey - Y L e

g 'C':;-= FZim I Vim kg, (x, 1); - .- DU
3eX 1¢(*P¥) .

Oy = lim kg, ). ", S I '
© (ZAEA .

By Theorem 11 and Proposition 25, we have [ [ fdvdu S Cy; by (0.6), (0.11), (0.4),
(0.8), we have C, S C,; by Theorem 7 in [13] together with Example 2 there and (0.4),
we get C, S C;; by (2.4) in [10, p. 246], we obtain C; & C, I

oL

Remark 13: Theorem 14 says, roughly speaking, that each iterated integral can be appro-
ximated “pomtvnse (the “points” being the ordered pairs (g, y)) by “‘iterated Riemann sums’’
hyy(z, A) *“belonging to™ ¢, 4, @, and p. Of course, this can be extended to n-fold iterated inte-
grals (n €N, 3 =n). . -

' We are going to discuss Theorem 14 in the éaise in which ll Te % are finite. As an
auxiliary theorem the following elementary considerations will be of use (for the nota-
tlon, see §0/e))

Lemma 3: Let S, T, M be sets, S conswtzng of finute wnmty sets. Let A, B be
filters on 8, T, respectively. Let h: S (T‘) —>Mand j:SXT — M be mappzngemh
that (a) holds:

(a) Ifs€8,te T, A€ T then: A(o) =tV o € 8=>h(s, 1) = j(s, t).
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Then the filterbase (U @ B) 18 finer than the filterbase h (Q?S ("-‘B"))‘. .- ST

8€S

Proof: Let K¢ ¥S (*B2). Then, there emts aCeqA and, for each ¢ 6 0 a map—
2€S

ping x».: ¢ — B such that
(1) ) ch(a) - K

" ¢€C-oec - . RN T
Since each ¢ € C is finite and non-empty, D(c) = n xc(a) 6 SB It follows that
) ( - . ' .

LN

@) S D(C)Gﬁl@%

5 1€EC !
We assert that j ( S (D(c)) < (KX). Indeed Tet'(s; t) € S D(o) Defme}.by }.(a) ‘tfor

all o € 5. Then, by (a), k(s, 1) = 7(8, ¢). Since ¢ € D(s), one has 4 € P x,(). Therefore,
by (1), (a, A) € K. Now, because of (2), the proof is complete 8  °¢

For abbreviation, we introduce, for each (@, P eQEIXAY,;a mapping ,, by lettiné,
for each (x, t)) €X xsg), ‘

cel 7W(E’ t)) Z 2/(9”(X): (Y)) VY/‘X

We. are going to compare the filterbases j . (FX @ F SD) and hw(a) in the set (SE
where. F¥:® F9:denotes the ordinal product of the filters FX and.FY) (see §0/e))
As an immediate consequence of Lemma-3, one has the ..

Corollary 1f each ¢ € X s finite, then, for all (p,y) € QX XQ‘D, the leterbase
7w(<7 X ® FY) 28 finer than the filterbase kw(a)

"If each reXis flmte the sibuation in Theorem 14 mmphfxes to (a) in the followmg
theorem, where, in (b), the symbol F f(‘ ><) F ‘Q denotes the ca.rdma.l product of the
filters FX and F%).(see § 0/e)).

Theorem 15: Let each st ¢ € X be /zmte Then, the next statements (a) and (b)
hold for all (p, ).€ QXX QY.
2y
(a.)ffjdvd,ucJ%J?J]Lglghw(g,t)) _ Co
(b) If F&x15Dlim 7,.,(5, y)) 3 non-empty, then '
wyeEx ;

1y

B )
) g

ff/dv dp S TEOTDm (g, ). S
Dexx . .
Proof: (a) implies (b), since the filter FX¥ ® FY) isfiner than the filter FE(* X )F Y.
The validity of (a) follows from Theorem 14 and the Corollary to Lemma 3. One ob-
tains a second proof of (a) by modlfylng the proof of Theorem 14 in the following way:
Define C,; and Cy, now, by

e Cy=THim INim jo(r; y) and O, = FEIVUim j,(z, y).
reX YeP (z. n)ezxi)

By means of (0.5) and (0. 4), one obtams C; S C,; by means of (2.4) in [10, p. 246]
one gets C3 = C,

By means of Part (b) of Theorem 15, one obtains the following theorem on the re-
versal of the order of integration.
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z'gheorem 18: Assume thatall ¢ € X and all 1) € Y are finite sets and that the sets
[.f fdvadpu, ff/d,u dv and TE*FOlm j,.(¢, ) are non-empty, the last mentioned
(£.9eXZxY
z9 px

sel for some (p,y) € QX X QY. Then [ [ fdvdu = fffdp(iv

Proof: Copy the proof of Satz 13 in [12] with the following modlfxcatlons Replace
“a” by “‘@”. Refer to Theorem 15 instead of Satz 12 and justify the equation

koy(n, ) = Z Z /(V’(I: X), p(v, Y)) vY uX

for all (p,y) € @X x ay by the fact that (€, +") is a commutatlve semlgroup and
the multiplication in'R is commutative 8 . - , Y

. Remark 14: The authors do.not know at the present time 1f one of the suppositions made
in this theorem is redundant, Of .course, one gets an equlvo.lent sta.t.ement if, for. msta,nce,
9 ’ :
f f /dv du+09is ‘not required but'if the assertion of.the theorem is repla.ced by f f ldvd

c f f fdu dv. Theorem 16 can be considered as a substitute for a Fublm theorem In view of
an example given by BIRKHOFF in [2, p. 376] at least without any restrictions made for (F, u),
(G, %) or {, the Fubini theorem does not hold for the (u X v, 2(u X v))-integral of f.

- If one reconsiders Theorem 16, the - -question arises whether this théorem can ‘be
modified in such a way that also infinite y and infinite 1) are admitted there Inprepara-
tion of an answer we define the'set sX and the filter % on s% by ¥ = S eg and &°%

= IS e°g (for the notation, see §0/e)) and analogously s%) and s°ﬁ2) By means’of

Theorem 11, (0.3), the statement (2. 4) in {10, | 3 246] and (0. 4), one obtams for ea.ch
mappmg g: F — G, the validity of & -

t

Proposition 34: The inclusion fgd,uC""hm Zg(«p(g, X)) ;4X holds for

(£.K)esX XeK
all p € QX.
The analogue to Theorem 16 we were looking for is prepared by the following

Theorem 17: For all (p,y) € QX x QY) the statements (a.) and (b) formulated next
hold with the abbreviation

T@t, K, 9,1, L,p) = ZE:K }%f(?’(z, X), p(v, Y)) nX Y.
£9

(a)f f fdv du < *%¥®DNim T K,9, 9, L, 1p)
(2. K)49.L))es X x 8D

(b) If #2198 Vim Ty, K, 9 9, L 1/:) 8 non-empty, then
(te.K)..L))esX x oD .

k4
f f /dv d/l cC 5'3(°><)0'9hm T(E, K @, r’, ,w)
((.K).(9.L))esEx 89

Proof: We follow the proof of Theorem 14 down to the definition of C, and define
C, C6 now in the following way:

03 = ’thm “tim 3’ 99lim “Dlim Z/(g, X, 'y, Y) /tX vY
reX  Keex XeK ype) Leey Y

*Cy = &im “Him F9lim" J ¢lim Z'/(g, X, Y)uX vY;
1€eX  Keer 9eY XeK Leey Yel ‘ ’
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: Cy = ¥ im “tlim FVlim “9lim T(x, K, @,'Y), L, y);
geX  Keer HeP  Leey
C,y = **8=Uim T(x, K, 9,9, L, V’)
(. X).9, L))salxm
zyg - ‘
As in the proof of Theorem 14, one gets f f favdu < 6 < C,. By ©. 3), one obtams
C, = C,. By (04) and (0.8), C; S C, S C; holds. By (2 4).in [10, p. 246] and (0.4),
we get Cs & Cy.. Therefore, (a) holds In order.to prove. (b) by means of (a), one uses
thata”l(*x)ﬁsz)ca”&@e“yl SRR LR

" Now we obta.m (w1th the abbrevmtlon mtroduced in Theorem 17) the desu‘ed ana-

logue to Theorem 16 a8 - - - - e far o o
'z 9 9 X . ;.m

. Theorem 18: Asaumethatthesetsff/dvd,u,ff/d,advand S

a-l(‘x)a‘Whm T(g,K tp, t),L tp) o - o )
((xx)mm)eazxa?) B ‘~A . . N . .~ R

are non-empty, the las rentioned ;ez for' some ((p, )e ax xas;) Then fffdvdp
9z

= ffdudv. - e

Proof: Follow the proof of Satz 15 in [12] word by word except for the followmg
modifications: Replace “x’’ by “&”. Now, the equation 4,,.(x, K, 1, L) = B, (1, L
%, K) (see [12, p. 85]) (properly interpreted here) holds, because (§; +-*) and (R, )
are commutative semigroups. Refer to Theorem 17, nhow, instead of Satz 14.i in [12 L

Remark 15: Despite the “nicety’” of Theorem-18, one should realize that the 1tera.ted sums
T, K, @, 9, L, 'p) are not iteratéd Riemann.sums; they are iterated ‘‘partial sums”.(in a ter-
minology used.in the elementary analysis) of iterated Riemann sums: — Also it should be
remarked crmca.lly that the finite sums occurmg in Proposxtlon 34 are not Riemann sums but

‘“partial sums’ of Riemann sums.’ . : Co

As an immediate consequehce of Theorem 4 and Pfopositioﬁ 25, one obtains

Theorem 19: If ' and %' are u- and v~partit%on systems (respectively), then
& 9 o

rcx and Y’ C‘Dzmphesf f/dvd,u - f f fdudv.

Example 3: Let uF < 400 and. vG < +oo. If X’ is the set of all flmte u- partltwns of F
and 9)’ the set of all finite »-partitions of @ and I Q(u), ‘D §2(v), then (by Theorem 19) (a)
implies (b):- . .

P g P %
@ 0% [ [favdu=[ [ /d,u.dv, (b) 0+ _[ f /dvdy = f j fdu dv.

Thus, using Theorem 16 for ¥’ and 9)’, one obtains (by means of Theorem 19) sutﬁcxent condi-
tions for the validity of (b). :
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%) On p. 94, line 11, replace “C € R by “C € R\ (@}" :
3) In Example 4 on p. 119 replace “Then sup; is ..."” by “Then sup; is nexther an x-summation-
like nor a $-summation-like I-ary partial operation on R.” . .



