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Duality for Nonlinear ' bstract Evolution Differential Equations 

A. Nowxowsi and A. R000wsxi 

Es werdñ ExistèIis jeriodischeiLosuiign mid Düalitäta8htzefür'einë abstrakte Differential-
gleichung' in eineth Hilbrt-Raum hrgeleitet. Din basiert auf der dualen Methode der Variations: 
rechnung mid einer Modthkation der Tolandachen Duahtatatheone 
1loKaaaHa cyrqecTsosauHe nepHoIurecHHx pengeHufl H npenoesun yIBoacTBellHocTH JJ1H 
onsoro a6cTpaxrlloro JHllclepeHIHaJIbHoro BH5HHH B rHJlb6epToBoMnpocTpaHcTse. lJisi 
aloro HCnoJthaOBaHal ABORCTBeRHMA meTOA BliLHOHH0F0 uc qucnesug uoa MoH gKa- - 
IllR TeopHugBoflcTBeHHocTu Toiauja. 
The existence of periodic iolutions and 4uality results for an abstract differential equation in 

iIbrt space are established. The dual variational method and a modification of the duality 
theoryofTolandareused.	" '• 

1. Introduction and statement of the main results  
We shall be dealing with the following T-periodic abstract problem in a real separable 
Hilbert space X: 

•	d	(t, x'(t))/dl +	(t, x(t)) 30,	 ;'•	 (1.la) 
x(€ + T) = x(t)	 1.	'(l':lb) 

for almost all t in ER, where T is a given positive number, aip and c993 are the subdiffe-
rentials of convex lower semicontinuous functions (t, .), q(t, 9p, q: ER x I -*. ER 
are T-periodic in £ and EL x LB-measurable, i.e. measurable with respect to the a-al-
gebra generated in ER x X byproducts of Lebesgue sets in ER and Borel sets in X. 

To obtain some results for (11), we shall consider two functionals: primal 

H J(x(.)) =f((i, x(t)) + (i, x'(t))) dt •,.	 '(1;2)

and dual to it 

Jo(p(.)) =f (*(t, _p'(t)) - *(t, p(t))) di + l(p(0), p(T)),	 (1'.3) 
0. 

• •	.l(a, b) = 11 (a) + 12(b),	 •	(1.4) 

I+oo
°	if a=O,	

lb	
0	ifb=0, 

li(a)=if arl=O ,	 l-i-oo if b  
(q and	are the Fenchel conjugates of 92 (t, ),v'(e , .)) both defined on the space 
A(X) of absolutely continuous functions from [0, T] to X whose squares of norms of 
derivatives are integrable.
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Note that (1.1 a). is the generalized:Euler .Lagrange equation for (1.2) and, further, that the 
integrand in (1.2) is a concave-convex function. The last fact makes (1.2) indefinite, i.e. it is, 
in general, unbounded from below and from above. This is the reason why we use the dual func-
tional (1.3) to study (1.1) which is, under some growth conditions on 9, and ip, bounded from below 
inA(X). 

The applying of a modification of the duality theory of TOLAND [11, 12] (see also AucxMtrrr 
[1]) allows us to reveal the relationships between (1.1), (1.2) and (1.3). 

Since the pioneer works of CL.&nxx and EKELAND L4, 5] dual variational methods have been 
extensively used in the study of differential equations (see survey lectures [2, 8]). Our duality 
principle (see Theorem 1.1 below) differs from that of [1, 2, 4, 8, 12]. However, it has been poin-
ted out to us by the referee that our Theorem 3.1 may be obtained as a direct application of 
Tolands duality formula from [11]; but as to the necessary and sufficient optimality conditions 
compare [7]. But to prove that JD attains its minimum in A(X) (note that D is not weakly lower 
semicontinuous in A(X)), we shall consider a functional I (see Theorem 3.3) which corresponds in 
some sense to the dual least action principle for (1.2) (or (1.3)) devised by Clarke. Indeed, the 
Hamiltonian associated with the integrand of J is H(t, x, p) = q (, x) + t, z); the dual Ha-
miltonian is H*(t, t, j) = q(t, 1) + (t, ) and it is the main part of the functional I. That ex-
plains the remark of BREZIS [2, p. 415 (bottom)] on the relations between the idea of Toland and 
that of Clarke and Ekeland. 

Let II denote the norm of X and (., .) the scalar product in X. A measurable func-
tion is: IR --),- X will be called T-periodic if u(1 + T) = u(t) for almost all tin R. The 
set of all such functions will be denoted by P(X), and AT(X) stands for the subspace 
of F(X) consisting of all functions which are absolutely continuous in (iT, (1 + 1) T), 
f € Z, and whose squares of norms of derivatives are integrable. 

Definition: We say that x E AT(X) is a 80luU0n.t0 (1.1) when there exists some 
p € AT(X) such that 

—dp(t)/dtE eq(i, x(t)) a.e.,	 .	.	..	 (L.5 a) 

P(t) €	(t, x'(t)) a.e.	 (1.5b)

Now, we state the main result of the paper. 

Theorem 1.1:.A88ume thaithe following hypotheses are satisfied: - 

(a) q', èaU8/y the growthcondilioñs 

(41)-' 1x12 - d(t),	(t, z)	(4k) 1 121 2 - e(t) 

for (t,x),(t,z)E ER xX; d,e:[R .--ER are T-periodi and eummable in [0, T];k>0 

and n21 > kT'; v -- fq,*(t, v(t)) dl is /mile on L(0, T; B), where B = {v € X: lvi i} 

for some j> 0; there exists 2 € L2(0, T; I) such that f(t, 2(1)) dt < 00. 

(b) 9,, V, satisfy the representation 

(t, z) = v*j(* z) + 2' 121 2 and 9,*(t, v) = q,,(t, v) + a 

a	T2/2n2, where z -^ [)i( t, 2(t)) dt and v f 9, 1 (t, v(i)) di are sequentially weakly 

lower 8emiconhinuou8 in L'(O, T; X): 
Then there exists a pair (XT, PT), being a 8oluUon to (1.1), whose restriction (, ) to 

[0, TJ satisfies  

JD() = mi JD(p)	inf supJ(x) = J().	 (1.6) 
PEA(X)	 x'L' x(0)EX
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Conver8ely, for any Pr € AT(X) for which there exists € A T(X.) suchthat their r'estrietiom 
to [0, T] 8ati8ffee (1.6), one can choose YT € AT(X) satisfying, together .with PT, (1.5) and, 
consequently, (1.1).	 .	•...	. 

2. Auxiliary results	 .	:. 

Let L2(0, T; X) and L(0, T; I) denote the usual Banach saces! It'i' kiiowh [3] 
that, for each x € A (X), the derivative x'(t) exists, almost every where in . [O,.T] 
Therefore A(X) can be identified with X L2(O, T; .1) normed by [xIlA(x) = Jx(0)I 
+ lix ILL'. Here A0(X) denotes the subset of A(X) of those.x for which x(0) = x(T) 
= 0. Let B2(X) be the linear space X L5(0, T, X) with the norm c, v12 = max 
{jcj, iiviILa}. The dual A*(X) of A(X) will be identified with B2(X) under the pairing 

(x, (c ;v)) = (x(0), c) + f(x'(t), v(t))dt	 (2 1) 

The conjugateof afunction g: X -*[-oo, + cp] is: the functiong*: X--* [-00, 
+ oo] defined by g*(x*) = sup {(x*, x) — g(x): x € X}; it is lower semicontinuous 
and convex.	 .	..	- 

'For a: concave-convexfunction G.: X1 xXH .ER,.G(z;p)is the set of aU:(u,v)€ 
X x  such that  

G(z,	.G(z, p) + (vrp--.p) for all	E X.,.	•: -...... 

	

..'.'- G(p).^G(z,p)-4-.(u	.-z)	for All, ':E X.	.. 
"Tloiën 2:1' [9] Let g: [O,T]x X -+IR be 1L x LB-measurable azd'iét g(€,.), 

t € [0, T], be'lower semwon4inuou and convex..Assume that x - . fg(t, x(t)) di L9finzte 

on L(0, T; B), B = (x € X: Ix  j} for a certain j>O. Then I -^ sup {g(t, x): FxI 
j} is eummable in [0, TI.

	

I	 -:-•	 .	 - 
Theorem 2.2 [10]: Let'g be the same as in;Theorem 2.1 and assume that there is a 

p  L2 (0, T; X) such that f g*(t,p(t)) dt,< +00 . Then the funclionals v fg(t,v(t))dt 

and p - f g*(t, p(t)) di are convex and lower 8emlContinuou8 in L2(0, T; X) and 

they are in'dualiy with reepect to the pairing (v, p) = f(v(t p(t)) di. . 

Lemma 2.1: If x € A 0(X), then'..	. . ,. . 

f x(t)4 :&- (T2/7 2).f jx'(t)1 2 di..	.'	:	

:•.	
(2.2) 

Proof Let xk = (11T)fx (I) exp (-2kirii/T) di, k E 

Then expanding x' €L2 (0, T;'X) in a Fourier series, we get 
x'(t) = Z x,exp (2knit/T), t € [0, T].	.	.	..	 . .	-(2.3) kEZ

Since x .€ A0(X), therefore f x'(t) dt = 0, so x0 0. By integrati6(2.3) termwise, 

5 Analysis, Bd. 10, Ref( I 109I(
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z(t) = .	:(T12kni) xk(exp (2knil/T) - 1). Hence .	. 
O*kE	 . 

lixi!, = f z(t)j 2 dl = E (T/2kn) 2 1xk 1 2 + E (TJ2kn)zk2 
o	 O+kEZ	 O4.kEE 

^ (T2ftr2) E 1xfr12 = (7 2/t2) IIzI12i .,	 S 

kEP 

and so we have (2.2) I 
Lemma2.2:Letc >0, c?'2	e2. Then the junction	 . 

z -* Q(x) = [(lx (1)1 2 - C lz(t)l) 

18 convex and lower 8emiconhinuous in A0(X). 

Proof: Let z,v E A O(X) and let a.E [0,?']; Then, using Lemma 2.1, a direct cal-
culation shows 

(1.— x)Q(x) + aQ(v) - Q(( 1 - a)x + ccv) = (1 - cc)ccQ(z--'v) 

^ (1 - cc)cc(( 2/T2) - c) JJX - vIii, ^t 0,  

and thus, the convexity of Q. Since each of the summands of Q is continuous in A0(X) 
thus Q is also lower semicontinuous in A0(X) I 

Suppose further that all assumptions of Theorem:1.1 aresatisfied. .1 

Lemma 2.3: Let Sb = {pE A(X):Jn(p) b}, b >0. 'Forsu//iclenlly large b, 
are non-empty and bounded in the supremum norm liiic . Moreover, JD is bounded 

from below.	 .	.	. 
Proof: Fix.b >0 and take any p € A(X) such that JD(p) b (such bán'dp exist 

by the assumptions on and so). Then, of course, p(0) = p(T) = 0 and, by Theorem 
1.1 1(b),	 . 

b	JD(p) 	if lp'(t)I 2 dt +f e(t)dt - k  Jp(t)I 2 dt _fd(t)dt 

By Lemma 2.1 and  the inequality lp(t)I 2	T  li' (1)1 2 dl we further obtain 

b + f (d(1) - e(t)) dt ^t (1 —kT2/2) f p'(t) 2 dt ^! (l/T - kT/z2) lp (1 ) 12 . . 
0	 .	.	() 

for all tin [0, T]. Hence we infer the assertions of the lemma I	..
Lemma 2.4: Let 

/(t, z(t)) = 1 p'(t)' -- e(t) -f- (4k)' Ix'(t)1 2 - d(t) -E Ix'(t)I 

where z(t) = (x*(t), p*(t)) and E > 0. Then the 8e18 

Zc = {z €L'(0,T;X xX):f At;z(t)) dl	c}, cE ,	
0

are either empty or relatively sequentially weakly compact in L2 (0, T; X x X). 

Proof: Since L2(0, T; X xX) is reflexive, it suffices to note that fi(t, 	Z(0) dl/Rzs 
-+ + 00 as Iiz iiL'	+ 00 (IIZIIL' = ix ilL' +11 Pilv) 1	 0
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3.. Duality results 

In what follows we assume that the hypotheses of Theorem 1.1 are satisfied. We 
define, for each p E A(X), the perturbation of J0 as 

JD9(a, g)	11 (p(0) + a) - 12(p(T)) 

+f(_*(g,	()) +?(t, p(t)± g(t))) di 

for (a, g) € B2 (X). Of course, JD(0) = —JD(p). Next, define, for p, x € A(X), 

J(x) = suI{f(g(1) x'(t)) di— f(*(i, p (i ) ±. g(i)). .............. . ... 

- w*(i, —' (t))) di + 12(P(T))} ± in.f f(4, .T(0)) + l(p(0) + a)). 
A direct calculation gives	 . 

J* (x) = .—(x(T), p(T)) + 12 (p(T))	 . ... . 

	

+ f (x(t), p'(t)) di + f ,*(t, _p'(t)) dl + f ø(l, x'(t)) di.	(3.1) 
.0	 •	0	 .,	o 

Thus
sup{—J9(x)} = sup {(b, x(T)) - 12(b)} 

PEA(X)	 bEX	 . 

	

± sup { f(v(t), z(t)) dl - f(t, v(t)) &}	fso(t, x'(t)) di 

	

0	 0 

= ,_/ (_q,(i, x(t)) + (t, x'(t))) dl = — J(x) 

	

for x € A(X). For p € A(X) and (a, g) E B2(I), define	 . 
(T	 .	..;.,.	' i•',	...... 

Jt(a, g) = sup f (g(t), W(t)) dl - f (—p(t),w(t)) & 
WEL'0	•.	••	0	 .. 

_I;w	di - 12 (p(T))	f*(i,_p'(l))	..

+ inf ((x(0), a) + (p(0), x(0))}.  
X(0)EX	 .. . 

We see that J(0) JDp(0) for all p € A(X). Using the minimax theorem [3], 

	

(3.1) and (3.2), we calculate that	 . 

sup J (0) = sup sup thf ( - J* (x)) 
PEA(X)	 PEA(X) Z'EL X(0)EX 

= sup inf {—J(x)} = — jul sup J(x). .	. 
xeL' X(0)EX	 X'EL' X(0)EX 

	

A direct consequence of the above considerations is the following	• :• • • 

	

Theorem 3:i: Let J, Jr, be as above Then ml JD(p)	ml sup J(x) -	. .	.	PEA(X)	' zeV'x0)x. 

5*
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Theorem 3.2: Let j5 € A(X) be a minimizer /orJD and let J0-(0)be.flOn-efl2/pty. 
Then there ex18t8 ((0), ') € ôJD (0), where V E L2(0, T; X) and (t) = (0) 

+ f (8) d8, 8uch that Y € A(X) and J()	ml sup J(x) Furthermore, 
0	 z'eL' x(0)EX 

JD (0) + J() = 0,	J() -	=0.	 (3.4) 

Proof: Theassumptioiison q*.and imply that,forthe minimizer , (0) = (T)V. 
= 0. We shall prove that JD() sup {J(): x(0) E X} = J(), where (t) = z(Q) 

+ f '(s de	 iD> - co. Bythe definition of 

aJD, for the concave-cuivex:functiori JD( • , .). w Eae, for each (x(0); VY aJD F' (0), 

—l(a)^5(x(0),a)	VaE.X,	x(0)EX, 

fsp*(t, (t) + g(t)) di	f,* (t, (t)) di + I (g(t), (1)) di 

for all g € L2(0, T; X).. The last inequality implies 

JD(0, g)	—'ED +f (g(t), '(t)) di	V g € L2 (0, T; X).	 - 

Further, for(t) = x(0) + f '(e) d8, x(0) € X, we obtain 
0 

(T 
J# (1! ) = sup f (g(t), '(t)) di - JD(O, g)J	i. DO

..gELI	O 

Therefore —J() = sup {_J()}	—ia, thus SUP J(2)  
PEA(X)	 z(0)EX 

In view of the assumptions onq and the definition of ç,*, we notièe thatq(t, (t)) 
+ r(t)	j (t), r(t) := sup {q*(t, v): Iv ;5 j}, for tin [0, T]. The function r is summ-

able in [0, T] (see Theore m 2.1): Observing that ff(t)I	T ( 	-I I'(t)I,  
we infer that .q(t,(t))d1 -- ± ooas I x(Q)I -9W ±00. Thus, in virtue of the convexity 

and lower semicontinuity of x(0) - fq(t, 2(t)) di, we conclude that there exists (0) 
inl such that	 0 

f g,(t, (t)) dl = min f ,(e, 2(t)) di,	 S	 0 

0	 zto)EXO 

where

' (t) = (0) ±• 2'(8) de, 

i.e. sup {J(2): x(0) € I} = J(. This proves the first assertion of the theorem. 
Since JD (0) = —iD and J() =iD, therefore JD(0) + J(2) =0. The inclusion 

(X(0), !E) E øJD(0) together with th6 former equality gives (3.4) 1
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Corollary 3.1: Let E A0(X) minimize JD 0verA(X). Then there exi8t8 YE A(X), 
1	 .1 

(t) = (0) + f x'(.$) de, .uch that (t) E ,(t, '(t)) and —'(t) E ag(t, (t)) /ora1moet 

alltin[O,T],and 

J() = i1i	sup J(z) = JD().	
0	

(3.5)

Z'EL' zO)EX 

7' 
Proof: Since g —* f tp*(t, (t) + g(t)) & is finite in L2(0, T; X), thus, by [6, Prop. 

•0 , 

I 52], we see that aJD(0) is non-empty.,Hence and by Theorem 32, there exists 
E A(X) satisfymg, along with TD EA(X), (34) and (35) R.ewritmg (34) explicitly, 

we obtain the inclusions for and —p', as asserted I 

Theorem 3.3: Let 

I(x , p)	l(p(0)) + 12(p(T)) 

T 
(p(t), z'(t)) dt -4-f ,*(t, _p '(t)) dt -i-f (t, x'(t)) dt 

Then
mi	1(x', p) = iiii JD(P) = inf sup J(x) 

(x'.p)EL'XA(X)	 PEA(X)	 z'EL' x(0)EX . 

(x (t) = z(0) + / x'( s)	Moreover, i/ (i', P) ' i8 a minimizer for I, then 5 ie a mini- 

mizer for 'D 

Proof: By the form of I. and Theorem 2.2,inf {I(x',.p):z' E L2 1 =J0 (p) for.all 
p € A(X), and so we have the first equality. The second one follows from Theorem 
3.1. 

Suppose that- (2', ) minimizes I on L2(0,T; X) x A(X). Then I(x',Tp) .= ml {JD(p): 
p EA(X)}. Bythe first part of the proof, JD(p) = inf (I(x', ): x'EL2}  
Therefore JD() = ml WD (p) p E A(X)}I 

4. The proof of Theorem 1.1 

We begin with showing that the I defined in Theorem 3.3 is sequentially weakly 
lower semicontiñuous in L2(0, T; X) x A0(X).	 I 

By our assumptions, W*(t, v) = 9 1 (t, v)+ a jvI and i,v(t,u) = pi(t, u)+ 2' 1u12, 
T .	 '.	 T	 0 

where p' f 9 1 (t, p'(t)) dl and x' -+f pi(t,'z'(t)) dl are sequentially , weakly lower 
semicontinuous in L2(O, T; X). The function (p, v) -* 2 IP - v 2 is convex and lo-
wer semicontinuous in X x X, so (x', p) — 2-i f p(t) — x ' (t)I2dt is sequentially 
weakly lower semicontinuous in L2(0, T; X) x A 0(X). In virtue of Lemma 2. L23
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P a  OP (t)J' - (2a)' Ip(1)I 2) di is also such a function inA 0(X) Hence we see that 

I(x', p) = 1 1 (p(Ô)) + l,(p(T))	 . 

+ 2- 1 f I p(i) - x'(t)I' di ± f (ap'(i)J' -.2-1 (p()1 2) di 

±f q,(i, p'(i)) di ± f	x'(t)) di 

is, really,equentially w,eakly lower sernicontinuous in L2(0, T; X) x A0(X). 
Let now E> 0 be sufficiently large Put D-= {p E X Il	and h(p, u) 

= (p) u) if (p. u) e D xX,h(p'u) '±'oo otherwise. Denote by 'h the functional 

with the term fh(p(i), x'(t)) d; instead of f (X'(t);p(i)) di. In view of Lemma 2.3 

and Theorem 3.3, mi I(x', p) = mi Ih(X', p) on L2 x A(X). Let us take any (Xb ' , Pb) 
(1,2(0, T; I) x A O(X) and put b = I(Xb', Pb) . Of. course, I(xb',pb)	Ji.,(p) for all 
p € A0(X). Next, choose E> 0 so large that each p E 2b (Sb defined as in Lemma 
2.3) is contained in the interior of D; this is possible by Lemma 2.3. We easily check 

T.	 ..' 
that Ih(X', p) ^f /(i, 2(1)) di for all (z', p) € L'(O, T; X) x A(X), where I is defined 

in Lemma 2.4. By this lemma, the set. . 
M = {(x*,p) € L2(0, T; X) xA(X): Ih(x',p)	b} 

is relatively sequentially weakly compact in L2(0, T; X) x A(X) (in fact, for all p 
from thisset, p(0) = p(T)= 0, and then, the weakcompactnessbf p' in I 2(0, T;:X) 
implies that of p in A(X)). Let {(x', p,,)} M be a minimizing sequence for 'h Then, 
by the above construction, it is also minimizing for I, and I(x', p) =Ih(v', p,), 
n € N. Since I is sequentially weakly lower semicontinuous and {(x', p,,)} is relatively 
sequentially weakly compact, there exists a subsequence of {(x', p,,)} cóivérging to 

m some (V, P) in Mbeing aminimizer . forI.Henceandby Theore 3.3, isa mini- 
mizer for 1D. 

Further, from Corollary 3A we obtain that there exists € A(X) such that (t)
 Ei((t,'(i)) and —'(i) E'8q(i(t)) almost everywherein [0,T],and(3.5) holds. 

In view of the T-periodicity of the functions,*(., x), p*(., x), x € X,. the functions 
P*(., z), ,(., x) are T-periodic, too. Thus each minimizer P of JD can be identified 
with some PT E AT(X) restricted to [0, T]. This means that if we consider the func-
tional	 .	. 

f (q,*(g —p'(i)) - .,*(t, p(t))) di + l(p(iT), p((i + 1) T)) 

I E 71, instead of J0 , then PT restricted to [iT, (I + 1) TJ is a minimizer for it in the 
space of . absolutely continuous functions p: [iT, (I + 1) T] —+ X. Therefore the 

' € Th(0, T; X) from the assertion :.ssertion of Theorem 3.2 can be identified with some func-
tion xr'€P(X) restricted to [0,T]. Define	 . . . 

r(i )	(0) + f xT8) ds	(i € [IT, (I	1)T); i€ 71). 
iT 

Of course, YT  AT(X). Corollary . 3.1 implies that YT, PT satisfy (1.5). The proof of 
Theorem 1. 1 is completed!	 .	.
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5. kn'example o?èqüation '(1;1)	. 

Let ER-)k R--i.. (-00 oo) be bounded EL measurable I and T periodic with respect to the first 
variable"continuously differentiable and convex with respect to the second variable and such 
thatj(t, r) e(t),(t, r)'E [0, T] x ER, 6: R-* R isT-periodic and summable in T. We put j(t, z) 

= f j(t, z (u)) du for (1, z) E ER x L.'(ER, ER) (Lu'(ER, ER) is the space cif , U-periodic functions, 
RfU	 1	.	••.	 ' 1 

U> 0, whose restrictions to [0, UbelongtoL2(0, U; ER)). Let X= H}'(ER,ER) (1!&1(R:; ' R) is 
the Hubert space of all U-periodic functions whose restrictions to (—M M) belong to the 96bblev 

space IP(—M M ER) for all M> 0) with the m nor !z12 = [(z5(U))2 du + f(z(u))2 du. (t !)'is 
O 

convex and lower semicontinuous in X, t.E (0, T];v,i is alsoEL xlB-measuráble in ER xX. In con-
-	r 

sequence;z-* f V10, z(t)) dt is sequentially. weakly. lower semicontinuous in P(O, T;,-X). I We set 

p(t, z) = (4k)9z1 2 + V i(t, z), k> 0, for (1, z) € ER x X. Thus all assumptions of Theorem 1.1 
concerning p are satisfied. Now, take qi(t, x) = 2 1jx and assume that Ic and T are such that 
x2 > 2kT2 and s T. Then we have fulfilled all asumptions,of Theorem 1.1. From (1.5a) we 

calculate for our qi that —p(t) = f x(8) ifs. Therefore by Theorem 1.1 there exists YT E A1'(X) 
0 

whose restriction Y to [0, TI together with 15 (t)= ._f. (8) d8, E[O, T], satisfy (1.6) for our qi, i 
and it is a solution to the problem	 0	 .	. 1 

(if/fl) ((afar) (t x (I u))) + (2k)_ 2 (z(t u) - ix(t u)) 

—iz(t,u)+x(t,u)=O, 
x(t + T, u) = x(t, u), x(t,u+ U)=z(t,u), (f, U) EERxER, 

Jz(e,u)dl=0, u€ER, 

where A is Laplace's operator in u. 
What is essentially new here is that Y satisfies (1.6). This is also interesting in its own right as 

it is not easily to prove directly that the functional 

J(x) 
= TU	

x,(t, u)) + (4k)-1((z(t, u)) + (x,(t, u))2) 

- 2 1 ((x(t, u))2 + (x(t, .i))2)) dual 
attains its minimum in any reasonable space of functions without boundary conditions. 
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