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On an Iteratlve Algorlthm for Solvmg Nonlinear Operator Equatlonsl)

I K ABGYBOS

Es"%vu'd dxe Sekantenmethode" der Losung nichtlinearer’ Opemtorglelchungen in Bsnaoh-
Riummen betrachtet. Unter def Voraussetzung nur der Hjlder-Stetigkeit der Fréchet-Ableitung
des nichtlinearen Operators wird gezeigt, daB die Sekanteniteration zu“der lokal eindéutigen
Lésung konvergiert. Es werden Beispiele betrachtet, in denen die vorgeschlagene Methode,
nicht aber entsprechende andere Methoden aus der Literatur anwendba.r sind.

PaccMaTpHBaeTCA MeTOR CEKYIIUX PemeHus nenunennux onepaTopENX ypanneuun B Gama-
XOBHX mpocTpancTsax. IIpy mpeanonoxenun, ro nponssonnan dpemme HeTRHEAHOrO Oflepa-
TOPa TONBKO HenpepuBHa 00 I'enbiepy, NOKABHBACTCA, YTO HTEPANKA CEKYIMX CXORETCA K
TOKANBHO eNMHCTBEHHOMY pemeHmio. J[aHH NpUMePH, B ‘KOTOPHX NPeJIOMKeHHHM MeTox
OpHMeHUM, & COOTBETCTBYIOMA® APYIHE METONH U8 JHTEPaTyPH OTKABHBAOTCH.

The Secant method for solvmg nonlinear operator equations in' Banach spaces is’ considered,
By assuming that the Fréchet derivative of & nonlinear operator is only Holder continuous we
show that-the secant iteration converges to a locally unique solution. Examples are also given
where our results apply a,nd some related ones already in the literature fail. . :
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1. Introduction

Let F be a nonlinear operator defined on a convex subset D of a Banach space E with
values in a Banach space £. The Secant method for solving the equation |

Fz)=0 | | | B¢
can be written under the form
Tn4y = Ty — OF(2,, 24 y) ! F(z,), n € N, (2)

where, for each z,_y, z, € D, 6F(z,, 2,-,) is & bounded linear operator from E to £
(i.e. F(x,, z,-,) € L(E, E), n € N,) which is a consistent approximation of the Fré-
chet derivative of F.

The method of Euler-Chebysheff and the method of Halley which were generalized
in Banach spaces by M. T. NECEPURENEKO [6] and M. A. MERTVECOVA [5), respectively,
are the best known cubically convergent iterative procedures for solving nonlinear
equations. These methods have little practical value because they ‘req'uire an evalua-
tion of the second Fréchet derivative at each step. That is, it requires & number of
function evaluations being proportional with the cube to the dimension of the space.
S. Ur’™ used generalized divided differences of second order instead of the second
Fréchet derivative and obtained order of convergence 1.839... [12]. But the use of
generalized divided differences of second order which are bilinear operators are not

1) 1980 A.M.S. classification codes: 65J15, 656B05, 65L60, 65M50. Key words and phrases
Banach space, Secant method, Lipschitz-Hélder continuity.
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easy to handle in practice. F. POTBA obtained the same order of -convergence using
only generalized divided differences of first order which are linear operators [8]!
However, the above results cannot be applied when the Fréchet derivative of F is
only (c, p)-Holder continuous (to be precised later). In the present paper we study (2)
under the above weaker assumption deriving semilocal and local convergence theo-
rems. Some examples are provided where the hypotheses of the previous methods are
not satisfied but ours are.

2. Convergence results

.Definition 1: Let F be a nonlinear operator and L, a boundedly invertible
opemtor defined on a subset D of & Banach space E thh values in a Banach space
We say.that the Fréchet derivative F’ of Fis (c p)- Holder cantmwwus on D E lf
forsomec>0andp€[0 1], - ‘ : .

||Lo 1(F’(x) F=c llx - ynv forall z, ye€ D. ' (3)
We then say that F” € Hp(c,p). l ' o

It is well known (see, €. g [4]) that.if D is convex, then

o 1

~ 1+p. , . :
l+ ||z .yll forall,x,yeD. (4)

Def in 1t10n 2 Let. F be a nonlmear operator defmed ona subset D ofa hnear space
E with values in'a linear space £ and let v, w be two points of D. A linear operator
from E into E which is denoted by 6F(v, w) and satisfies the condition

8F (v, w) (v — w) = F(v) — F(w) it o0, K8)

"Lo MF (Z) F (y) - F (x) (x —y))“ =

1

is. ca.lled a, dwided difference of ] F at the points v and w. .

We will assume that 6F(v, w) € L(E, B). Note that ) does not umquely determme
the divided difference with the exception of the case when E is .one-dimensional.

' From now on we assume that E, £ are Banach spaces, 6F(v, w) € L(E, B) and
F' € Hp(c, p) for some open convex set D c E. We shall assume.that the divided
dxfferences of F satisfy anschxtz condmons of the form (d,, d;, = 0and p € (0, 1])

M8F (v, w) — 6F (v, 2)||. S d lw — ZII’ (v, w,z € D), N )]

18P, w) — OB wl| S dy o — AP* (9,2 € D). Y
We .can now prove the following lemma. . - : o Co

t

Lemma 1; Let us assume that the dzmded dz//ereme opemtor 6F satz.s/zes the condz-
tums (6) and (7) Then ' .

(&)6F(x:x) F,(x), xEIntD '.‘ Y g
(b)-F" € HD[dl + dy; p) for any fized: -p € (0, 1] A

: Proof (a.) Let us choose z € int D and 6 > O such that U(z, 6) ={y€ E | Iz — y]]
< o} . D. .For |j4z|| < 8, we get by (5), (1) |F(zx + dz) — F(z) — 6F(:v, x) (dz)||
= |[[6F(z 4 Az, z) — 6F(z, )] (4z)}}, which is < ||6F(z + dz,z) — 8F(z, z)|| HAx”
.< d, ||47|® ||4«]|. The above inequality proves (a) if ||4z| > O, d2 =0 Ifd, =

we choose another d,’ > 0 in the inequality (7). , \
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(b) Let v, w € D. Then, by (6) and (7), .
IF'(v) — E'(W)II < |I6F (v, v) — 6F(v, w)| + I0F(v, w) — 6F (w0, w)|
< (@ + do) o — wiP. 8

Let us consider the space R™ equipped with the max-norm. A linear operator
L € L(R®, R™) will be represented by a matrix with entries /;;; its norm is given by

L) = ma.x {Z‘ll,-,-]}. Let B be an open ball of R® and let F be an operator defined

on B thh values in R®. Let us denote by F,, ..., F, the components of F. For each
€ B we can write F(v) = (Fy(v), ..., Fu(v))*". We set

P;Fi(v) = 0F(v)/0v;, R (8)

provided that oF;(v)/0v; exist for all £, j = 1 ,m. Let v, w € B and define 6F (v, w)
by the matrix with entries (v; 3 w;) :

I = N BEITEREN
— w, (Fi(“vh esey Ujy wjjf.l, (XX wm)

8F (v, w);; =

— Fy(vy, ..., v,_,, Wiy eesy w,,,)) | 9)

It can easily be seen that the operator defined by (9) sa.tlsﬁes (6) and 8F (v, w) €
L(R®, R*). We can now show the following lemma.

Lemma 2: If the partial derivcuivea P;F; given by (8) exiat and satisfy some Holder
conditions of the form

IPiFi(vl: cees Up + t; sy vm) - PiFi(vl’ LTS TREXTS vul)l S t [tlﬂ : ¢ (10)
then conditions (8) and (7) are satisfied with

L Y

15ism \P =1 1Sism

Proof: Let v, w, z € B. We can get.

L Ea ) o
0F (v, w)ii - 6F(vi 2);,‘ =k§; {6F(v! (w5 ev 0y w_h z.k.H: eeey zm))l)

- (SF('U, (Wry «eey Wigy 2y » .,;z,',,));,}.
Ifk < 7, we get for the summands S, of this Series ' '

Sk = {Fi(vl’ seey Ujy zi-ﬂ‘: :°'» zm)‘— Fi(vh ":: .v]—l;,zi: ;'.‘! zm)} .
'U" — Z} . L
. oyt Ly

{Fi(vl’ sees Ujy 2j+l) ""y.zm) . Fi(vl_: f'f’\v"Tl’ Zjs s zm)} =0.

‘v — 2
For k = j we get for the summand §; Lo S
N . . o . v; N BRI oy
IS]] = v {Fi(vl’ ey via zj+l) ey zm) F (vl) ooy vi—‘l; w[) éi-ﬂ)l’ "):zm)}
j o Wy . A

P {Fi(vla ‘;-: Vjs Zja1y oo vy zm) - Fi(vl’ aoey Uiy, 24, '7',;2m)}

Vi — %
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ceny Vi, Wi + t(v, w,), z,“, cens Zm)

— P;F(vy, ..., vi,'z, +'i(v, = z;), ziﬂ,. vees 2)} dt

1

et e .y o1 . o
.. e %I‘u:v,—zip’b;,ft’dt_. T ll . Z,] : .! . ,
0 . Ve
"For k >'j we finally can get ’ .
e ISA'| = ' {F (V15 e 0 Vjy Witys ooy Wiy Zp41y ooy 2m) .0

P . Y '
- F(v;, vee ,v,_nw;, vos Wey Zpa1s oovs Zm)

- Fi(vl) covy Ujy Wigyy eeey Whoyy Zgy ooy zm)
+ Fi(vl: seey Vjyy Wiy coey Wiy 2y 20y zm)}

f {Fi(vl’ ooy Vjoyy Wy + t(vj - wi)) Wijt1y soey Wiy Zispy ooy zm)
R IER) .

!

e . . \ R

. Fl'(vlf seey vi—!’ wj + t(vi - wi)’ Wiss ooy Wity 2,y At zm)} dt

= [lwe — 2] by o ' ‘
Therefore, we have

|6F('v, w)u - (SF(‘U, z)s;l S

+ 1 lew; — 2;{P b} + Z Iwk — 2|7 by

S 1
AR DT S”W—zllp{ +1”+2b}

Hence (6) is satisfied with d, given by (11). Similarly we show (7) with d, given by
(11) § .

We can now show the following result on the local convergence of the iterative
algorithm (2) to a solution x* of equation (1)

Theorem 1: Let F be a nonlinear operator defined on an open convex subset D of a
Banach space E with values in a Banach space E. Assume that

(a) F(z) = O has a solution x‘ € D at which the Frechet derivative F' (=™*) exists and
is boundedly invertible, =~

(b) F has divided differences mttsfying the Holder conditions (p € (0, 1])
| F'(2*)1 (8F (v, i) — 8F(n, )| < dsllle — allP + llw — 2P, (12)

(c) B = U(x*, ry) = D with ro € (0, (1/3d)V7).. ,
Then the iterative algorithm z,,, = x, — 0F(z,, 2,_,)! F(x,) (n € [No, -3, Z o€ B)
i8 well-defined and generates a sequence {x,}nzo which remains in B, converges to x* and
salisfies the inequality
llzsy — x*|IP

— da(llza — 2P + s — 2*IP)

s — 2*1l < ds 7— it — 2. (13)
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Proof: Let us denote by L = L(», w) the linear operator v
' L = 8F(v, w) with v, w€ .B‘.- B . (14)_
Then, by (12), we get 2 ‘ ’
I — F'(z*) L|| = ||F'(z*)"* (8F (z*, z*) — 6F (v, 2*)-+ 6F(v, z*) —oF@w,w)||
< dy(lly,— 2*IP + lhw — 2¥P) < 2dre” '

by the choice of ry. By the Banach lemma on invertible opemtors it follows that L
18 invertible and

ILF (2% < (1 — dalllo — 2P + [ — 2*[P))2. - ' (15)

Let us now suppose that z,_,, z, € B. Set L = L(x,, x,._,) Then L, is mvemble and
Wwe, can, write . .

) %2 — x"'|| = " xa - z‘ 1(F (xn) F (x‘))“
e =|-L. ‘(6F(x., 2*) — L) (zs — 2*)| o
. = ML F [|F"(z*) (éF(xm x‘) Ly)|| llza —z*|.  (16)
By (14) and (12) we get
F %) (0F (2o, 2*) — Lo)ll = IIF @) (61"(%, %) — - 8F (s, zn—l))"
e . L S dy s —x'll’ U B ¢ L)

The mequahty (13)*follows immnediately from (15) (17) From (14) ‘and the ‘choice
of r, it follows that

B
I

S

BN

[nsr . — ¥ < [l —z* < 7o, neNo. I (18)

Thus, the iterative algorithm (2) is well-defined’ and: the sequence generated-by it
remains in B. From (13) and (18) it follows that |z, — z*| — 0 1

We can now show the following result on the semilocal convergence of the iterative
algorithm (2) to a solution z* of equation (1)

; Theorem 2: Let F be a nonlinear operalor. deﬂned on an open convex &u.bset D o/ a
Banach space E with values in a Banach space E. Assume that .

. (8) the linear operator L, i3 equal to 8F (xy, x_,) where x_y, 2, are two given points from
D s inveftible, o
' (b) d‘, d,, and dy are three mmnegalive numbers mh tkat o s

; -1 — Zoll = do, ”Lo 1F("’o)" < ds ‘ ; (19)
and (p € (0, 1))
[|Lo~Y(6F (v, w) — 8F(u, 2))|| < ds(llv — ulPP + llw — 2|f?), (20)
(c) r, 8 a nonnegative number such that .'
n>df(t — ), An + AP + 1P <dt (21)

withy = (r, + dJ)? ‘&/(1 = [r? + (r + d)Pld,) (note that 0 <.y < 1),
(d) the closed ball U(x,, r,) is ncluded én D.
Then: ’
(i) The real sequence {t,},> -, defined by
ty=nr+d,, =1, =1 —ds : A (22)
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and, for k = 0,

Bolti-y — ten)?
1 —ds[(lo — tenr)? + (2 — 4)°)
18 ﬂ:mnegative and decreasingly converging to some t* € R such that r, — ds/(1 — y)
St <t

(i) The iterative algorithm (2) is well-de/ined remains in U(z,, 1,), and converges to
a solution z*.€ U(zy, r,) of the equation F(z) =-0. Moreover, the /ollowing esttmates are
true:

‘Hi — by =

e — tesr) = Apsolle - L), »(23)

¢

g =2t St — _ , o )
and Jor n 21, . -
de(tn— — ")p
I = 21 = 1 —dof (b1 — ) + (fo — &) + (fg — £*)°)

Proof: (i) One can easily see that it sufﬁces to show by mductxon the inequalities
(n € lNo)
- ‘ . 1 —pm*2 o) 3
n+1 2 zn«).z Z rH ——y— ds =0 and An+2 < Y. (26)

LI r

(tay —'83). (25)

1—y AR

Using (23) for k = 0 we obtain £, < ¢, t, =7, — ((1 — yz)/(l —y) ) ds = 0 a.nd
4; < y by (21), which shows (26) for # = 0. Let us assume that the inequalities (26)
are true for k = 0, 1, ...,n — 1. We will show that they are true for k = n. Using

(23) we obtsin 4,, = tk,,z and since 4., = 0 by the induction hypothesis we get .-;:

4, (le-1 — Gei1)P dg o ds .7 v
i T T =l — G F (o —4P] 1 — P + 2]
Fma.lly, by (23) and the induction hypothesxs, o
o 1 Ui
[ 7P 2 4] —l__}’ky yk+1d5 =1 — l___yk;'— d5 2 0 , .o |

That completes the induction and Justlﬁes the clalm

© (i) ‘We shall prove by mduct,lon that the 1terat1ve algorithm (2) is well-defmed and
that
‘ NEn — Zpiall S s — b1+ S - . ) (27)

Using (2), (18) and (22) we deduce that (27) is true for n = —1,0. Let k ¢ N and
suppose that (27) holds forall n < k. Let L;,, = 6F(x,+1, ;). Then by (20) we have

M — Ly *Lysl]l = ILo™* (Lo — Lk+l)” = "Lo 1(‘51"'(350: 1) — 6F(xk+h xk))"
= do(llzo — Zenll® + llz-y - z|?),
= de((to — L) + (6 — ‘k)”) <1

by the choice of r,. By the Banach lemma on invertible operators L,,, is mvertlble
and

tiy

3

Il Lol (1 = delllzo — menll + ey — 2?0 (29
In particular, we have proved that (2) is well-defmed forn =k + 1. We also have
less — Zesll = Iy F@ean)ll = ”Lk+l(F(xk+)) — F(z) — Li(2ess — xk))"
< ILh Lol | Lo (0F (2> @) — L] iz — il
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By (20) we get S A : :

"Lo"‘(éF(x‘., Tysy) — 6F(xb‘zi—1))” =ds ”xh»‘l — .
From the last three estimates it follows that

doln =zl
1 — Tl S - 41 o
o el = T 0 P e — )

By (27) and (23) we obtain |54 + Zisall < sy = faa. - ' A
We have. proved that the iterative algorithm (2) is well-deﬁned a.nd that (27)
holds for all n. Therefore,

uxn - zk” St — b, —1=nsk. RN EIN (,.;(29)

That is, {z,} is & Cauchy sequence in a Banach space and as such it converges to some
€ E. Letting k — oo in (20) we obtain (24). The element z* € E lS & root of the
equatnon F(z) = 0. Indeed, we have by (2) and (20) : "

0, M FE ) = R0 R s ) — L) (e — )l T
T e Sdallme mmlP 4 W — malP) e — 2l 20 L
as'k —> oo That is F(z*¥) = 0 We' w111 now show (25). By (20) it follows ‘that
ul _L; laFm, x‘)u = ||Ly- '((Lo - aF(xo, 20)) + (8F (2o, 7o) — 6F<xm z*)))ll g
. - Syl — zalP + o — zall. - o —2*lP) | ;

S dof( —to)'+(to—tn)v+(to—t‘>")< 1

by the ‘choice of r;. By the Banach lemma on invertible operators it follows. that the
linear operator 6 F(z,, z*) is invertible and

I0F (s, 2*)1 Ll| < (1 = d,(uzo P lzo —aalP + o — z‘IP‘)) L
Using the identity -
z, — 2* = 6F(x,,, x*) 1 (F(x ) = F(z‘)) = ((6F(x,., x“)) lLo) Lo lF(x,,)
we, obta.m (26). () . : . K “
We can now show a uniqueness result. ‘ .

Proposition: Let F be a nonlinear operator defined on an open convex subset D of
a Banach space E with values in a Banach space E Assume that

(@) the hypotheses of Theorem 2 are trice,
(b) the r, from Theorem 2/(c) satisfies

2dg(ry + AP + (c/(p + 1) + da) n?<1l. ° (30)

Then the iterative algorithm (2) s well-defined, remains in U(zo, ) and converges to a
unigue solution x* of the equation F(z) = 0in Uz, 7,). .

Proof: The existerice of a solution z* of the' equa.t,lon F(x) = 0 was proved in
Theorem 2. Let us assume that there exists a second solution y* of this equation in
U(xo, r,), with r; satisfying (21) and (30). By (2) and Lemma 1 we have

Tony — Y* = 1L0[Lo éF (%> Tn-y) — (SF(:L',,, xn)) (T2 — y%)
+ Lo (F'(@) (@ — 3*) * (Flza) — Fig")]-
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Taking norms above and using (4), (20), (27) and (28) we get
AP + 1) (s —ta)? + ¢ llzn — y*IF - o
+ O[T — dlo — P + (ty — . ,)v)J Co
=..=a" g — i,

where « denotes an upper- bound on the fmct,xon and 0 < o< 1 by the choice of ;.
The above inequality gives y* = lim z, = z* #

En — ¥* < 7

Remark: The estimates (24) and (25) are called a-priori error estimates, since the
iteration {£}},=_;can be computéd in-advance, provided that t_l, to and t, are known.

"

3. Applications

We now complete this paper with two possnble apphcatnons whose. computatlonal
details are left for the motivated. reader. o st s

Example 1: Theorem 1 can be realized for operators F whlch satxsfy an auto-
nomous differential equatlon of the form F'(x) = G(F(;)(; for some given operator G.
As F’'(z*) = G(0), the inverse F'(z*)"1 can be évaluated without knowmg the solu-
tion z*.. Consider. for example the scalar equation -F(z) = 0, where F-is given by
F(z) = e* —q. Note that F'(z) = F(z) + q. That is, F'(z*) = ¢. Let us define the
divided difference ‘operator 6F(v, w) by 8F(v, w) =*(F(v) — F(w))[(v'— w), v + w.
The linear operator  F(v, w) i8 now a function of two variables v and w. By expanding
OF (v, w) about (v, w) and using Taylor’s theorem in two variables, a number dy =0
satisfying (12) can easily be found. By Theorem 1, if z,;'z_, € B, then the iterative
algorithm (2) can, be used to approximate the solution z* =1n ¢ of the equatlon
Fz)=0. .

A more interesting application is given by the following example.

P, LN Lot oo T

Exaﬁ]ple 2. Consider the differential equation

_.-'/.” + yit? = 0.,‘ pE€ (0, 1]" . y(0) = y(1) = 0’. - )
We divide the interval [0, 1] into » subltnterva.ls and we set kb = 1/n. Let {v;} be the

points of subdivision with 0 Sy < v, < ... <9, = 1. A standard approximation
for the second derivative is given by _

" i1 — 2 + ¥
e y' — 3/ 1 hz Yin R yi=y(v'~).’.' i=.l,...fn—l.

Take yo = y, = 0 and defin.e the 6i)erat6r F: [R+"“l by o
F(y) = H(y) + Wo(y), IR

[ s

4.

{1 2 -1 . 0 . N . R
_1 2 o . , 1+p

H=| T T | e =T g

o 0 _.1 ' 2 . yilt:,l’ Yn1 :
Then . 0 |
' . N7 O B :

| ‘ _ ¥ . : . :

F'lyy =H+Wp+1) . . ©h
0 Yh-1
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* The Newton-Kaitorovich: hypotheses on .which the.work in.[1, 3, 5 6 8—12] is
based for the solution of the equation F(y)-= .0 may not be satisfied. ‘ )
We may not be able to evaluate the second Fréchet-denvatlve since - it would
involve the evaluation of quantities y;® and they may not exist. v - :
Let y € R""1, M € R""! X R*"! and define the norms of y and M by iyl = mtf;x |y,~|

and |M|] = max 3 |m;|. For all y, 2z € R, with y;, 2; > 0 for all 7, we obta.m for
= 1/2,8ay 1 *

| F'(y) — F'(z)|| = ||diag { hz(y vz 2 1/2)}

‘ L (mex 1y —z,l)”’"-g-h* uy—zu*’* S

.-'n_“., RTINS

RO ——
- 2 ] '

¢

Tha.t i8, ¢ = 3/2h"‘ Therefore, the results in'[3, 5 —12] cannot be a.pphed here

Let us define the divided difference 6F(v, w) as in (9). The fnnctlons P,F given by
8 and the numbers bis,’d, and d, given by (10) and (11)* can ea.sﬂy be' évaluated
using (31). However, we do not need to do that. We can choose n = 10 which gives
nine equa.tlons for iteration (2). Since a solution would va.msh at the end pomts and
be positive in the.interior, & reasona.ble choice of initial approximation seems to be
13081nm: Thlsglvesusthevector T bone

: (401524E +01 .~ ¢ bt
76378 E 4+ 01 |' . S e
1.05185E 402 7| " 7 T
. | 1.23611L.E 4 02 - L

z,=| 120999 E 4 02 |. L
. - 1 123676 E 402 |4 - : . R K

1.052567 E + 02 N AR -

‘7.656462 E +- 01 T
L | 4. 03495 E+01

Choose zo by settmg 2o(v;) = z4(v;) — 10“ i="11, 2 Ly Usmg the 1teratxve algo-
rithm (2), after seven iterations we get

335745 E + 01 3.35740 E + 01
6.52029E + 01 | - . | 6.52027 E + 01
9.15666 E + 01 9.16664 E + 01
1.09168 E + 02 1.09168E+ 02. |

2z =| 1.16363E + 02 | and 2z =| 1.16363E + 02
1.00168 E + 02 . |'1.09168 E + 02
9.15666 E +- 01 7| 9.15664 E 4+ 01 | .
6.52029 E -+ 01 6.52027E + 01 |
| 3.35745 E + 01 | 3.35740 E +.01 ]

We choose z, — x_, and z; = #, for our Theorem 2. We get the following results:

d, < B5E — 04, ds < 9.16311E — 05,

dy < .767646, c = 3k%2 = 015, p = 1/2.
Let us choose 7, = .01. Then (22) and (23) give
t,=105E — 02, ty=1.E — 02, t, = 9.908469 E — 03,
t, = 9.906717159 E — 03, t, = 9.90670366 E — 03, ..., ¢* =9.8086 E — 03,
A, = 1913932 E — 02, 4, = 7.61273767E — 03, y = 9.313695 E — 02,
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It can easily be seen that with the above values'both the hypotheses of Theorem 2
and those of the Proposmon are satisfied. Hence by Theorem 2, the iterative algorithm
(2) is well-defined, remains in U(z, r;) and converges 'to a unique solution z* of equa-
t:on F(y) = 0in U(a:o, r,) o -

4
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