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Optimal Control of a Nonlinear Singular Integral Equation' Arising in Electro-
chemical Machining

M. GoeBEL and D. OESTREICH

In der Arbeit wird ein optimales Steverproblem fiir eine nichtlineare singulire Integralglei-
chung vom Ceuchy-Typ untersucht. Die Existenz mindestens einer optimalen Losung wu-d
na.ohgewxesen nnd eine notwendlge Optnmalxtatsbedmgung hergeleltet ) '

B nannon pa6o're nccnen‘ye'rcn safaTa onmmanbuoro ynpan.neuna zx:m ne.unnenuoro cnn-.
TYJAPHOTO HATErpajibHOr0 ypaBHeHAA Tuoa HOWH. JIOKABHBAeTCA CyMECTBOBAHHE WO

MeHbInelt Mepe OgHOoro OOTHMAJNBbHOTO pemeu}m H BHBOILHTCH neo6xommoe ycaom{e onTH-
MAJIBbHOCTH.

The paper is ooncerned with an optama] control problem fora nonlmear singular mtegrsl equa-
tion of Cauchy type. The existence of at least one optimal solution is proved and a necessary
optimality condition is derived.

LR ':i,

1. Problem statement and mtmduetory remarks i e

We start with the descrlptlon of the optimal control problem (P) consxdered in thm
paper. Let there be given two bounded closed intervals [a, b] and ¢, d] with b < ¢,
positive constants I, d, m and M withml < d < Ml (cf. (3)), positive constants ¢,, ¢,
and an arbitrary real number c, w1th b < ¢y < c.(cf.. (4c)). In the.whole paper, as
usual, C7a, b}, v € (0,1] to be specified below, denotes the space of all y-Holder
continuous functions y equipped with the norm [y, = max |y(t)| + sup {(ly(t) — y(s))/
jt'— s } and C'"a, b] denotes the space of all contmuously differentiable functions ¥
whose derivative y’ ‘belongs to C'[a, b]-and which is equipped with the norm ||y,

= max [y(¢)] + ll¥'ll,- We mtroduce the nonhnear Nemytsklj operator (superposwlon
operator) o

»W—m»mwwwm)wmm [ ¢

generated by a given function g = g(x), z € [o, l], and the hnear smgu]ar mtegml
operator of Cauchy type

e f“”“ Mwﬂumaﬂ?‘ ._.Qw.;@
T K ) TR

Wlth these data a.nd a.bbrevxatlons we define. the set o/ admi&sible cmmole
.. FE T A T LY
_ .a—{g€6‘2[0 1): 9(0)—0 g(l)—d m<y SM}. N £ )
theatazeequauon o : S B
Gyj() = Sy() = D L ON #ﬁ [_fz,‘!?]_,;f. T (48)

yu) = y(d) =0, B g R 1))
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with the given-right-hand-side ™ « 57w of - Sl oL el
;h:ﬁ; w0y :
l
P(?) —m[(b—a) +@¢—b)Injt—b — (¢t~ a)ll_lllt-f al]
d
~cilnfey — U + ¢ [In]s — 8 [{(s® — ¢g?) (@% — &%) ds, (4¢)
t € [a, b]u [c, 4], and the cost functional
d
Igp=[rwd, h=Sy+D+p—gq, (6)

: ol e .- - ' L : S : R 3es
wlierquC’[cd] is ‘giv‘én' For fix'.ea ;cjé G;d the state équﬁtio;l' ) is a nonlinear
singular integral equation of Cauchy type containing the free parameter D € [R
whlch must be determmed together w1th the functlon '

S AS 00 [a: b] {y € C'[a: b] yla) = y(b) =0}, - - S

such that the pair w:={y, D} € Co {a,b]] x R =: W, satlsfles (4&) Sumrmng up
we can write our control ‘problem in the followmg form et

) N IY 1

(P) Find inf {J(g): g € Qaq, w € W’ satisfies (4a)}.

For this problem we will, in Section 2, discuss theiexistence of optimal:solutions,and,
in Sectlon 3, denve necessary optlmahty condxtlons.
. 5 i ‘

,,,,,

smgular mtegra.l equations have a lot of applxcatlons m‘ different branches of scxences and tech:
nology (cf: [3, 13, 14, 19, 24]). M. GoEBEL and L. v. WOLFEBSDOBF [8)have consxdered control
problems with lmear singular integral equations 6f both Hilbert and Cauchy-type.. Existence
theorems and necessary and sufficient optimality conditions have been proved on the basis of
[20], where V. WOLFEBSDOBE has dealt with control processes in Banach spaces with!Noethe-
rian operator equations acting as state equatlon The genemhzatwn of this theory to control
problems w1th nonhnear operator equations, w] where the linearized equation is supposed. to be
Noetherlan, as presented by M. GoEBEL and L. v. WOLFERSDORF [9] (see also [5, 21] for short
summaries), has enabled L. v. WoLFERSDORY [21] to outline some results concerning control
problems with a linear singular integral equation of Cauchy type in welghted Lebesgue spaces
and with nonlinear singular integral equations of Hilbért and Cauchy type in Holder spaces,
respectively. An’ isoperimetric variational problem involving a linear singular intégral equa-
tion of Cauchy type has been discussed by T. YA0-Tsu-Wu and A. K. WaITNEY [24].,,. . . .

The control problem (P) is a slight generalization of a problem arising in electrochemical
machining (abbreviated by ECM). Roughly speaking the control function g represents the shape
of the cathode (with or without its molatmg parts) and the given function g¢-(cf. (6)) the wanted
shape of the anode. If the control g is fixed and if {y, D} denotes a solution to the state equa-
tion (4) related to g, then the term Sy 4- D + p occuring in the cost functional (5) represents
the shape of the anode caused.by just this control g. That means, the problem (P) consists in
finding such an admissible shape of the cathode that the corresponding shape of the anode
approximates its wanted shape as good as possible (in the sense of Ly-norm). In other words,
the control problem (P) is the output least squares formulation of the inverse ECM problem.
For more detailed information concerning the technical background we refer the reader to
D. OxsreercH [15, 16), M. GoereL and the papers cited there. Addmonally we mention the
mce monograph by J.-F. RoprIGUES [18], in which the ECM problem is derived and solved
using the theory of variational inequalities. In [16] another approach to the inverse ECM pro-
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blem has been outlined via thé theory of, Fredholm integral equations. We want .to point out
that the results presented in this paper could be also.applied to certain optimization problems
for the two-dimensional fluid flow through a nonlmearly shaped dam with a toe drain (cf.
D. OestrEICH [14]). . . ..

2. On the existence of optnmal eontrols IR

Al
Clearly, the startmg pomt of our mvestlgatlons has to be the state equatlon (4),
wlnch because of what follows below, will be conmdered for any g € G

@i= {geC’“[O 1: 90) =9, g(l)—d mSg sM} e
We mtroduce the Banach space _’ L ' .
o C'[a, b] XR.={w = {y, D}}.- |le| = Ilyll + IDI, L Y

v € (0,1]; W0 = Cy[a, b] X R is a subspace in W*. T

Theorem 1: Suppose v € (0, 3), where A = 1/2 — arctan M[n. Then for any g € G
there exists a unique aol'wtion w= w(g) € Wy to the state equation (4) aM, furthermore,

I{w(g)IISconsthEG e : (7)

Proof: Since the proof of the first statement is more or less completely the.same
a8’ t,hose given in D, OESTREICH [14) on the basis of L. v. WOLFEBSDOBF (23], we can
restrict ourselves to some remarks concerning mainly the proof of’ (7) “To this end,
in (4a) g € G is replaced by a smooth extension § € C(R) with §'(z) = ¢'(0) for
€ (— 00,0) and §'(x) =g'(l) for z€ (I, 0). Then by .di_fferentiating of (4a)
we obtain a formally linear singular integral equation for which the solution can be
given explicitly. Integrating this solution we come to.a fixed point equation y = Py
with known operator P, see [23: §2.2]. The estimations in [23: § 4.1] show that
P:Cy[a, b] - Cy'la, b} and that there exists a constant ¢, > 0 with [[Py|; < ¢, for
all y € Cy[a, b] and all g € G, where » and 1 are given as above. This means, P maps
the ‘whole’ space -C¢'la, b} into its convex compact subset @ = {y € 00'[a, b] Iyl
< ¢,} .'Since P niaps'Q into itself continuously with' respect to ||-||, (see [22]), the
Schauder fixed point theorem yields the existence of at least one y € @ with y = Py.
Like in [14] it can be shown that y(t) € [0, I] for ¢ € [a, b]. Therefore, because. the
fixed point equation y =Py is equxvalent to (4), problem (4) also has a solutlon

\6 Q, for whxch holds o Y

e "'.".' |'..“..' . ’ : Lo

ol S o VgeG. ' e L 8)
At this the parameter D is given by

D = g(y(a)) — Sy(a) — pla) = —8y(a) — p(a) . (= —Sy(®d) — p®)). :.

Due to (8), S € £(CyTa, b], C’[a, b)) (see, for example, S. PROSSDORF [17 §34 1])
and |Sy(a)| < ||Syll» we obtain (7) &'

From now on, let v € (0, 1) be fixed.
It seems to be lmPOSSlble to prove an existence theorem for our control problem
(P). ’l‘herefore, we modify it by replacing the set of admissible controls G.., by .,

cod

Sy

@34 = {g € C[0, 1: (0)—0 g(l)—-d mSg(x)SMVz Lo
W@ g Skl -y Yoy, A



78 M. GoeBEL.and D. OESTREICH - . - i ..}

where 'k > .0 is a given constant. The new opnmal control prob]em will be called (P”)
and 1ts set of admissible trxples T.‘d, Le.,

T.d = {{gs Y, D} g 6 ld, w = {y: D} 6 WO' solves (4)}

In virtue of Theorem 1 we have T3, = @. In the followmg lemma we prove the com-
pactness of T3, in a suitable space.

» 4.
‘. R

Lemma 1: Tke cet T:dc Cl “[0 l] X Co"[a, b] x lR tscompau/or any/txedy 6 (O 1)
and x € (0, ¥): - )

Proof: Beceuse of the deﬁmtlon of G a.nd Theorem l the set T conmdered
in -C1[0, I] X Cy[a, b} X R 'is bounded a,nd hence, rélatively compact in° C-#[0, l]
X Co"[a, b] xR, where u € (0, 1) and x € (0,»). We show that T3, is. also closed in
this space. Let {{@ns Yns D} = T2, denote an arbltmry sequence converging to

{go Yo Do} in C*#[0, 1) x C¢*[a; b] X R. The. Pmpemes 90(0) 0; go(l) =d,m < 90'(35)
S M for all z are evident. Since from . | S C

,lgo(x)—Qo(y)l ‘ L P
Sg(@) = ga (z)l + 19 (%) — g2’ (®) +° lgu (y) = go'(_y)l
Skilz—yl+ Iyo (@) — ga'(z)| + lq.. (y) - go ()]

for all , y E [O l] and n 6 N'it follows that, go is Llpschltz contmuous w1th the Lip-
schltz constant lc we fmd go € G, Finally, since, because of S ¢ 53(00'[a, b], C"[a, b])
a.nd

f’: Iau(y..(t)) - ao(yo(t))l S
= Igu(yu(t)) - y..(yo(t))l + ly.(yo(t)) — 9ol yo(t))l
< My — yo(t)l + lg..(yo(t)) - go(yo(t))l

for allt €la,bland n € lN the relations g,(y,,(tg - Sy,(t) — D, = p(t) 1mply go(yo(t))
—_ Syo(z) — Dy =.p(t), ¢ € [a, b],-we get {go, Yo, Do} € Tay whlch completes the proof B.

"Theorem 2: The optimal control problem (P") charaderized by (4), (8), (9) has at
leaat one optzmal solution.

Due to the above Lemma 1 and the obvious fact that the cost functlonal J ma.ps
Cy[a, b] x R continuously into R, the proof of this exmtence theorem is now stan-
dard and thus omitted.

3. Necessary optimality eondition

This section is the main part of the paf)er. It is devoted the opamww conditions to
be satisfied by each optimal solution

e {go, wo} € Gaa. X W', wo {yo,Do}- L ’ I . . . .

to our orxgma.l control problem (P). Unfortuna.t,ely, 1t, is not: possxble to apply to (P)
some geneml method to be found, e.g., in [10] and in {4, 9] and the references cited
there, since these theories usually need the partial Fréchet derivatives of the operator
defining the state equation and the adjoint state space to describe the adjoint state.
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Note that in our case the corresponding operator T
F(g,w) = Gy — Sy —D.— p, - F:C¥0,]] x Wy - Ca, b],

is even not defined in a neighbourhood of {g,, wo} and that Cy’[a, b]* (and consequently
W,™*) is at least very unconvenient, which is one of the reasons that the .theory of
linear singular integral equations of Cauchy type works only with the Holder space
and not with:its dual,‘cf. [12,.17]. All this has led us to use the concept of directional
derivative for finding necessary optimality conditions. As essential tools we use the
theory. of linear smgular integral equations developed in MusCHELISOHWILI [12:
Kap. V] and continuity and dlfferentlablhty propertles of" certam Nemytsklj opera-
tors acting in Holder spaces, which we have proved recently in {6]; concermng some
other interesting: propertles -of such opera.tors we refer to [1, 2] -

For arbitrarily fixed g € 'G,; We define the convex linéar combmatlon o= (lr -t e)
go + g, € € [0, 1], .and denote by G, the Nemytskij operator generated by.g. (cf.(1)),
and by w, = {y,, D,} € W the unique solution to- (4) related to g. (cf Theorem 1)
Provided the directional derivative “ C b

0.3(go; g — 9o) = lim e“(d’(e) —@(0)}, - D(e) = I(go)s-

[ . D S 1)

exlsts we ha,ve the obv1ous necessa.ry optlmahty condmon

6+J(go,g - go) 20 Vge G.u L ('1’0)'

which requires to study the behawour of e“(w, - wo) as e.L 0 Flrst however, ‘we
recall (cf. [12 Kap V]) e C A oy e e

Lemma 2: For eachf 3 C"[a b, v € (0 1), there exietsaunique 8olwti0n {y, D} € Wo
to the linear 8£ngular integral equauon - , e

g0'(vo®) 9()) — Sy(t) — D = f(t), .t€[a,b). ,
Theorem 3: Let w = {y, Dy € Wo be the unigue - 8olution to - _ R
96’ (40(t)) 9(0) = Sy() — D.= Geyo(t) — Gys(t), tefa,b)... ~ .- . (11)

Then there exists an abstract function w, = {0,, x} € W', e.Ej(O; ‘€g) and 'mf/tctently
emall sw:h that .

et

w, —~wo + w + w, Vs € (0 eo), |lw,]] = o(e) as e¢ 0. N (12)

Proof l Let go, g€ C2(iR) be arbltmry extenswns of go, gE€. G.d We defme
Go = (1 — €) §o + &§, ¢ € R, and introduce the Nemytsku operator G by settmg
G.y = §.(y). From [6: Theorem 2] we kriow the’ followmg

At each z € C'[a,b], the operator G,: C'[a, b] - C[a, b] has a continuous Fréchet
derivative G./(2) y(t) = (z(t)) y(t) Vy,€ C’la, b} -

Obv1ously, ‘for “any s € [0,1], G; is an extension of- G, defmed a.bove That means
setting D = {y € C"[a, b]:0 < y < I} we'have . L

G,y = Gy Vye D, Ve e [0, 1]. ' - T (14)
Consider the nonlinear singular integral equation '
‘ Gy() — Syl) — D = p(t); i€ [a, B),
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which using the operator
F:R x Wy - C1a,b], F(,w) = ,y—Sy—D P
can be written as opemtor equation : o :
© Fe, w) = 0. ' I R “(15)

For this equation a.nd 1ts defmmg operator F we can estabhsh the propemes hsted
below :

(a) Because of Theorem 1 and (14), for each c€ [0 1j the pair w, = {y,, e} € Wo
is the unique solution of (15) Particularly, F(O w,) = 0.

(b) Essentially, due to (13); in each point {6, v} € R x We,v = {z, E}, the operator
F hasa continuous pa.rtm.l Fréchet derivative F,(4, v) given by - o

- '

Fo(6, 9) w(6) = §s'(2()) 9(6). — Sy(t) = D Vw = {y, D) ¢ Wo' o

}

In partlcular we have ol Lo Lo ~;'
F (0, wo) w(t) = go'(yo(t)) y(t) — Sy(t) — D Vw = {y, D} € Wy'.

By Lemma 2 and a known theorem due to Banach (see eg., [25 Chap. I1I, §5)
or [11: Kap. XII, §1]) the operator F,(0, w;) has a continuous inverse F,(0, w,)™!
6 8(010’: b]: Wo ) .

(e) Clearly, F has also a continuous pa.rtlal Fréchet derxva.txve w1th respect toe at
each'point of R X Wo ' .

As a consequence of these propertles the 1mphclt functlon theorem to be found for
example in [11: Kap. XVII §4] can be applied to!equatlon (15). Hence, there is an
abstract funétion w = w(e) defined on (—¢,, ¢,), & > 0 sufﬁclently small, w1th the
following two properties:

(d) F(e, w(e)) =0 Ve € (—&,8), w(0) = w,.
(e) At ¢ = 0, w = w(e) has a Frechet derivative.

vy ..

In other words, after setting w'(0) = w =.{y, D} we can write -
T w(e) = w0)+ ew 4 w, Ve € (—&, &),

where ¢, € (0, ¢,) is sufficiently small and w, = {g,, 1.} € Wy with |, = o(c) as
& 0. Since, because of (a), w(e) = w, for € € [0, &) A [0, 1], we have proved (12).

2. In virtue of Lemma 2 the linear integral equation (11) is uniquely solvable in W .
Therefore, the theorem is completely proved after showing that its solution is Just
given by w = {y, D} introduced in the first part of the proof. - . .

By definition of w, and w, we have the identities

G.y. — Sy, — D, =p -and  Goyo — Syo — Do =p

€ € (0, 1], on [a, b] from which with A, = ¢ 1(G.y, — Goyo) We get A, — e 18(y, — yov)'
— & XD, —.Dy) =0 on [a, b].. Because of § € £(Cy1a, b], C’[a, b] cf. [17: §3.4.1],
and relation (12), which is already proved, we find . :

S-IS(y, - yo) _E_I(Dt - Do) - Sy - D in C'[a) b]
as € | 0. Hence, it remains to show B ) . ,
A5 90'(%0) ¥y — Goto + Gyo  in C[a,B]. - o (16)
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Let us introduce a Nemytskij operator G* by setting G‘y = go'(y), y € D..-We notice
that

Go, G, G*: % - C1a, b] cont,muously, ' ) ,' ' o (17)
whxcb is an mmedmte consequence of [6 Theorem 1] Now, because of : R
Gy — GoZ/o = (1 — &) Goy + €G3I - Go!/o : ‘

(Goyz — Goyo) + e(G'!/o — Goyo) .
- e(Goy, — Goyo) + £(Gy. — Gyo): e€.(0,1],

we can write for ¢ € (0, 1]

Aft) — go (yo(‘)) y() + Go?/o(‘) - Gyo(‘)

=[e(Goge(®) — Govolt)) — ¥(t) 6*y0(t)] S e
G (Gl = Gaio) F (Budd) — Go®) e e 18)
If here ¢ tends to 40, then, by (12) and (17), the last two (.. )-terms on the right'i-;h(oxi

sxde converge to zero in C'[a, b). Concerning the fust expressmn m [..7] we have

L e (6 — Goyo(z)) — (&) G*y4(t)
= e(y.lt) ~ valt)) [ a6lon) + e(w) w0 de —wly Gy
o :"' R B ity -

l =
= & (ylt) — %o0)) f [6*(y0 + T(¥: — %0)).(6) — G*yo(t)] d7 + £ %0.() G*yol®),
J .

& € (0 eo), and therefore

it
N '

IIE"(Gy. - Goyo) - yG‘onl ‘ . o R T EA
< & Ylye — Yol f 116%(vo 2w, — vo)) — G*wal, dr +.& fllh 6* ol
0 ", c.

where we have used a lemma proved in [6] and the fact that C'[a, b] is a Banach al-
gebra. From this, again in virtue of (12) and (17), conclude also we that the [...] —
term of (18) tends to zeroin C'[a, b} provided ¢ § 0. Thus, (16) is shown and the proof
is complete B

Next we want to define the adjoint state. For this we introduce the set H*(a, b) of
all functions z on [a, b] which are Holder continuous on each subinterval of (a, b)
and for which there are two functions ¢, and {, that are Holder continuous in a neigh-
bourhood. of ¢, = a-and c,. = b, respectively, such that in the corresponding neigh-
bourhood 2(2) = £;(t)/|t — ¢;I", 0 < v; < 1 (§ = 1,2). Consider the linear singular

integral equatlon
N

go'(%0(8)) 2(2) + SZ(t) = f °(_8) s_, te (a,b); (19a)
together w1th the addmonal condition ’

Ot : S
f z(¢)dt =2 f ho(t) dt, _ ) (19b)

a
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‘where k¢’ denotes the known function * . . - h T et

, ho=8yo+Do+p—9q. (20)
From MuscHELISCHWILI {12: Kap. V] it can be seen that in H "(a, b) the solutlon to
(19a) is uniquely' determinéd apart from .a ‘constant.; Because this constant can be

chosen in such a way that (19b) is also satisfied (cf. [23: §, 2.2)) there i8 a unique 8o~
lution z, € H*(a, b) to (19). In the sequel 2 w111 be ca,lled ad;oint state (to {G0> Yo Do})-

Theorem4: The dzrectz’onal derivative of J 02[0 l] - lR at Go € Gag in the direction
of g — go» g € Gy, 't given by

A A e .. ~yge
CE N R I A

8+3(gos 9 — 90) = f [g(yo(‘)).f go(‘!/o(f)” 20(“) .dt:,‘

whefezoeH‘(a,b)denotestheadyointstate T

i Proof: With the notations introduced at the begmmng of .this sectlon we have to
show .

N l) '<‘.~.. ! Ci - N ’ :.v;'],;-’

RN S
M f [g(?/o(’)) - go(yo(‘))]zo ‘)d‘ . . (21)

l
0 I BN

Straightforward calculatlop leads to . L .
&(e) — P(0) = I(g,) — J((Io) '

A I ho(®) [S(ye = wo) (&) + (D — Do)} dt - 8(e),

e € (0, 1], with 8(¢) = f S — %) (&) + (D. — D(,)]2 dt and t’he"fuhc'tiéizi"-lio'giveﬁ
in (20). Because of ¢ : L S

fho(t) Sy(e) dt —_x-—f (t)f - ds dt*Vy € Cgla, b,

......

e - 0)—"——f (y,w—yot)!f °“”dedt

+2<D Do>fho(z>dct+a<e>,

and by means of the defmmon of zo € H “(a, b) a8 the umque solutlon to (19) we come
to

D(e) — P(0) = —f (y, (&) = yo®)) (g0’ (yo(t)) zo(t) + Szo(‘)) dt
(D Do)fzo(t)di + 5( )

[ 06 (56®) (50 — %) — S5 — %) ) — (Do — D)

X zo(t) dt + 8(e).
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Here, in the last step we have used the formula. (cf e g [12 § 96])
» .

f Y(t) Séolt) dt = — f 2ol Sy(0) Vy AL

If now ¢ € (0, &), where ¢, is the same as in Theorem 3 we can apply (11) and (12).
Doing this we obtain

b ‘ . N N o N N .
e T (e) — D(0) = e [{glyolt)) — gole(t))]20(8) dt + ¥(e) + e, - “(22)

€ € (0, &), with : o
.5 g AT ‘b‘-‘ . . e Lot . I3 '

e == g (o0) e(t) = Seut) = g zileide T T T

Because of [y(e)| < const ([lo.ll, + [Seclls + x:1)s € € (0, &), we' see that y(e):= o(;s)
as £ 0. Since the same is true for 8(¢) the wanted relation (21) follows f_rom (22) B

Because of (10), Theorem 4 y1elds at once a necessa.ry optlmahty condltlon formu-
lated: as -

Theorem 5 I/ {go, Yo» Do} € G.d xOo [a b]X]R ia optimal o the conlrol problem
(P), then

. : 1

1

f[g(yow) - go(yo(t))] zo(t)dtzo Vg€ a.,,, S " (23)
where z5 € ‘H*(a, b) is the ad;oint state de/inedby(.lg) e

Condition (23) can be named Pontryagin minimum principle. Clearly, Theorem 5
remains valid for any other convex set of admissible controls G,y C?[0, ). The pnoof
of Theorem 5 for the modified control problem (P*), whlch we ha.ve consldered in
Section 2, is still open.

' Y . . e
t vt S ) ' St
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