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Double Walsh Series with Coefficients of Bounded Variation');. 

F. M6BICZ2) 

Es werden die Konvergenzeigenschaften Walshacher Doppeireihen untersucht, deren Koeffi. 
zienten eine Nullfolge mit beschrtnkter Variation bilden. Diese Reihen konvergieren regular 
in allen Punkten aus (0, 1) x (0, 1) und in der Pseudometrik des L' für alle r € (0, 1). AuBerdem 
werden mit Differenzen zweiter Ordnung der Koeffizienten hinreichende Konvergenzbedin. 
gungen angegeben. 

flccneyloTca cBoflcrsa CXOUM0CTH AJ30ftHbM pnAoD Yojima, Ko94suaeHTw ROTO5IX o6pa-
8IOT cxosmyioca H HYJJIO nocmegosavejn,HocTb C orpaHwleHHot BapHaLHelt. TaRse PRUr 
CXOHTCH pery1FlpHO BO Bcex To'l}cax M. (0, 1) x (0, 1) H B,ncesJoMeTpHHe flpocTpaucTBa 
.1/ AnH BCeX r E (0, 1). I{poMe Toro, c nOMoubIo paaHocTet Bvoporo nopsxa nss x09441f-
IW HT0B BI&BOJHTCFI gocao q aie YCJ1OBHJ1.CXOAHMOCTH.  

Convergence properties of double Walsh series are studied whose coefficients form a null se-
quence of bounded variation. These series converge regularly at all points of (0, 1) x (0, 1) 
and converge in the p8eudometric of Ii for all r E (0, 1). Sufficient conditions for conve'r-
gence are also proved which involve the second-order differences of the coefficients. 

1. Introduction. We will study the convergence behaviour of double Walsh series of 
the form  

CO m 
Z Zajkwj(x)wk(y),  

j=0 k=0 

where {a,k} is a null sequence of complex . (or real) numbers and {w,} is the well-known 
Walsh orthornormal system defined on	m the terval I [0, 1) and considered in the 
Paley enumeration (see, e.g., [1, p. 60]). Thus, series (1.1) is considered on the unit 
square J2 =: [0, 1) x [0, 1). The pointwise convergence of (1.1). is usually defined in 
Pringsheim's. sense (see, e. g., [6, Vol. 2, Ch. 17]). This means that we form,the rec- 

tangular partial sums Stan (x,,y) =	' a,w,(x) wk(y), then let both m and n tend to 
j0 k=0 

oo, independently of one another, and assign the limit /(x, y) (if it exists) to series (1.1) 
as its sum. Following HARDY [3], series (1.1) is said to be regularly convergent if it con-
verges in Pringsheim's sense, and, in addition, each "row series" of (1.1) (i.e., when we 

co delete E in (1.1) and the summation is done only with respect to  for each fixed Ic) 

as well as each "column series" converges in the ordinary sense of convergence of 
single series. The notion of regular convergence was rediscovered in [4], where it was 

1) AMS Subject Classification: Primary 42 C 10, Secondary 42 B 99. 
2) This research was completed while the author was a visiting professor at the University of 
Tennessee, Knoxville, during the academic year 1987/88.. 
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defined by the following equivalent condition: the 'sums•	. 
MN 

8(Q; X, y) =	2' akw,(z) Wk(Y)
	

(1.2) 
j=m k=n 

tend to zero as max (m, n) -- 00, independently of the choices of M ( m) and N 
(^ n), where Q = {(j, k) E No xEN0 : m :!9 j :^-, M and n k N). 

2. Main results. We remind the reader that the differences z1 of a double sequence 
{ajk} are defined for any non-negative integers p and q as follows: 

- Ll_1.Qaf+1.k up	11 
•	 *

 Aooaik=a,1	I	' = -	*	**	P	 +A	 A 

•	
• • .	 LIp,q_iajk-	LJP.Q_la, .k+1 if q_, 

As isell known, the two right-hand sidescoinôide if mm (p, q)	1. We mention that 
a double induction argument gives  

p	q 

• 	 i)i (	
•.) (q)

. 
k=O ' 

We will prove convergence result6 for the cases p ='q = 1 and p	q = 2.**" 

Theorem 1: 1/ a double sequence {ajk} is such that 

a k -+0	a	max (j, k) -+ 00'	'	' '	'	(2.1) and  
CO	00 

E I4 i1a1i <00, (2.2) 
j .=0 k=O 

then;	,	 S 

(1) series (1.1) converges regularly to some function / = /(x, y) for all 0< x, ,y <1; 
(ii) for 

all 
0<r<1, 

IISmn - fur — 0	a8	min (m, n) -+ 00, (2.3) 

where IIiI Teà74 the psedonorm in L'(12) defined by IIll =11 Ig(x, yWdx'dy.'. 

If condition (2.2) is satisfied; {ajk} is said to -be of bounded variation. We note that 
an analogous theorem was proved in [5] for double trigonometric series.

Theorem 2:1/ a double 8equence {a,k} is such that condition (2.1) is 8atvs/zed and 
00 60 

2422amI<oo,	 (2.4) 
j=O k=O 

•	

• Ek1 oajI is finite for eah Ic and tends to 0 as Ic -+00,	 • (2.5) 

CO 

E14o2a;kI is finite for each j and tends to 0 as j -+ 00,	 • (2.6) 

then conclusion (i) in Theorem; 1, except possibly when x or y ;8 a dyadic rational, and 
conclusion (ii) for all 0 <r < 1/2 hold true.
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3. Auxiliary results. We need the following three lemmas. 

Lemma 1: If (ajt } 8a128/2e8 condition (2.1) and for some p, q	1, 

C19	Z I4,qaI<oo,	 (3.1) 
jO kO 

then

	

	 S

CO 

•ZJUlp.q _ia	Cpq	(k	O 1,:..),'	 (3.2) 

CO 

E I 4P4 1aIkI - 0 as k :-* co,	 •.	(3.3) 

sup I	Q_1a/k -* 0 a8 m -* co	 '(3.4) 
k jm 

Analogou8 8tatements hold true for A.qam under the same conditions (2.1) and (3.1) 
if the role8 of j and k are interchanged. 

	

00	CO	00 co 
Proof: By (2.1); 1,.q_Iajk. = E Ap aik, whence E k.lg_ 1ajk.I	f E I4PQakI. 

	

kk.	 j=O	 j=O k=k, 
Clearly, (3.1) implies both (3.2) and (3.3). Finally, (3.4) is a consequence of (3.3) (ap-
plied for large values of k) and (3.2) (applied for small values of k)I 

Now we consider another double sequence (bm} of numbers with rectangular par-

"n tial sums B.. =!* Ebjt (rn, n= 0, 1, ...). The next two lemmas can easily be yen-
jO k-S	 - 

fied by performing double summations by parts. 

Lemma 2: For all O_<m!!g M and O:5:n:!z^N, 

M N	M N	 U	 . 
= * * BA 1ia1 + E B,NAIO.N+I 

jm k-n	j=tn k.n	 jm 

	

M .	 N. 
— B . _ 14 1oa1 + Z BMk4OIaM+l.k 

	

j=m	 k-n 
N 

— EBm_ i .iL1oia,,,.t -- BJa 1 J 1	 --

- BM._IaM+l. 0 — Bm_ 3 .Nam.N+ i + Bm_i.n_iamn., 

We introduce the notation 

Rmn = ((j, k) € No xEN0 : either j m ± 1 or k n.+ 1)	(3.5)
and let E ... stand for EZ.... 

5,,,,	 (j.k)ER,,rn	 .. 

Lemma 3: If {ajk} satisfies condition (2. 1), then, for all m,n, 01 . - 

Z'bjkajk =' BIkAllaIk —."B1 L1 10a5,1	 S. 

— I'Bmk/J olam+ik — Bmnam+in+i.
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rn 

4. Proofs of Theorems 1 and 2. We recall that Dm(x) = * w,(x) is the Dirichiel kernel, 
rn  

while Frn(X) = (m 4- 1) 1 f D,(z) is the Fejér kernel for the Walsh system. The 
jo 

following estimates are well known (see [2]): 

I 1)rn(2 )I< 2/2	(m=O,1,...;O<x<1),	(4.1) 

and for all integers m 0, p ^ 1 and for all 0 <x < 1, except possibly when x is a 
dyadic rational,

4	4 

	

(m + 1) IF'm (2)I <	- 2-9) + —j.= C(x) if 2-P <z <2'. (4.2)
x(x 

Proof of Theorem 1: Pointwiee convergence. Let 0 m M and 0 n N. 
Keeping notation (1.2) in mind, by Lemma 2 we can write that 

.	M N	- 

8(Q; x, y) = *	* D,(x) Dk(y) 4llajk	 S 

j=m k=n 

	

M	 M 

+ E D,(z) DN(y) Ll 1oa1.N + j -D,(x) D,3 _ 1 (y) A10a1 

	

,=rn	 ..	
...; .,...	:. 

N.,.	 N 

+ EDM(x) D(y) AOlaM+lk — ' Drn. j (X) D(y) Aojami 

+ aM+l.N+1DM(x) DN(y) - aM+:DM(x) D(y) 

— am N+ lDm_ l (X) DN(y) + amnDm i (x) D...1 (y)	 (4.3) 

By (4. 1), for 0 < x, y < 1 we get that 

MN 
4 1xy 8(Q; x, y)	Z E IAllaIkI 

	

jmk.=n	 S 

M	 N 

• L' [! l 1oa .N+1I + I4 ioa,I] + E [kIoIaM+I.kI + ILlolamkI] 
jrn	 k=n 

• IaM + 1 . N + 1 I + IaM+1.flI + Iam. N + 1 I + Iarnnl. 

Making use of Lemma 1 (with p q 1) and (2.1), we can see that each term on the 
right-hand side tends to zero as max (m, n) —+ 00. Thus, the sum /(x, y) of series (1.1) 
exists for all 0 <x, y < 1. 

L'(P)-convergence. It is plain that	 . 

/(z, j) —. 8mn(X, y) = L'akw,(x) wk(Y), 

where R,,, is defined by (3.5). By Lemma 3, 

/(x, y) — 8 ..(X, -Y)
M 

= * D,(x) Dk(y) A 11ak — Z D,(x) D(y) 410a1,1 
R	 j=O 

— Z Drn(x) Dk(y) 4olarn+1 .k — Drn(x) D(y) am+i.n+j .	 (4.4) 
kO
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Using (4.1) gives, for all O<x,.y.<i,..	..	••:..	.	.-

4'xy I/(x, y) - 8mn(X, i)I	 . . 

1411a,kI +Ej4 ioa .+iI + .Z' ILlolam+l.k I ± !am+i.n+ii

(4.5) 
Hence

Ill - 8,,,,,11,.	8+(.Z+ I 4 iiarnI) f f '  
Due to (2.2) and 0 < r < 1, (2.3) follows immediately I 

Proof of Theorem 2: Poin.twiee convergence. We Isiait with (4.3). We apply 
Lemma 2 again to the double sum on the right-hand side of (4.3) to obtain 

NN'	 ..'..:	 .,.	.•. 

.. 
 

	

-	-	.	.	 .	
5•'	 .•	 •.	..	 i	.	S	 • 

	

N	 MS 

..:F7(x, y) 422jk. +:	FIN(X, y)A2laj:N+l . S

,=m k=n .........-  
N	 N 

- E F n—fr, y) 4 21a1 ,, + 2	tk(X, y) 412aM+1.k 

N 
- E F,_l . k (x, y) 412amk + fN(X, Y) 4llaM+1.N+i 

k=n 

- F_1 (x, y) zI llaM+l. - I'_1.N(?,y) 4 1iam.N+1 r,	. 
+•	I	A r'	m__i.n_i X, /j jjamn,	 S	 - 

where
F(x,y) = (m + 1) (n + 1)Fm(x)Fn(y). 	, S	 (4.6) 

By (4.2), we can conclude for all 0 <x, y '< 1, except possibly when x or y is a dyadic 
rational,	 S 

(C(x)0(y))'	ED(x)Dk(y)4llajk-  
,m k=n 

N N	 M 
.E 2T kla1 I + L' [kI 2la .N,lI + i121a;J] 

j-m k=n	 j=m 

N	-	 S 

+.Z[Izl l2aM+l.kI + 1 11 12amkl] + kIllaM+1.N+1I 
k=n 

+ I11aM+l.flI + IAlIam.N+1I + IJ iiamn I.	• - .

	 ,. - - - - 

By virtue of Lemma 1 (with p = q = 2) and (2.1), each term on the right-hand side 
tends to zero as max (m, n) -± co. 

,We have four single sums on the right-hand side of (4.3). We claim that each of 
them tends to zero as max (m, n) -^ co, for all 0 < x, y < I. We show this in the
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case of the first single sum. A single summation by -parts yields 
M

D,(z) D(y) 410a11 

M 

=Z (j + 1) Fj(x) D(y) A 20a .N+i 
rn 

(.

+ (M + 1) FM(x) D(y) LI lOaM.N+ I — mFm_i (x) DN(y) Llloam,N+I. 

Hence, by (4.1) and (4.2), for all 0 < x, y < 1, except possibly when x is a dyadic 
rational,

M 
E D,(x) DN (y) 410a,.N+l 
)tn	 . . ,:.	'S	 • 

(M 
• .	 2iC(x)..j	LI2OajN+lI + 141oa 1 j +. I4Ioam.N+1If . .	.•, 

	

•	 :•f.• 

Thanks to conditions (2.1) and (2.5), each term on the right-hand side tends to zero 
as max (m, n) -- oo. The other three single sums on . the right-hand side of (4.3) can 
be estimated analogously. Finally, by (2.1) and (4.1), the four single terms on the 
right-hand side of (4.3) tend to zero as max (m, n) -+ oo, for all 0 < x, y < 1. 

L(P)-convergence. Now we start with (4.4).. We apply Lemma 3 once more to the 
double sum on the right-hand side of (4.4). As a result we get that 

rn 

' D1(x) Dk(y) 4IlaIk = I' F(x, y) 422ajk — ',E F(x, y) L121a1.+1 

	

•	 .•	 • 

	

c-+z+.,	A	 Z'* 1	\A —	
rnk' Yi J12arn+1 . k	rnnZ, Y LJ11arn+1.n+1 

k=O 

where we used notation (4.8); .B (4.2) 9	. S 

(C(z) 
C(y))_1 E D . (x) D(y) 4llajk 

rn	 .	•,	 . 

2' k1 2P12Jk I + f IJ 2ja1.+1 I + £ kl 12alfl + 1.k t + J4iiarn+i.n+it 
R.	. .	 .,	 k=O	

.•	
' .t 

4 II422ajtJ .	 (4.8) 

Similarly to (4.7), a single summation by partsgiveà 

,' D,(x) D(y) z110a.+1 

= •^::* ( + 1) F1(x) D(y) zI 20a1+1 +-(m + 1)Fm(x) D(y) 4ioam.n+i. 
j = 0	 S	 S 

Hence, by (4.1) and (4.2),	 .

fn 

• •	7, ED1(x)Dn (y)4 i oaj.n^ i	2y1C(x)
UO

17120a1.fl^lI + IA ioarn . n+ i l} •: 

	

 •	 .•	S 

•	 .	 .	 )	 •. 

•	 ^
 

2y-. IC(X) f J4 20a1n+i I.	.	.	• (4.9) 

•	 j=0	 S
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Analogously,	 .	'. 

	

'Dm (Z) Dk(y) z1 O1 am+1 .k ^ 2x 1O(y)EIlO2arn+l . k I.	 (4.10) 

Combining (4.4), (4:8)- (4.10) and (2.4)—(2.6) yields (2.3) for all 0 < r 
take into account that, by. (4.2), .	:	.	 0	 •, 

1	
• 

f C'(x) dx	f (4'/x'(x ,— 2-9)') dx + f (4'/z) dx' 
0	 p=12'	•.	 0 

CO 

^ '(4'/(1 — r)) 29(21-1) ±4'/(1-2r) <00.	

=,. 

5. Concluding remarks. In the case of Theorem 11(u) we can prove somewhat more 
than (2.3) for 0 <r < 1. To present this, let "meas" denote. the, planar. Lebesgue 
measure and let lnu = max (1, In u). 

Theorem 3: If a double eequence c.4 = aj ) 8afiqfim conditions (2 .1) and (2.2), 
then, for every € > 0,	 0 

= meas{(x y) E J2: sup I8mn(X, )l 
^ 4  	±	 (5.1) 

m.n0	 €	 4IIII 
where

11c411 = 	CO f E kI llajk I.	 (5.2) 
j .. O k=0 

Since the space €2 ri BV, of double null sequences of bounded variation endowed 
with norm (5.2) is a Banach space, condition (5.1) is only slightly weaker than the 
condition that the mapping A —* / is of weak type (1, 1), where / = /(x, y) is the sum 
of series (1.1) (see Theorem 1). 

Proof of Theorem 3: Similarly to (4.3), 

8mn(X) y) =	D1(x) D(y) 111aIk + E D .(x) D(y) L110a1,+1 
=O k=0	 5=0 

X( D(y) 4olam+1.k + am+ 1 .n +jDm(x) D(y). 

By (4.1), for all 0 < x, y < 1, we get that 

4 1xy 18.,.(X, y)I	E ! JAiia1 I + Zfrhioa,.n+iI 
=0 k=0	 j=0 

+EI4olam+I.kI + Iam+i.n^iI, 

whence, by (2.1) (cf. the proof of Lemma 1), 

4 1X1 18..(--, y)J	' E	kIlla,kI + 1' 2 J djjajkI 
5=0 k-0	 5=0 kn+1 

"0 co	

00 

+ 2' E kl Ilajk l + E	' L1a = 11c411. 
5=m+1 kO	j=m+1 k=n+1 

Now for every e	4IIII, It meas {(x, y) E 12: xy 5 y} = y + y In (1/y), where
y = 411,4 111€ I
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