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Duality for Nonlinear"Abstract Evolution Differential Equations

A. NowaAgowskI and A. RogowsK1

Es werden' Exlstenz penodmcher Losungen und Dualititssitze fiir eine a.bstrakte Dxfferentml-
gleichung'in einem Hilbért-Raum hergeleitet. Das basiert auf der dualen Met.hode der Vana,tlons-
rechnung und | einer Modlflka.txon der Tola.ndschen Duslititstheorie.

Iloxaaana cymecmonanue nepnozmqecxnx pememm u NpeRJoKeHUA m;onc'rnexmoc'm nan
onnaoro aberpakTaoro quddepeHNHATPHOrO ypaBHERAA B IHABGEPTOBOM: OpOCTPaHCTBe. Ana
3TOr0 HCMOJNB30BAHH BONCTBEHHHI METON Bapuauuounoro HCYHCICHUA u onHa Monn(bnxa--
nus -reopnu meoltcreentoctd Tonamna. e . :

The exxstence of penodlc solutions and duahty results for an abstract dxfferentlal equation in
Hllbert space are established. The dual vs,rmtxonal method and a modxﬁcatlon of the duahty
theory of Toland are used. RS

1. Introduction and s(t'zitement'of the main results - T
We shall be dealing with the following 7'-periodic a.bstract problem ina real separable
Hllbert space X :

d ay(t, /() [t + ay(t, 2(0)) 30, R (11a)

2(t + T) = =(t) o e (1:1b)

for almost all ¢ in [R, where 7' is a given positive number, 8y and d¢ are the subdiffe-
rentials of convex lower semicontinuous functions y(¢, -), ¢4, -); v, : R x X => R
are T-periodic in ¢ and [L X [B-measurable, i.e. measurable w1th respect to the o-al- -
gebra generated in R x X by: products of Lebesgue sets in R and Borel sets in X.

To obtain some results for (1.1), we shall consider two functionals: primal

ﬂ%»=fF@&ﬂm+v%fw»ﬂ' S (1:2)
and duslto b : o K '
JIo(2() éofr(w*(t, —P'() — v*(t, p(0)) dt + i(p(@), p(T)), ; (i;-3)
la, b) = lx(a) + L(b), - (e
L L o

(qa“ and p* ‘a.re the Fenchel conjugates of g(¢, ),}p(t -)) both defined on the space
A(X) of absolutely continuous functions from [0, T] to X whose squares of norms of
derivatives are integrable. :
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Note that (1.1a).is the generalized :Euler-Lagrange equation for (1.2) and, further, that the
integrand in (1.2) is a concave-convex function. The last fact makes (1.2) indefinite, i.e. it is,
in general, unbounded from below and from above. This is the reason why we use the dual func-
tional (1.3) to study (1.1) which is, under some growth conditions on ¢ and p, bounded from below
in A(X).

The applying of a modification of the duality theory of ToLaND [11, 12] (see also AUCHMUTY
[1]) allows us to reveal the relationships between (1.1), (1.2) and (1.3).

Since the pioneer works of CLARKE and EKELAND [4, 5] dual variational methods have been
extensively used in the study of differential equations (see survey lectures [2, 8]). Our duality
principle (see Theorem 1.1 below) differs from that of (1, 2, 4, 8, 12]. However, it has been poin-
ted out to us by the referee that our Theorem 3.1 may be obtained as a direct application of
Tolands duality formula from [11]; but a8 to the necessary and sufficient optimality conditions
compare [7]. But to prove that Jp, attains its minimum in A(X) (note that Jp is not weakly lower
semicontinuous in A(X)), we shall consider a functional I (see Theorem 3.3) which corresponds in
some sense to the dual least action principle for (1.2) (or (1.3)) devised by Clarke. Indeed, the
Hamiltonian associated with the integrand of J is H(¢, z, p) = @(¢, ) + y*{¢, 2); the dual Ha-
miltonian is H*(¢, £, p) = @*(t, p) + v(t, £) and it is the main part of the functional I. That ex-
plains the remark of BREzIS [2, p. 416 (bottom)] on the relations between the idea of Toland and
that of Clarke and Ekeland. ’ : :

Let |-| denote the norm of X and (., -) the scalar product in X. A measurable func-
tion u: R — X will be called T-periodic if (¢ + 7T') = u(t) for almost all ¢ in R. The
set of all such functions will be denoted by P(X), and AT(X) stands for the subspace
of P(X) consisting of all functions which are absolutely continuous in (sT, ( + 1) T),
i € Z, and whose squares of norms of derivatives are integrable.

Definition: We say that z € AT(X) i8 a solution to (1.1)-when there exists some
p € AT(X) such that ' '

_dpyjdte dplhzw) me, T (18a)
p(t) € oy(t, z'(t)) a.e. _ , ~ (1.5b)
-Now, we state the main result of the paper.

Theorem 1.1:. Assume that the following hypotheses are satisfied:. -
.- (a) @, v satisfy the growth-conditions.. L

T el 2) S W alt — ), pit2) Z @RVl — o)

for (¢,2),(t,2) € R x X5 d,e: R =R are T-periodic and summable in [0, T]; k>0
T .
and 2%l > kT?; v — [ @*(t, v(2)) dt is finite on L*(0, T'; B), where B = {v € X: |v] < j}
0 o
for some § > 0; there exists z € L*0, T; X) such that [ y(t, 2(t)) dt < oo.

0
(b) @, v satisfy the representation

p(t,2) = palt,2) + 272 22 and 9*(E,v) = pa(t, ) + @ [of?,
T T
a = T*22, where z — [ wi(t, 2(t)) d¢ and v — [ @(t, v(2)) d¢ are sequentially weakly
0 . .

. 0
lower semicontinuous in L*0, T'; X):
Then there exists a pair (Zg, Pr), being a solution to (1.1), whose restriction (Z, P) to
[0, T'] satisfies ‘ e
" 'Jp(P) = inf Jp(p) = inf sup J(z) = J(7). ‘ CLe)
PEA(X) €Lt z(0)eX . »
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Conversely, for any Pr € AT(X) for which there exists Zr € AT(X) such that their restriction
to [0, T} satisfies (1. 6), one can choose Ty € AT(X) eatis/ymg, together with p pw (1.8) and,
con.sequently,(ll) . S e S

2. Auxiliary results Ln

Let L0, T; X) and L*(0, T; X) denote the usual Banach spaces' It i§ known' [3)
that, for each z € 4(X), the derivative z(¢) exists. almost, everywhere-in [0,.T]:
Therefore 4(X) can be identified with X @ LY, T; X) norimed by i@l acxy = 2(0)]
+ ||2’||z». Here 4(X) denotes the subset of 2'A(X ). of those z for which z(0) = 2(T')
= 0. Let B%*X) be the linear space X ® L (0, T} X) with' the norm fle, ¥|l; = max
{lc| o]l z}- The dual A*(X) of A(X ) will be ldentlﬁed w1th Bz(X ) under the palrmg

Pz (e v)) =+<2(0);¢) + f (), v(@E)yde.: =it Tor (2. l)
P MRS I
The conjugate of & function g: X — [~ oo, #:00] is: the function g*: X:— [~ oo,
+ o0} defined by g*(z*) = sup {(x‘ x) - g (x): € Xy 1t is lower semicontinuous
and convex.
: /For a’ concave-convex.function G: X;x'X — [R,-0G(z; p) .is the set .of all (s, v) €

X % X such that AR T BT T S TN ey
G(z,P) =2 Gz p)+ (wiP:—p) forall DX, i . - i i ok
aeet G(z )N SGz,p)—{-(u'z —:z) forall"z:€ X.. S e

Theorem 21" (9): “Let 9:00,TTx X >R be [Lxleeaeurable and let g(t ),
te o, T], be‘lower semwontinwm.s and convex. A&mme that x —. f g(t x(t)) dt is /imte

PRIRRE

on L°°(0 T B), {x € ‘X Izl S;} /or a certam 7 >0 Then t—»sup {g(t :z:) [ ]
=7 is &ummable in [0, T] :

Theorem 2. 2 [10] Let' g be the same as in Theorem 2. 1 and assume that there is a
pe LX0, T; X) such that f g*(¢, p(t)) dt < +oo. Then, the functionals v — f g(e, v(t)) d
and p — f g*(t, p(t)) dt are convex and lower 8emic¢mtmuous in L0, T X) and

they are in -duality with respeét bo the pairing (v, ) = f (o(t); )y dt.’
Lemma 2.1: If x ¢ Ay(X), then + . == - . - T

T T IR o
J 1O de < () [ (20 dr.. R 2.2)

Proof: Let 2 = (l/T)fx () exp (— 2kmt/T) dt, ke Z.
Then expanding z’ € L2(0 T, X )ina Fourier serles, we get

z'(t) =kszk.exp (2knit/T), tefO0,T}. - .. .. .. S (23)
€
T
Since x € Ay(X); therefore’ [ 2'(t) dt =0, so z; = 0. By integrating (2.3) termwise,
0 : . R S

5 Analysis, Bd. 10, Hef( 1 319891(
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x(t) = Z (T/2km) :z:,,(exp (2kmt[T) — 1). Hence -

llllZs = f lz@)Fdt = X (T[2kn)? |mf® + | X (T|2kz) 2 f
0 O kel% O+ kel
= (T%[n?) ’gz |2 = (T%n?) I3, : K

and so we have (2.2) B , R .
Lemma22 Letc>0 cT? S::z Thenthe/um:tam

2 Qa) = f (@R = clz@p) &

i8 convex ami lower semicontinuous in Ay X).

: Proof: Let z,v € Ay(X) and let «.€ [0, T)- Theﬁ, using Lemma 2.1, a direct cal-
culation shows '
L U200 +aQ0) — QU — sz +ar) = (L @ aQawy 1 L
L= (1 - &) a((@T?) =€) llz — vlE 20, ' s

and thus, the convexity of Q. Since each of the summands of Q is contmuous in Ao(X )
thus @ is also lower semicontinuous in Ay(X) '

Suppose further that all assumptions of Theorem'1.1 are satisfied. * -

Lemma 2.3: Let S, = {p€ A(X):Jp(p) < b}, 'b> 0. For sufficiently large b,
Sy are non—empty and bounded in the supremum norm |l llc- Moreover Jp i bmmded
from below.

- Proof: Fix.b >.0.and take any p € A(X) such that Jp(p) < b (such*band:p'éxist
by the assumptlons ong and 1p) Then, of course, p(O) p(T) = 0 and, by Theorem
T1b), - - L DY Asere

oo R 7 P w
bz Jolp) 21 f |p'(6)I* det + f e(t) dt — kf p(e)12 de — [ d(e) de.
’ R ’ (] o o ©

By Lemma 2.1 and the inequality |p(¢)|? < T f |p’(t)|2 dt we further obtain
. .0 ,

. | L | o
b+ [ (d) — e() dt = (1 — KT?n?) [ |p'@O)F dt = (YT — KT)m?) [pO)2 -
J ) =€) Ry

for all ¢ in [0, 7). Hence we ini’ér the assertions of the lemma 8
Lemma 2.4: Let
flt, 2(0) = LIP'OF + e0) + @0)1 |21 — d) — E |2/ @®)];
where 2(t) = (2'(¢), P'(t) and E > 0. Then tke sets

T .
Ze = {z € L*0, T X x X): ffu z(t))dtSc ce€R,
are either empty or relatively sequentially weakly compact in L*(0, T X x X).

Proof: Since L0, T; X x X) isreflexive, it sufﬁcesto note that f e, z(2)) dt/|[z|] n
> + 00 a8 |lz]lzs — + 00 (lzllzs = l[2'llzs +1 #'lls) B
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3 - Duality results

In what follows we assume that the hypotheses of Theorem 1.1 are Batlsﬁed We
define, for each p € A(X), the perturbation of Jp, as

Jopla, g) = —lx(P(O) + @) — b(p(T))
+I(¢w-¢u»+wamn+wmm
for (a, g) € Bz(X) of course, JD,,(O) = —Jp(p) Next defme, for Pz € A(X),

J5(x) = sup- { Jo), =) de — f (w*(2, p®)+ g(0))- R .

gel*
~ ¥t ~p (‘))) dt + lz(P(T))} + mf {(a. 3(0)) + ln(P(O) + a)}.
A direct calculation gives -~ .

IBp(2) = —((T), p(T)) + lz(P(T))

¢

+f (z(t), (‘)) d‘ + f ?'(‘ —Pp (‘)) dt + f 'P(t z(‘)) de. 3.1)
Thus 1
sup {—J§,(2)} = suP (b, =(T)) — Iz(b)} X

PEA(X)

+ sup{f(v(t), x(t)) dt — f¢p‘(t v(t)) dt} fyat x (t)) dt

. \A.,
S

= f ( q)(t :z:(t)) + 'p(t x (t))) dt = —J(x) (3.{2)
for z € A(X). Forp € A(X) and (a, g) € Bz(X), deflne |

i.r:

Ji: (a, g) = sup { f (9t), w(t))dt f < p(t), w(t)) dt

Cwerrs o <. - -8 o e

~ [ ol wt0) at — o) - f (e, ~#0) }
+ mf (=(0), @) + (p(0), %(0))} . B

We see that JE#(0) = JD,,(O) for all p¢ A(X) Using the mmlma,x theorem [31,
(3.1) and (3.2), we calculate that

sup JH¥(0) = sup sup inf {—JDp(z)}

PeEALX) PEA(X) z'el® 2(0)€X
=sup inf {—J(z)] = —inf supJ(x). . . .1 (3.3)
x'elt z(0)eX zeld x(0)X

A direct consequence of the above considerations is'the fo]lowing :
Theorem 3:1: LelJ Jp beasabove Then *inf JD(p) inf sup J(x)

' peALX) Z'e LY - 2(0)€X .

b5*
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Theorem 3.2: Let D € A(X) be a minimizer for Jy, and let 8Jpg(0). be: non-empty.
Then tlwre exists (a:(O), ') € 8JD,,(0), where _" € L20,T; X) and o:(t) = z(O)

T

+ f z (s ds, anwh thal TE€ A(X) and J(x) inf sup J(x) Furthermore, e _,:‘ -,
eIt oKX . )
Jos0) + TEE) =0, J@ -~ Th@m=0."" T @34

Proof: Theassumptions'on ¢* and y* imply that,for the minimizer 7, p(0) = p(T)
= 0 We shall prove that Jp(P) = sup {J(x) x(O) € X} = J(x), where Z(t) = z(0)

+ f z (8) ds and’ (x(O), )) € 8 byl 0) Pt Jo(P) =ip > — oo. By ‘the definition of
aJ pp, for the concave-convex function J Dp( , )-we have, for each (x(O), Z') € aJpz(0),

—l;(a) = (:v(O), a) . V a 6 X, x(O) € X

foy

f v P + o) a2 f o w)di + f woFo*
for 8‘“9 € L2(0 T; X) ‘The last mequahty 1mP11es - ' o
[ JDp(O g) Z —/tp + f (g(t), (l)) dt V g 6 Lz (0 T, X)
¢ ;0 ’ N "}
Further, forlf(t) = z(0) + f 3'(3) ds, z(0) € X, we obtain

Vot 53"5 T i

Joa(i) = 8up {of (9(‘),_' ’)) dt — Jni(d; 9)} =ip.
:fr“_ ) ﬂf' e “ .

Therefore —J(i) = sup { J (i)} 2 —z’D, thus sup J(i) < iép.
20X
In view of the assumptlons on'p and the definition of *, we notice that q)(t 5(t))

+ 7(t) =7 &), 7(¢) := sup {p*(t, v) v = 7} for ¢ m (0, 71 The functlon r is summ-
able in [0, T (see Theorem 2.1). Observmg that f B =T (|x(0)| - f| {0} dt)
we infer that f (p(t, x(t)) dt — —{— 0o a8 |x(0)| — + 00. Thus, in virtue of the convexity

and lower semlcontmuxty of x(O) - f q)(t x(t)) dt we conclude that there exists Z(0)
in X such that :

f(p(t z(t)) dt = min fq)(t (1)) dt
o)X 0
where

4
Z(t) = Z(0) +: [ Z'(s) ds,
Sl

i.e. sup {J(£): (0) € X} = J(&). This proves the first assertion of the theorem. .
Since Jpz(0) = —ip and J(Z) =.ip, therefore J D,,(O) + J(Z) = 0 The mclusmn
(=(0), )€ 6J p5(0) together with thé former equality gives (3.4) §
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Corolla.ry 3 1: Let p 2 € AO(X) minimize JD over A(X) Then tkere ezista x E A(X),
z(t) = z(O) + j (8) d, such that p(t) € aw(z (t)) and (z) € 3¢p(t x(t)) /orazmt
allt in [0, T, and

J@E) =it ewp J@)=do@®). (35)
el :(0)5 , ; .

. \
Proof: Smce g —>f :p"(t p(t) + g(t)) dt is finite in L0, T; X), thus, by [6 Prop.

1.5.2), we see that aJ D,,(O) is non-empty Hence a,nd ‘by Theorem 3.2, there exists
Z'e A(X) satlsfymg, along with 7 ¢ A(X ), (3.4) and (3. 5) Rewrmng (3 4) expllcmly,
we obtain the mclusxons for p a.nd -7, a8 asserted L

\ .

' Theorem33 Let

I(z P)——ln(z’(o))+lz(p(T)) .» R

s

—f <p(t), z(0) dt + f 7*(t —p (t)) d; + f v(t z (t)) dt

inf 1@, p) = inf Jo(p) = inf sup Jz)
(2. pYeL*X A(X) L. - 2'eld x0)EX

(z(t) = x(O) + f z (s) da) Moreover z/ (z p) 8 a minimizer /or I then p w a.mzm-
mwer/orJD ' s B to '

.Proof:, By the form of I.and Theorem 2.'2,’.i'nf {i(x",..p): @€ L3 = Jp(p)‘,for.ali
p € A(X), and so we have the first equality. The second one follows from Theorem
3.1.

- Suppose that (Z’, ) minimizes I on L¥0,.7T'; X) X A(X). Then I(Z’ p) mf{JD(p)
p € A(X)}. By:the first part of the proof, Jp(p) = inf {I(x p) z'.€ L*‘} < 1(5', ﬁ)
Therefore Jp(P) = inf {Jp(p): p € A(X)} 1

4. The proof of Theorem 1.1

We begin with showmg that the I defmed in Theorem 3. 3 18 sequentmlly weakly
lower semicontinuous in L%0, T; X) x 4,(X)."
By our assumptnons, P*(e, v) = <p,(t v) + a |v|? and tp(t u) = w,(t u) + 2‘1 |u|2

where P — f q),(t p(t)) dt and z’' - f wl(t z (t)) dt:are- sequentm,lly weakly: Tower
semlcontmuous in L0, T; X). The functlon (, v), —> 2-1 |p — 'vl’- is convex and lo-
wer semlcontmuous m X xX 80 (x p) =271 f Ip(t) :::(t)l2 dt is sequentm.lly

Wea,kly ]ower semlcontmuoue in L0, T; X) ><A ol X). In v1rtue of Lemme 22
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(Y

p— af (Ip (t)]2 (2a) 1 ]p(t)|2) dtis a.lso such a functlon in AO(X) Hence we see that

I(x ?) —ll( (0)) +lz( T))

T . ’
+ 27 f Ip(t) — 2'(@)|* dt + f (alp'(t)l2 =27 PO dt

+ f ?’1(‘ P ‘)) de + f '/’1(‘ z (3)) dt
s, rea]ly, sequentmlly weakly lower semlcontmuous in L2(0 T X ) X A (X )
Let, now 'E >0 be sufflclently large Pit D={p¢ X: lpl <'E} and h(p, u),
= (p u) if'(p, u) € DX'X, h(p; u) =' 400 otherwxse Denote by I, the functxona.l I

with the term f h(p(t), z'(¢)) dt mstead of f (x ®, p(t)) dt. In v1ew of Lemma. 2.3

and Theorem 3 3, inf I(z', p) = inf I,(x’, p) on L% x A(X). Let us take any (x,, s Pb)
€ L0, T; X) X Ay(X) and put b = I(zy', p). Of course, I(zy', pp) = Jb(p) for all
P € 4y(X). Next, choose E > 0 so large that each p € S, (Sp defined as in Lemma
23)is contamed 1n the mterlor of D this is posmble by Lemma. 2 3. We easily check

that I(z’, p) = f /(t z(t)) dt for a.ll @, p) € L¥0, T; X) x A(X), where f is defmed
in Lemma 2.4. By this lemma, the set

= {(z', p) € L2(O T; X) XA(X) I,,(:z: p) = b}

is rela.tlvely sequentially weakly compact in L2(0, 7'; X) x A(X) (m fact, for all p
from this:set, p(O) p(T) = 0, and then, the weak- compactness of p’ in L0, T;: X)
implies that of p in A(X)). Let {(:c,, » Pn)} = M be a minimizing sequence for 7 n Then,
by the above construction, it is also minimizing for 7, and I(z,’, p,) = I,(%,; P.),
n € IN. Since [ is sequentially weakly lower semicontinuous and {(z,’, p,)} i is rela.tlvely
sequentlally weakly compa.ct there: exists ‘a subséquence of {(zs"s Pa)} convergmg to
gome (Z’, P) in M being a'minimizer for .. Hence and ‘by Theorem 3.3, 7 is‘a mlm-
mizer for Jp.
- Further, from Corollary 3.1 'we obtain that there exists Z ¢ 4(X) such that 'p(t)
€ 61p((t Z'(t)) and ‘—P'(¢) € 9p(t; Z(¢)) almost everywhere in [0,7'],'and (3.5) holds.

In view of the T-perlodlcxty of the functions q)*( x), ¥*(-, z), z € X, the functions

®*(-, ), (-, z) are T-periodic, too. Thus each minimizer  of J;, can be identified
with some 7r € AT(X) restricted to [0, 7). This means that if we consider the func-
tional .

) [

(1

G+0T v

f (o*(t, —» (t)) - w*(f p(t))) dt + U(p(iT), p((i + 1) T)) |

i 6 Z mstead of JD, then Pr restncted to [zT (i + l) T] isa mlmmmer for it in the
space of  absolutely continuous functions. p: [iT, (i + 1) T] - X. Therefore the

3 L2(O T; X) from the assertion of Theorem 3.2 can be 1dent1f1ed with some func-
tlon Zpe P(X ) restricted to [0, 7). Define - .

z,(e) z(0)+j-x,(s)de (el G4 1)T); iEZ) g

Of course, xr € AT(X). Co:ollary 3.1 1mphes that zr, pT satlsfy (1 5) The proof of
Theorem 1.1 is completed 8 -
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5. An:example of'equation (L:1y - -~ .-

Ly . . 'y

Let j: R IR - (—00, 00) be bounded, lL-mea.surable and T-penodlc ‘with nespect to ‘the first
variable; contmuously differentiable and convex with respect t6 the second 'variable and such
that j(t; r) =e(t), (¢, 7)€ [0, TIX R, e: R > R isT- penodlc and sumimnable in T'. We put (¢, z)
= f 7(: z (u)) du for (¢, 2) e R >< LU’([R IR) (LU’([R [R) is the space of U-penodlc functlona,

"RV
U > 0, whose restrictions to [0, U belong to L0, U; [R)) Let X = Hy'(R,'R) (HU‘([R [R)
the Hilbert space of all U-pericdic functions whose restnctlons to(—M, M) belong to the Sobolev

space H‘( =M, M; [R) for all M > 0) thh the norm |z|’ = f (z,(u))’ du +’ f (z(u))’ du. w,(t :)is
convex and lowel; semlcontmuous in X t.€ [0 T] w, ls also IL xIB measureble in [R X X In con-
T o Heeye 4 v

sequence, Zio> f 'p,(t z(t)) dt is aequentmlly weakly lower semxcontmnous in L’(O T, -X)L |We set

vit, z) = (4k)"1|z|’ + vt 2), k> 0, for (4,z) € R X X. Thus all assumptions of Theorem 1.1
concerning y are satisfied. Now, take g(t, z) = 2-1|z|* and assume that k and 7' are such that

a® > 2kT* and n = T. Then we have fulfilled all ess_ur_nptxons_of .T_heorem 1. l From (1.5a) we
s ¢

calculate for our @ that —p(t) = f z(8) ds. Therefore by Theoreml 1 there ensts zT € AT(X)
¢ Do

whose restriction Z to [0, T} together with 7(¢) = — f Z(s) ds, L € [0, T], satlsfy (1. 6) for our @,

and it is a solution to the problem a e S

(/i ((a/br) 3(6 2 (1, w)) + (20) (zelt, w) — Azlt, w)) .. v,-"» - -:Ii
— Azx(t, u) + z(¢, u) =0, L e el
ot + T,u) =2l u), 2w+ U)=zlbu), (v eRXR,

T

fz(z,u)dz =0, ueR,
°
where A is Laplace’s operator in u. i
What is essentially new here is that Z satisfies (1.6). This is also interesting in its own nght a8
it is not easily to prove directly that the functional

TU ’
J(@) = [ [ (it wt, ) + (@0 (zealt, W) + (elt, ))?)
00

— 2-Y(zqlt, w)® + (26, w))?)) dudt

attains its minimum in any reasonable space of functions without boundary conditions.
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