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Optimal Control of a Nonlinear Singular Integral Equation Arising in Electro-
chemical Machining 

M. GoEBxi. and D. OESTBKICE	 S 

In der Arbeit wird ein optimales Steuerproblem für eine nichtlineare singulare Integralglei-
chungvom Cauchy-Typ untersucht. Die Existenz mindestens einer optimalen Losung wird 
nachgewiesen und elne notwendige Optimalitatsbedmgung hergeleitet 
B AaHno5 pa6o're scc iemyerca aajaa OnTHMaIba6r0 ynpaBaeHnR , AaH Henniettuoro CHe 
rynnpnoro narerpaJIbsoro ypaBseusa Tiffla Komu. JoKa8alBaeTcn cyuecTBoBaiufe no 
Meflbmefl mepe osoro oirrnMaimHoro pemeana a B&BOJHTCH Heo6xoI)!Moe yczOBHe 011TH-
Ma2n,H0CTH. 

The paper is concerned with an optimal coütroljirobieni for 'a* nonlinear singular integral equa-
tion of Cauchy type. The existence of at least one optimal solution is proved and a necessary 
optimality condition is derived. 

1. Problem statement and introductory remarks 

We start with the description of the optimal control problem (P) considered inthis 
paper Let there be given two bounded closed intervals [a, b] and [c, d] with b : 

.
<c, 

positive constants 1, d, in and Al with m1':!9 d Ml (cf. (3)), positive constants c, c2 
and an arbitrary real, number co, with b <c0 < c. (ci.. (4 c)). In the. whole paper, as 
usual, C'[a, b], v E (0,1] to be specified below, denotes the space of all v-Holder 
continuous functions y equipped with the norm IIylI, = max Jy(t) + sup {( y(t) - y(8)) / 
It : — sl'); and C"[a, b] denotes the space of all continuously differentiable functions y 
whose derivative y' belongs to C'[a, b] 'and which is equipped with the norm I!yIIi:, 

max ly()l ± Dy 'II . We introduce the nonlinear Nemytakij operator (superposition 
operator)	.	 . 

Oj,. = g(y), g(y) (t) =g(y( t)), t E [a, b],	 (1) 

generated by a given function g = g(x), x € [0, 1], and the linear singular integral 
operator of Cauchy type	 . 

5y(t) = d8, 1€ [a,b]u [c,dJ	 (2) X f '8 — t 

With these data and abbreviations we define. the set of admi,88th18 controls' - 

Gad ={g € C2[O,,1]: g(0). O,g(l) =, d 	f: 	(3) 
the .state equation	 I 

Gy(l)	Sy(t) —D =p(t), :g E [a,b],	 . .	 (4a) 
y(a)y(b).=of	 ..	S	 '	

.- (4b)



74	r M. GOEBEL and D. OESTBEICH 

with the givenriht-hand' .side	 ''	V	 V	 ' 

= n(b - a) [(b - a) + (I - b) in it - bf - (I - a) in I t - all 

- c 1 in ICo - LI + C2 f In 1 8	l /V(8 - c02) (d2 - e) d,	(4c) 

£ € [a, bJ u [c, dl, and the coel junctional 

J(g) =1i(t) di, ii = Si + D + p - q, 

where q € C'[c, d] is given For fixed g € Gad the state equation (4) is a nonlinear 
singular integral equation of Cauchy type containing the free parameter D € ER, 
Which must be determined together with the function 

	

y €Co [à, b] = {y € C'[a,b]: y(a) = y(b) = 0),	 V 

such that the pair w : =. {y, D} € C0'[a, b] x IR = : W0' satisfies (4 a). 
V 
Summing up 

we can writh our control problem in the following frm:	 V 
:4 

(P) Find ml {J(g): g E Gad, w € W0' satisfies (4 a)). 

For this problem we will, in Section 2, discuss the existence of optimaLsolutions1and; 
in Section 3, derive necessary optimality conditions. 

To sour best now 	there ar only very few papers dealing with control problems gover

ned by a singular integral equation This is rather surprising 6'ecause both lineai and nonlinear 
singular integral equations have a lot of applications m 4 different branches of sciencs an chd te 
nology (cf. [3, 13, 14, 19,' 24]). M; GOEBEL and L. v. WoLFER1ioaF [8]have consideredcontrol 
proble'ms with linear singular integral equations of both Hilbert and Cauchytype.. Existence 
theorems and ncessary and sufficient optimality conditions have been proved on the basis of 
[20], where v. OWOLFERSDOBF has dealt with control processes in Banach spaces withNoethe 
nan operator equations acing as state equation. The generalization of this theory to control 
problems with nonlinear operator equations, where the linearized equation is supposed, to be 
Noetherian,as presented by M. GOEBEL and' L. v. WOLFEBSDORr [9] (see also [5, 21] for short 
summaries), has enabled L. V. WOLYERSDORJr [21] to outline some results concerning control 
problems with a linear singular integral equation of Cauchy type in weighted Lebesgue spaces 
and with nonlinear singular integral equations of Hilbért and Cauchy type in Holder spaces, 
respectively: An isoperimetric variational problem involvinga linear singular integral equa 
tion of Cauchy type has been discussed by T. YA0.Tsu.Wu and A. K. WKrnixr [24]. , 

The control problem (P) is a slight generalization of a problem arising in electrochemical 
machining (abbreviated by ECM). Roughly speaking the control function g represents the shape 
of the cathode (with or without its isolating parts) and the given function q.(cf. (5)) the wanted 
shape of the anode. If the control g is fixed and if (y, D} denotes a solutiOn to the state equa. 
tion (4) related to g, then the term Sy + 1) + p occuring in the cost functional (5) represents 
the shape of the anode caused.by  just.this control g. That means, the problem(P) consists' in 
finding such an admissible shape of the cathode that the corresponding shape of the anode 
approximates its wanted shape as good'aspossible (in the sense of L 2.norm). In other words, 
the control problem (P) is the output least squares formulation of the inverse ECM problem. 
For more detailed information concerning the technical background we refer the reader to 
D. ,OESTBEICH [15, 16], M. GOEBEL and the papers cited there. Additionally we mention the 
nice monograph by J.-F. RODBIGUES [18], in which the ECM problem is derived and solved 
using the theory of variational inequalities. In [16] another approach to the inverse ECM pro-
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blem has been.ohtlined via the theory bfFredholm integral equations. We want -to point out 
that the results presented in this paper could be alsoapplied to certain optimization problems 
for the two-dimensional fluid flow through a nonlinearly shaed dam with a toe drain (cf. 
D. OEsTanIcn [14]). .	.	.	.' 

2. On the existence of optimal controls	 .	. 

Clearly, the starting point of our investigations has to be the state equation (4), 
which, because of what follows below, will be considered for any g € G, 

Q;	{g €	1[0,.i]: g(0)	.0, . gi	, m	g' ^5..	.	(6) 

We'iiitroduce the Banach space 

13''= C'[a, bJx IR.=r.{w = y, D}}, . IIwII, = I[ylI. -I- I D1, 

€ (0, 1]; W0' = C01[a, b] x IR is a subspace in ^ W'.	.	.,	.	..


Theorem 1: Suppose v € (0, A), where 2 = 1/2 - arctan M/rn Then for any g € G 
there exi8I8 a unique 8ohUion w =, w(g) € W01. to the 81ate equaEion (4) and, furthermore, 

lw(g)I, ^S const V g E (7.	.	.	 (7) 

Proof: Since the proof of the first statement is more or less completely the : same 
as those given in D OESTREICH [14] on the basis of L v WOLFIESDOEF [23], we can 
rèstrièt ourselves to some remarks conëerning mainly the'proof of'(7). 'To this end, 
in (4a) g E (7 is replaced by a smooth extension € C I(R) with '(x) = g*(0) for 
x € (— 00,0) and ü'(x) = g*(l) for x E (1, oo). Then by differentiating of (4a) 
we obtain a formally linear singular integral equation for which the solution can be 
given explicitly. Integrating, this solution we come to a fixed point equation y = Py 
with known operator P, see [23: § 2.2]. The estimations in [23: § 4.1] show that 
P:C01[a, b] -- 001[a, bJ and that there exists a constant co > 0 with 11pyll, eo for 
all y € C01[a, b] and all g E 0, where v and 2 are given as above. This means, P maps 
the 'whole space.Co'[a, b] into its convex compact subset Q = y €C0 [a, b]:yI1 

c0} :'Sine P maps ' Q into iteIf cbntinuóusly 'with' respect to (see [22]), 'the 
Schauder fixed point theorem yields the existence of at least one y€.Q with y ,= Py. 
Like in [14] it can be shown that y(t) € [0, 1] for t E [a, b]. Therefore, because the 
fixed point equation y = Py is equivalent to (4), problem (4) also has a solution 
yE . Q, for which holds  

IIy IIi	Co	Vg € G.	'	 ' '	 (8) 

At this the parameter D is given by 

D = g(y(a)) — Sy(a) — p(a) = —Sy(a) - p(a) . (= —Sy(b) — p(b)). 

Due to (8), S € 3(0701a, bJ, C'[a, b]) (see, for example, S. PROSSDORF [17: § 3.4i]) 
and Sy(a )I	IlSyll, we Obtain (7) I	.	. 

From now on, let v € (0, 2) be fixed. 
It seems to be impossible to prove an 'existence theorem for our control problem 

(P). Therefore, we modify it by replacing the set of admissible controls Gad by 

''0 ={g€	. '[0,l]: g(0)O,g(l) 'd,m:!gg'(x)^sMV,. 

'Jg'(x)	g'(y)I	k Ix - yJ Vx, y},	,	.....	.	'
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where k >00 is a given constant. The new optimal control problem will be called (P) 
and its set of admissible triples T, i e, 

Td = {{g, y, D}: g E	w = {y, D} € W0' solves (4)). •.... 
In virtue of Theorem 1 we have T 4 0. In the following lemma we prove the com-
pactness of Td in a suitable space.	

•0,	

0	

0	

0	
0 

€ (0,1) 
andxE(0,v)	 I 

Proof: Beause of the definition of G and Theorem 1 the set T considered 
in C90, fl x C0'[a,.b] x ER is bounded and, hence, relatively compact in' C[0, I] 
x Cok[a, b] x ER, where y € (0, 1) and x € (0, v). We show that VId is . also closed in 
this space. Let {{gn, y, D}) = T, denote an arbitrary sequence converging to 
{g0, Yo, D0} in C'[O, 11 x Co-[a l b] x R. The properties g0(0)= 0,g0(l) = m g0'(x) 
^ M for all x are evident. Since from	

0	

0	

•, 
0' 0	

0 

•	 0 
Jg0'(x) -, go'(y)J  

0	 Igo'(z)	g'(x) + gn'(x)—.g,,'(y) +jg '(y) —g'(y)t	
0 

k Ix - yJ + go'(z) - g'(x)I + Jg'(y) 

for all x', y E [0, 1] and ii € N it follows that.g0' is Lipschitz continuous with the Lip-
schitz constant k, we fmd'g0 € G Fmally, smce, because of S € (C0'[a, b], C'[a, b]) 
and  

g(y(t)) 
T 

qo(yo(t) ) I 
'g(y(t)) - g(y0(t))j + g(yo(t)) - go(y0(t))I  

M y ()	Yo(t)I + g(yo(t)) - g0(y0(t)) I  

for all tE [a, b] and n € IN, the relations g(y(t)) - Sy(t) - D = p(t) imply go(yo(t)) 
Sy0(t)— P0 =,p(t), I €,[a, b],'we get {g0, rio, D0} E T,, which completes the proof I. 
Theorem 2': The optimal control probleiñ (P*) charaaerized by (4), (5), (9) has at 

least one optimal solution.	0	 ,	
0 

Due to the above Lemma 1 and the obvious fact that the cost functional J maps 
Cok[a, b] x ER continuously into ER, the proof of this existence theorem is now stan-
dard and thus omitted.	 0 

3. Necessary optimality condition 

This seètion is the main part of the paper. It is devoted the optimality conditions to 
be satisfied by each optimal solution 

{g0, w0} € 0a5' X WO',, .tvo = Yo' D0} 

to our original control problem (P). Unfortunately, it is not possible to apply to (P) 
some general meth9d to be found, e.g., in [10] and in [4, 9] and the references cited 
there, since these theories usually need the partial Fréchet derivatives of the operator 
defining the state equation and the adjoint state space to describe the adjoint state.
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Note that in our case the corresponding operator	. 
F(g, w) = Gij — Sy - '1). — p, F: C2[0, 1] x. W0 -*. C'[a, b], - 

is even not defined in a neighbourhood of {g 0 , w0} and that C0'[a, b]* (and consequently 
W0") is at least very unconvenient, which is one of the reasons that , the theory of 
linear singular integral equations of Cauchy type works only with the Holder apace 
and hot with; its dul,cf [12,. 17] All this has led us tOuse the concept of directional 
derivative for finding  necessary optimality conditions. As essential tools we use the 
theory. of linear singular. integral equations developed in MusCHEUSOHWIU .(12: 
Kap VI and contmmty and differentiability properties of certain Nemytskij opera-  
tore acting .in Holder spaces, which we have proved recently in [6], concerning some 
other inte'restingproperties of -such ôperatorswe refer to[ 1, 2].,-'.	..: 

For arbitrarily fixed g E 0ad we defin& the'convëx liner combInation'g, (1 -- e) 
g0 + eg, e E [0, 1],., and denote by 0. the Nemytskij operator generated by g. (cf.(1)), 
and by w, = y,; D,} € W0' the uiiique solution to (4)' related to g, (cf Theorem 1). 
Provided the directional derivative	 . .. 

ô+J(g0 ; g — g ) = lu e- 1 ((e)	(0)),	(e) = J(g) 

xists we have the obvious necessary optimality onthtion 

6+J(g0 ; g — go)	0 Vg € 0p4.	 .	'	(10) 
'.' Therefore, in the following our main task is to calculate this directional derivative, 

which requires to study the behaviour of e 1(w. - to0) as €4. 0. 'First, 'howe'-ér, we 
reéall (cf.[12: Kap. VI)  

' Lemma 2 For each  € C'[a, b], v E . (0, A), there exi8t8 a unique solution {c, D} € W0' 
to the linear singular ihte.gril equation''  

g0'(yo(t)) y(l) — Sy(t) - D = f(t), . € [a, .bj. 


Theorem 3: Let  = (y, DI € W0' bethe unique 'sol'uuon.to 

g0'(y0(t)) y(t) - Sy(t)'— D. 0oYo(1) - Gij0(t), t € ta,,b]..:  

Then there exf.818 an abstract function w, = ,, Xe} €' W01 , e. E . (0; -co) and 'sufficiently 
small, such that	.	.	 ,.	;..	. 

W.,:	+	+' co,Ve € '(0, ), 1w,I, = o(e) as €4.0.	'	', ( 12) 
Proof: 1.' Let jo, '€, CF(R) -be arbitrary. extensions, of g 0 , g E:0,.-We define 
= (1 — e)

g
o + e, e €• 'ER, and introduce the Nemytskij operator ö, by setting


	

= ,(y). From [6: Theorem 2] we know the-following:	. 
At each z€ C'[a, b], 'the operator G,: - 0[a, b] --o- C'[a, b] has a c6ntinuou8 Fréchet 

derivative, (i,'(z) y(t) . = ,'(z(t)) y(t) Vy, € C'[a, b].  

Obviously, for any 'e € ' [0,'!], ö, is an extension of .(, defined above. That means, 
setting Z = {y € C'[a, b]: 0	y	l}wehave ..	 .. '. '	. 

G,'y = O,y Vy:E	, 'Vs € [0, 11.	'	-	' .	.	'	(14) 

Consider the nonlinear singular integral equation	. 

,y(l) - Sy(t) — D =p(t); tt (a, b]., :	.
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which using the operator 
F: IR x W0 --* C'[a, b], F(e, w) =	- - D - p 

can be written as operator equation 
F(e,w) =0.	 (15) 

For this equation and its defining operator F we can establish the properties listed 
below:

(a) Because of Theorem 1 and (14), for each e € [0,. 1] the pair We = ly,,D1} E W0' 
is the unique solution of (15). Particularly, F(0; w0) = 0. 

(b) Essentially, due to (13), in each point {ö, v} E . IR .x W09, v = {z, E}, the operator 
F has a continuous partial Fréchet derivative FW(Ô, v) given by	- 

F(o, v) w(I) = 6'(z(t)) y(t) — Sy(t) - D Vw = y, D) ' E' Wo' 

In particular we have	 ,. 

F(0, w0) w(t) = g0'(yo(t)) y(t)	Sy(t) - D Vw = {y, D} € W0'. 

By Lemma 2 and a known theorem due to Banach (see., e.g., [25: Chap. III, §5] 
or [11: Kap. XII, §1]) the operator F(0, We) has a cdñtinuouè inverse F(0, w0)—' 
E £(C'[a, b], W01). 

(e) Clearly, F has also a continuous partial Fréchet derivative with, respect to e at 
each point of JR x W01. 

As a consequence of these properties the implicit function theorem to be found for 
example in [11: Kap. XVII, §4] can be applied to equation(15). Hence, there is an 
abstract function w °w(e) defined on (—€ e), e> 0 sufficiently small, with the 
following two properties:  

(d) F(e, w(e)) = 0 Ve E (—e1 ,e), w(0)	w0. 
(e) At e = 0, w w(e) has a Frechet derivative.	. 

mother words, aftersetting w'(0) = w =.{y, D} we can write 
W (8) = w(0)+ ew + co VeE .(— to, e0),	•' 

where 80 € (0, Ci) is sufficiently small and co = {e, Xe) E W0' with I o II,	o(e)' as

e..0. Since, because of (a), w(e)= w1 fore E [0, 81)A [0, 1], we have proved (12). 

2. In virtue of Lemma 2 the linear integral equation (11) is uniquely solvable in W01. 
Therefore, the theorem is completely proved after showing that its solution is just 
given by w {y, D} introduced in the first part of the proof. 

By definition of w0 and W1 we have the identities	- 
Gay. — Sy, — D. =p and 0oYo -. SY0 - 

€ € (0, 1], on [a, b] from which with z. e-'(6,y, — 00y0 ) we get & — e'S(y — Yo) 
—, e 1 (D — .D0) ,= 0 on [a, b].. Because of S € £(C0'[a, 6], C'[a, b]), cf. [17: § 3.4.1], 
and relation (12), which is already proved, we find	.-

eS(y. - Yo) —e 1(D. - D0) -- Sy - D in C'[a, b] 

as e 4. 0. Hence, it remains to show 
— GoYo+ Gyo inC'[a,b].	 (16)
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Let us introduce a Nemytskij operator 0* by setting O*y = g01 (y), y E; 'Z. We notice 
Oat

0o. 0,0*:	-i- C'a, b] continuously,	 .	 (17) 

which. is an immediate consequence of [6: Theorem 1]. Now, because of; 

OeYe — 0oYo ='(1 - ) Goy + EG f - 0oYo 
= (Goy, OoYo) ± (OYo - OoYo)	 S 

E(GOYe	GoYo) + e(Oy — GYo),. E E (0, 1), 

we can write for eE (0,1] 

- go'(yo(')) y(t) -f- 00y0(t)	0Yo(t)
 

	

= ['(00y1(t) - 0y (t )) - y(t) 0*yo(t)]	.	. .	. 
+• (Gy(t)s— 0 (t)) ± (Go — G 0(t)). .	 :" (18) 

If here e tends to +0, then, by (12) and (17), the last two (...)-terms on the right-han 
side converge to zero in C'[a, b]. Concerning the first expression in [...] we have 

— Ooyo(t)) - y(g ) Oy0(t) 

= 1(y(t) — yo(t)) / g0 (yo(t) + t(y(t) - Yo('))) dr - y(g) 0*yo(g) 

= c'(y(:) - !/o(t))f [0*(y + (!ie — Yo)). (1) - G*yo(t)] dr + e'e(t) G*yo(t), 

EE(0,eo), and therefore	 . I 
II'(GYe - OoYo) - yo*y  

'IIYe _YoII,f.DG*(Yo ±(y	Yo))	 G* yo)) 	dr +.e' IcII,IlG*yoII,, 

where we have used a lemma proved in [6] and the fact that C'[a, bJ is a Banach al-
gebra. From this, again in virtue of (12) and (17), conclude also we that the [ ..j — 
term of (18) tends to zero in C'[a; b] provided e 4.0. Thus, (16) is shown and,the proof 
is complete I	 - 

Next we want to define the adjoint state. For this we introduce the set H*(a, b) of 
all functions z on [a, b] which are HOlder continuous on each subinterval of (a, b) 
and for which there are two functions CI and C, that are HOlder continuous in a neigh-
bourhood of c,:= a and c2 . b, respectively, such that in the corresponding ,neigh-
bourhood z(t) = (t)/Jt - cj", 0 :!^ v < 1 (i = 1, 2). Consider the linear singular 
integral equation 

g0'(y0(t)) z(t) + Sz(t) 
=	

€ (a, b) '
 
	 (19a) 

together with the additional condition 
b	 d 

f z(t) dt = 2/ h0(t) di,	 S	 (19b)
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'where h denotes the known function	- 
h0 = 8Yo + D0 + p - q.	 (20) 

From MUSCHELISCHWILI [12: Kap. V] it can be seen that in H*(, b)'the solution to 
(19a) is uniquely determined apart ..from. a 'co'nstant. ,, Because this constant can be 
chosen in such a way that (19b) is also satisfied (cf. [23: §2.2]) there is a unique So-

lution z0 E H*(a, b) to (19). In the sequel z0 will be lled a.ijoins 8k2e (to {g0, Yo D0}). 

Theorem 4: The directionql derivative of J: C2[0, 1]	IR at g0 E Old in the direction

o/g— go, gEGad ,'ia given by 

6+J(g0, g - g0) =f[g(yo(')) - go(yo(t))z 0(t) dl, 

where z0 E H*(a, b) denote8 the adjoint 81ate., 

Proof: With the notations introduced at the beginning.of this section we have to 
show

=f [g(yo(t)) - go(y0('))] z0(t) dl	 '(21) 

Straightforward ,calculation leads to -. 
- 0(0) = J(g1) - J(go) 

= 2fh0(l) [S(y, - Yo) (I) + (D -'Do)] dt + ô(e), 

e E (0, 1], with 6(e) = f [S(y1 - Yo) (t) + (D, - D0)]2 dl and the function h0giveü 
in (20). Because of	c 

f ho(t) Sy(t) dt	f y(t) .j	48dtVy,E C0'[a,b], 

weget'	..	 S

Id 

0(e) - 0(0) = _!. f (y(t)	 h0(a)d8 dt a	 f 8 

d  

+ 2(D - D0) f h0(t) dl'± 6(e),	 ., 

and by means of the definition of z0 E H*(a, b) as the unique solution to (19) we come 
to

0(e) - 0(0) = _f (y,(1) - Yo(t)) (go'(yo(t)) ZO(t) ± Sz(t)) dl	-. 

+ (D8 - DO) fzo(l)dt + 6(e) 

= -! [go'(yo(t)) (y,(l) - y(l)) - S(y, - Yo) (1) - (D, - D0)] 

x z0(t)dl+ö(e).
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Here, in the last step we have used the formula (cf., e.g., [12:. 96]) 

fY(t) So(t) dt = - I zo(t) Sy(t) & Vy E C0'[a, b]. 

If now e € (0, e) where so is the same as in Theorem 3, we can apply (11) and (12) 
Doing thiswe obtain 

(e) '— (0) = ef.[g(yo(t)) - go(yo(t))]zo(t) di + y(e)+ 6(e),	(22) 

E E (0; e ) with 
• c:. •	.*...	'b-	 •-	 -...	 ..... 

= *! 
[go'(yo(t)) e(')	S(t)	x4 z0(t) dl;	 . 

Because of y(e)I ^5 const (IIeI! + IISeII + I X, I); € € (0, e0), we' see thM y(e)= o(e) 
as e 4.0. Since the same is true for 6(e) the wanted relation (21) follows from (22)1 

I.: 

Because of (10), Theorem 4 yields at once a necessary optimality condition form U*- 
latedas  

Theorem 5: If {90, Yo' D0} € Gad x 001[a, b]x IR 18 optimal to the control problem 
(P), then  

I [g(yo(t )) - 90(y0(t))] z(t) di	0 Vg € 0d,	 (23) 

whe z E 'H* (ã,b) is the ddjbin.t 8lale defined by (19).  

Condition (23) can be named Pontryagin minimum principle. Clearly, Theorem 5 
remains valid for any other convex set of admissible controls Ga d C2[0, 1]. The proof 
of Theorem 5 for the modified control problem (P*), which we have considered in 
Section 2, is still open.  

I-	,*•	*•*	.	- 

REFERENCES  
[1] APPELL, J.: The superposition operator in function spaces - a survey. Preprint Nr. 141 

Augsburg: Univ. 1987. 
[2] A1'PELL, J., DE PASCALE, E., and P. P. Zssaxjxo: An Application of B. N. Sadovskij's 

Fixed Point Principle to Nonlinear Singular Equations. Z. Anal. Anw. 6 (1987), 193-208. 
[3] BIRKHOFF, G., and E. H. ZABANTONELLO: Jets, Wakes and Cavities. New York: Academic 

Press 1957. 
[4] BITTNER, L.: On optimal control of processes governed by abstract functional, integral 

and hyperbolic differential equations. Math. Operationsforsch. Statist. 6(1975), 107-134. 
[5] GOEBEL, M.: On control problems for a quasilinear second order ordinary differential 

equation. Math. Nachr. 142 (1989), 277-286. 
[6] GOEBEL, M.: On Fréchet-differentiability of Nemytskij operators acting in Holder spaces. 

Glasgow Math. J. (submitted). 
[7] GOEBEL, M., und D. OESTREICH: Zur Optimierung der elektrochemischen Bearbeitung. 

Wiss. Z. Techn. Hochsch. Leuna—Merseburg 81 (1989) 3, 293-298. 
[8] GOEBEL, M., und L. v. WOLFERSDORF: Optimale Steuerprobleme bei linearen Integral-

gleichungen. II: Singultre Integraigleichungen. Beitrage zur Analysis 9 (1976), 149-158. 

6 Analysis. Bd. 10, Heft 1 (1991)



82	M. Goazi. and D. OESTREIC 

[9] GOEBEL, M., land L. 'v WoLsRsDoRF:Optimale Steuerprobleme bei NoethersohenOpe-
ratorgleichungen III. Math. Nachr. 82 (1978), 77-85. 

[10] loyFE, A. D., mid V. M. Ticnosaaov: Theorie der Extremalaufgaben. Berlin: Dt. Verlag 
Wise. 1979.  

[11] K.&NTonowlTscn, L. W., mid G. P. AxjLow: Fuñktionalanalysis in normierten Räumen. 
Berlin: Akadernie.Verlag 1964.  

[12] ' MUSCRELISOKWIIJ, N. I.: Singuläre Integraigleichungen. Berlin: Akademie- Verlag i965. 
[13] MYCXEJIRUIBHJIB, H. H.: HeIoTopMe OCHOBHLie saja'rs MaTeMaTM qec}Cofl Teopun ynpy-

roCTE. MocKsa: H8J-BO Hayxa 1966. 
[14] OESTBEICB, D.: Zum' Staudammproblein mit Drainage. 2. Angew. 'Math. Mech. 67 (1987), 

293-300. 
[15] OESTREICn, D.: Ein Problem der eiektrochemischen Bearbeitung. Demonstratio Mathe. 

matica 22 (1989), 401-412. 
[16] OESTBXICH, D.: Optimale Steuerung bei der elektrochemischen ,Bearbeitung (Design-

Optimierung). Tagungsbericht 33. IWK Techn. Hochechule Ilmenau 1988, Heft 4, 93-96. 
[17] PBSSSDOBF, S.: Einige Klassen singulärer Gleichungen. Berlin: Akidemie-VerIag 1974. 
[18] RoDalouns, J.-F.: Obstacle Problems in Mathematical Physics. Amsterdam—New York—

Oxford —Tókyo:. North-Holland 1987.' 
[19] 'CEoB,J1'. H.:, flnocKne aaa'm rxpOnuaMmfl! a aaponnaMnKa.. Moccsa: 148J-Bo 

HayRa 1980. 
[20] WOLFEESDORY, L. V.: Optimale Steuerprobleme bei Noetherschen Operatorgleichungen. 


	

'Math.. Nachr. 61 (1974), 93-109. '	 * 1,	c 

[21] WOLFERSDORP, L. V.: Necessary optimality conditions for control processes with singular 
integral equations and elliptic equations. Abh. Akad. Wise. DDR 6N (1978), 279-292. 

[22] WoIrERsDoaF, L. V.: A clasé of nonlinear Riemin.Hilbert problems , for 'holomorphie 
functions. Math. Nachr. 116 (1984), 89-107.	 '' .. 

[23] WOLFERSDORF, L. V.: On the theory of nonlinear singular integral equations of Cauchy 
type. Math. Meth. AppI. Sci. 7 (1985), 493-517. 

[24] YA0-Tsu Wu, T., and A. K. WHrrNEY: Variational' caléulus involving frigular integral 
equations. Z. Angew. Math. Mech. 58 (1973), 737-749. 

[25] Y0SIDA, K.: Functional Analysis. Berlin—Gottingen—Heidelberg: Springer-Verlag 1965. 

Manuskripteingang:22.11.1988.  
5*' 

VERFASSER:	 S 

Doz. Dr. MANF'RED GOEBEL und Dr. DIETER OESTREIOH 
Fachbereieh Mathematik der Bergakademie Freiberg 
PSF 47 
0-9200 Freiberg 

	

Bundesrepublik Deutschland	,


