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Double Walsh Series with Coefficients of Bounded Variation?):

F. M6ricz?)

Es werden die Konvergenzeigenschaften Walshscher Doppelreihen untersucht, deren Koeffi-
zienten eine Nullfolge mit beschrinkter Variation bilden. Diese Reihen konvergieren regular
in allen Punkten aus (0, 1) X (0, 1) und in der Pseudometrik des L* fir alle r € (0, 1). AuBerdem
werden mit Differenzen zweiter Ordnung der Koeffizienten hmrelchende Konvergenzbedm
gungen angegeben.

Uccnenyrorea cBoficTBa CXOMMMOCTH ABO#HEIX pANOB Yonma, Koa@PUIHeHTH KOTOPHX o6pa-
8YIOT CXONAIYICA K HYJIO NOCHef0BaTeJIbHOCTh C orpaHmdeHHoft Bapnauuelt. Takue pagn
CXONIATCA PeryiApHO BO BCeX Touykax u3. (0, 1) X (0, 1) n B nCeBROMeTPUKe HPOCTPAHCTBA
L* gna Beex r € (0, 1). Kpome Toro, ¢ momompio paasocTett BToporo NopaAgKa majid xoa(bdm-
LHEHTOB BHBORATCA NOCTATOYHBIE YCIOBUA CXOXUMOCTH. N
Convergence properties of double Walsh series are studied whose coefficients. form a null se-
quence of bounded variation. These series converge regularly at all points of (0, 1) x (0, 1)
and converge in the pseudometric of L for all r € (0, 1). Sufficient conditions for conver-
gence are also proved which involve the second-order differences of the coefﬁclent§

1. Introduetion. We will study the convergence behaviour of double Walsh series ‘of
the form . . , A o - i
Ny

£ a0 o) i), ; | "

0 ¢

II[V]B

=0 k&

where {a;} is a null sequence of complex (or real) numbers and {w;} is the well-known
Walsh orthornormal system defined on the interval I = [0 1) and considered in' the
Paley enumeration (see, e.g., [1, p. 60]). Thus, series (1.1) is considered on the unit
square I2 =:[0, 1) X [0, 1). The pointwise convergence of (1.1).is usually defined in
Pringsheim’s. sénse (see, e.g.,[6, Vol 2 Ch. 17]).. This means that we form.the rec-

tangular partial sums s,,,(z, y) = Z Z auw,(z) we(y), then let both m and 7 tend to

j=0 k=0
00, independently of one another, and assign the limit f(z, y) (if it exists) to series (1.1)
as 1ts sum. Following HARDY [3], series (1.1) is said to be regularly convergent if it con-
verges in Pringsheim’s sense, and, in addition, each “row series” of (1.1) (i.e., when we

delete 2 in (1.1) and the summation is done only with respectto 7 for each fixed k)

as well as each “‘column series” converges in the ordma,ry sense of convergence of
single series. The notion of regular convergence was rediscovered in [4], where it was

1) AMS Subject Classification: Primary 42 C 10, Secondary 42 B 99.
%) This research was completed while the author was a visiting professor at the University of
Tennessee, Knoxville, during the academic year 1987/88... . .
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defined by the following equivalent condition: the'sums -*.

8(Q;z,y) = > Zauw,(x w(y) ot (1.2)

)=m k=n

tend to zero as max (m, n) — oo, independently of the choices of M (= m) and N
(=n), where @ = {(j, k) e NgXNoy:m < j< Mand n < k < N}. ’

2. Main results. We remind the reader that the differences 4,, of a double sequence
{a;} are defined for any non-negative integers p and g as follows:

{Ap—l.qalk — dp Bk ifp =1,
4

. Ao = aji, Apie = 7 .
- pa-1%k = Apg1@iker ﬁqu

EEIET

As is well known, the two rlght -hand sides coincide if mm (p, q) =1 We mentlon that
a doublé induction argument gives

L yqamn Z Z( 1)’+k( )(Z) a'm+] n+k -

)—k

We Wlll prove convergence results for the cases p = g=1 and p= g = 2

Theorem 1: If a double sequence {a,,,} 8 euch thal

B —>0‘ ‘a$ max (7', I‘c) - 00 - SR I (2.1)
)_'.' Z lAlla;kl < oo, ' S T 2.2)
,uo k=0

then .

(i) series (1 1) converges regularly to some /um:tum [ = =z, y) for all 0 < z,, y < 1
(u) foral0 <r <1,

18mn — fllr =0 as min (m,n) —> oo, . | ’ (2.3)
, 11
where ||-|l, mearis the pseudonorm in L*(I%) defined by ligl, = [ [ lg(z, y)I"dzdy.
_ , 00 o S
If condition (2.2) is satisfied; {a,} is said to be of bounded variation. We note that
an analogous theorem: was proved in [5] for double trigonometric series.

Theorem 2:'If a double sequence {ai,,} 18 such that condition (2.1) 18 satisfied and

2 Z‘ [4ssa| < 00, : ' : - (2.4)
§=0 k=0 . . - ' .
2 |A20a,k| 8 fzmte /or each k and tends to O as k—>oo, (2.5)
’=

z, |A°2a,,| i finite for each j and tends 1o 0 as j — oo, (2.6)

then conclusion (i) in Theorem. 1, except posszbly when x or y i8 a dyadic ratumal and
conclusson (i) for all 0 < r <1/2holdtme
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3. Auxiliary results. We need the following three ]emma.s
Lemma. 1: If {a ,} 8atw/w8 condition (2.1) and for aome s q 2 1,

pq = Z E [4peanl < oo, . . o @31)
j=0 k=0
then A S
P Bpeutnl SCp  (=0,1,10,0 @)
§= N o :
b B Apeatnl >0 a8 k> oo, ' S . (33)
Z __ .
SUp T [ApoaGul >0 as mroo. T TR gy
£ j=m P . AN L 8 e e

Analogous statements hold true for A,_, an umler the same conduwm (2 1) and (3.1)
if the roles of § and k are interchanged.

Proof: By (2.1); 45,4104, = Z Awayb whence Z 14y g1, = Z Z |4 pgttis] -

=0 k=ke
Clearly, (3.1) implies both (3.2) and (3 3). Finally, (3 4) is & consequence of (3.3) (ap-
plied for large values of k) and (3 2) (apphed for small va.lues of k)l

Now we consxder a.nother double sequence {bjx) of nUmbers with rectangular par-
tml sums B, = Z‘ Z b,, (m, n =0,1, ) The next two lemmas can easily be veri-
§=0 k=0 :

fled by performmg double summa.tlons by parts
Lemma 2: Foral0 Em s Mand 0 < n §N,'

Z Zblka'jk = 2 ZBkAlla;k + ZB,NAma, N41

,:=m k=n ) m k=n

- ZB; n1dy0in + ZBon:aun :

j=m

—kZ By 1.48018mk + Bynamiriva
=n
— By n10M41.0 — Bm—l.Nam.N-H + Bm—l.n—lamn‘
We introduce the notation R . i
R, = {(j, k) € Ng X[N,: either j =m + 1.or k = n + 1} , (3.5)
and let 3'...stand for 3’ 3 ....

Ran (k) ERmA

Lemma 3: If {a;) satisfies condition (2.1), then, forallm,n, =0, . .

é buaj =RZ B,-,,A“aﬂ, Z'B;ndxoaj n+l
n ,=

- kZ Bd01@ms1.k = Bmnlmir.nsr -
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4. Proofs of Theorems 1 and 2. We recall that Dp(z) —= )_7 w,(x) is the Dznchlet Icemel
while F,(z) = (m + 1)“ }_','D (z) is the Fe;ér lcernel for the Walsh system. The
following estimates are well known (see [2]): )

[Dp(z)| < 2/ (m=0,1,.;0<2z<1), 4.1)

and for all integers m = 0, p = 1 and for all 0 < z < 1, except possibly when zisa
dyadic rational,
4

4 . oo
(m+1)lFm(x)l<m+;;=o(x) Lf.2'9<z<.2!;}. (4.2)

. Proof of Theorem 1: Pointwise convergence. Let 0 < m < M and O=ns= N.
Keepmg notation (1.2) in mind, by Lemma 2 we can write that

oQizng) =3 3 Dx) D) duaw . .

j=m k=n
. M .
e 4 X Di(z) Da(y) 410aj. 541 — Z Dj(x) D,_(y) Axoa,n ’

=m =
= , ~""- G

+ 2 "Dy () Di(y) AOlaMH K Z D -1(37) Dk(y) AOlamk
+ @aess, w1 Du(z) Daly) — o, .,DM(x> Do)
= v 1Ds(2) Day) + GmeDon1(2) D -l(y) CE)
By (4.1), for0 < z,y < 1 we get that '

4"12?3/ '8(Q z, y)' <—:‘ Z Z lAlla)kl o

j=m k=n
N

+.Z[|Al0ai,h'+‘l| + Mxoa;'n” +k2 [|4010~M+x.k| + |401@ml]
j=m . . ) =n

+ IaM+1.1V+l| + IaMH.nI + lam.N-Hl + Iamnl'

Making use of Lemma 1 (with p = ¢ = 1) and :(2 1), we can see that each term on the
right-hand side tends to zero as max (m, n) — oo. Thus, the sum f(z, y) of series (1.1)
exists forall 0 < z,y < 1.

Lr(I®)-convergence. It is plain that
fz, y) - 8mn(®, y) = BZ' AWy (x) wi(y),

where R,,, is defined by (3.5). By Lemma 3,
f(x’ 3/) - 8,,,,,(23, y) ’ .

m .
= RZ' D;(Z) D,(y) Allaik - .)__,;D,(x) D,(y) Aloaj.nﬂ
nn 1=

_ké(', D, () Di(y) dnn@mi1.k — Du(®) Dp(y) @rmsrnr - (4.4)
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Using (4.1) gives, forall 0 < z,y- < 1,7+~ ... .. . . .. gt

4_1271’/ I/(z: y) - 3mn(x’ y)l .- ¢ -

. A 3
m 1} ’
< Yldnaxt + X 14100ul + X 14018mi il + [@mirnal
Ron j=0 k=0 T
: = 21:2 ldnapl. R ' . (4.6)
Hence S ' ' L ' l
dxd AR
U/ = ool < P y-

Due to (2.2) and 0 < r < 1, (2.3) follows immediately B

Proof of Theorem 2: Pointwise convergence.- We start with (4.3). We apply
Lemma 2 agam to the doub]e sum on the rlght-hand mde of (4. 3) to obtam

“h Z ZD(Z)Dk(y)Aua,k’ o "",'" "v':b [RITEE P Lo

n j=m E=n. RETE ey e A PR
M N . Mo FE A BTN
L= Z pAEN ?/) Aéea.,w,+:2 F,“N(xo Y du8jine VRS S
j=mok=n oL i=m PRI T T b
» v

- Z n—l("v ) Ama,,. + 2 Mk(z, 3/) AlzaM-H
J=m

k= N . =

N

—kZ I?n—l ¥(Z ¥) B120ms + u.v(x» )Auau+| N+1

— FYar(Z, ¥) dni0ri1.0 — I?n—l.h'(:_x), y),f’ll@m.h'ﬂ dea : sy
+ F"ll—l."—l(z! y) Aua'mn: S T T (I
where ik
Fanz,y) = (m + 1) (» + l)Fm(I)F @ . (4.6)

By (4.2), we can conclude for all 0 < z, y <1, except posmbly when zor y is a dyadic
rational,

(0@ W) | £ 5 Dy(e) Daty) Auan| e

j=m k=n

M N
Z Z | Aoatjx| +’__Z (142105, 5 1] + |421a44]]

=m k=n

+.k£u[lAIQaM+'l.k’ + [4120mel] + 141180 41,511

me i el twmat e e e e e

+ [dn1ap41 0] + IA”a,,, wal + [An@mal.

By virtue of Lemma 1 (with p = q = 2) and (2.1), each term on the right-hand side

tends to zero as max (m, n) — co.
. We have four single sums on the right-hand side of (4.3). We claim that each of
them tends to zero as max (m, n) - oo, for all 0 < z,y < 1. We show this in the
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case of the first single sum. A single summation by parts yields' =~ . - .- @
o :
Z D;(z) Dy(y) Aloai.n-u

= Z 7+ 1) F,(x) DN( )Aaoa; N+l

jJ=m
+ (M + 1) Fy(z) Dyly) droom.ns1 — mFp_y(2) DN(?I) Aloam N+1- (4 7)
Hence, by (4.1) and (4.2), for all 0 <zy< 1, except posslbly when z is a dya.dlc

rational, ; ( ,
U : )
ZD;(Z) DN(?/) Aloa; N+1
j=m voaled e e v s 0 TR
ylog o = 23/‘ 1C(x). {Z IAzoa; yal IAloaM N+l| =+, |Axoam N+l|} canitl

R - . f|_~ :,':'. RERTET) . ' "." TN

Thanks to condltlons (2.1) and (2.5), each term on the right-hand side tends to zero
a8 max {m, n) — oo. The other three single sums on the right-hand side of (4.3) can
be estimated analogously. Finally, by (2.1) and (4.1), the four single terms on the
right-hand side of (4.3) tend to zero as max (m, n) — oo, forall 0 < z,y < 1.

L*(I?)-convergence. Now we start with (4.4). We apply Lemma 3 once more to the
double sum on the right-hand side of (4.4). As a result we get that

T Dyfx) Duly) dnay = ,,Z F3z; y) Anay — 2 File,9) duitnn

- Z F k(x: y) Auamu kT F,,,,,(x, y) 4118141
where we used notation (4.6). By (4.2), ~ ° ‘
(Cz) C»)* RZ Dy(z) Di(y) 41,05

{ !
= 2 Mzzaﬂrl + Z IAzla, u+l| + E Idlzam-ﬂ k| + IAllanH-l n-l»ll

S 4 Z P INE ' . (4.8)
Similarly to (4.7), a single summation by parts’ gives'

§ Di(z) D,(y) 4 108j.2+1

= 56+ 1) F&) Dlt) duttines +-m + 1) Fals) Do) i
Hence, by (4.1) and (4.2),

,Z:; Dj(z) D,(y),416%j.n+1
’w

s
t

=2y C(2) {Z(; |420a5.441] + IAloam.rH-ll}
=0 )

.

»

S ' = 2y-_10'(aé)f§ |d20@jmsal - o (a9)
| 2 . 4.6
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Analogously, ’ R
ZDm(x) Dy(y) Amam+1 x é 2z~ 1O’(?/) Z [dos@maral- LT (4 10)

Combmmg (4.4), (48)—(4. 10) and @. 4) (2 6) ylelds @. 3) for. all 0 < r< 1/, if we
take into account that, by.(4.2), - : e o

o 2-PH! ) B .
* f C'(z) d:l: S 2 f (4'/2:'(:2: - 2 P)') d:r + f (4r/x27) d:t . " 5 Lo
o p 12' o N 8 ',../.‘

)_' (4'/(1 - f)) orer—n | 47/(1 _ 27) < oo.

T =
b A o

B. Concluding remarks. In the case of Theorem 1/(u) we can prove somewhat more
than (2.3) for 0 < r < 1. To present this, let “meas’” denote.the, planar: Lebesgue
measure and let Intz = max (1, In u).

BNTURENS '

Theorem 3: If a double sequence A = {au) mtw/wa oondmmw (2 l) aml (2.2),

then, for every ¢ > 0, R A L
- Mll ' ;"..‘8 .
# = meas {(z, y) € I*: Sup. [8an(z, y)| 2 € 1 + In o A” (5.1)
where
Il = 3 X |dnaul. (6.2)
=0 k=0

Since the space ¢, n BV, of double null sequences of bounded variation endowed
with norm (5.2) is a Banach space, condition (5.1) is only slightly weaker than the
condition that the mapping A4 — f is of weak type (1, 1), where f = f(z, y) is the sum
of series (1.1) (see Theorem 1).

Proof of Theorem 3: Similarly to (4.3),
8mn(2, ¥) = zo kZoDi(x) Di(y) dnau + zoDi(x) D,(y) 4100041
J=0 k= i=
+k2:)Dm(x) Di(y) 4n1@m+1.4 + @ms1.001Dm(x) Dyly).
By (4.1), for all 0 < z, y < 1, we get that
472y [8mn(z Y| = X X duapl + 314168504l
§=0 k=0 j=o
+kZ;|A01am+l.k| + lam+l.n+l|s
whence, by (2.1) (cf. the proof of Lemma 1),

4—lxy I'gmn(x: y)l S Z Z |Alla;k| + Z Z IAlla)kl

j=0 kSn+
+ Z Z [dnau) + Z 2 IAlla)kI = [|A]|.
j=m+1 k=0 j=m+1 k=n+4

Now for every & = 4lA|l, u < meas {(z,y) € I3: 2y <y} =y + y In (1/y), where
y =44/ B
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