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On Imbeddings between Weighted Orlicz Spaces

M. KrsBEC and L. Pick

)

Es ,werden Bedmgungen far Gewnchte g und o untersucht .die notwendxg und hmrelchend fur
die Galtigkeit der Embettung fur die Orlicz-Réume Lg o <» Lp,q sind. Wir benutzen zwei Me-
thoden: die erste ist ein anltprozeB der von'den’ L,-Réumen zur Embettung von gewxchteten
Zygmund-Klassen in den gewichteten Raum L, iuhrt die zweite Mothode beruht suf der Duali-
tit in gewichteten Orlicz-Réumen, dem Index der Youngschen Funktlon und gibt einen all-
gemeinen Einbettungssatz.

Haitnenn HeoGXORMMBE M OCTATOYREE YCIOBUA HA BecoBHe GyHKINMU @ M o [UIA TOrO, YTOOK
CYIIeCTBOBAJIO BiaOHeHHe npocrpaHcTs Opanya ¢ BecoM Lo, &> Lps. l'IpnMenmo'rcﬂ ABa
MeToNia: MEepBHA ABIAETCA NpE[eTbHHNM IPOLECCOM M BefeT OT L,-POCTPAHCTB K BIOse:
HHI0 BECOBHX KI2cCOB 3UrMYHAR B BeCOBO€ NPOCTPaHCTBO L), BTopon MOXXON NMpHMeHAeT
nouaTHe ABOACTBEHHOCTH B BECOBHX mpocérpancTBax Opamua, unfexca H-pyHkumm u paer
ofuryio TeopeMy BIIOWEHHA. L
Necessary and sufficient ‘conditions are given for weight functions ¢ and o, which guarantee
validity of the imbedding between the Orlicz spaces Lg,o <> Lp .. We make use of two methods:
the first of them is a limit procedure leading to the imbedding of weighted Zygmund classes
into weighted L,, the second method employs the concept of duality in weighted Orlicz spaces,
index of a Young function and results in a general imbedding theorem. -

1. Introduction and preliminaries

This paper deals with necessary and sufficient conditions for imbeddings between
weighted Orlicz spaces. Actually, it is an amalgam of results for weighted Lebesgue
spaces (the particular case of continuous weights was solved by AvANTAGGIATI [1]
and the general problem with measures by Kaparra [3]), ideas about limit treatment
of necessary and sufficient conditions on weight functions [5, 9], and inequalities link-
ing modulars and norms. We get a general imbedding theorem with no restrictions
on the growth of the Young functions involved.

In [5, 9] we have considered two weight weak type inequalities for the maximal
operator in Zygmund classes L(1 + log*L)X. It turns out that the necessary and
sufficient condition on weights can be obtained by considering a limit case of the
Muckenhoupt A, condition. Rather surprisingly, an analogous procedure applied
to the condition

J lo@)e(@)?o ez} dz< 00, 1<p<oo, = - .
Q

which is necessary and sufficient for the imbedding L, <> L, . turns out to provide
us with a necessary and sufficient condition for the imbedding L(1 + log* L)X into
L, .. (As usual, < stands for continuous imbedding.) This is the main result of Sec-
tion 2.
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In Section 3 we present a necessary and ‘sufficient’condition for the imbedding
between weighted Orlicz spaces Lg , < Lp .. Roughly speaking, if QP! is a Young
function and N is the complementary function to QP-1, then Lg,, <> Lp , iff o

f N(/w(:z:)/g(x)) o(z)dxz < oo for some u > 0.
a

An alternative technique of indices of Young functions is employed in Section 4.
We obtain various relations concerning imbeddings in question under certain restric-
tive assumptions (as 4,, 45, conditions on indices etc.).

Throughout the paper, 2 will be a measurable subset, of R". The symbo]s o and o
will denote weights in £, i.e. measurable and a.e. positive functions in 2, L, , will
stand for the usual weighted Lebesgue space with norm ||-|ly,,. The reader is supposed
to be famlhar with the basic facts from the theory of modular and Orlicz’ spaces
(we refer, e. g., to (8, 4)). Here, we shall work with (rea.l) welghted Orlicz spaces in the
followmg sense: For any Young function M, we consider the ‘modular

a</,M>—fM(|/(x>|)ex>dx o

the ‘weighted Orlicz epm Ly, is the linear hull of the class of functlons w1th fmlte
moduler. This space is endowed with the Luzemburg norm

"Wilar.p = inf {1 > 0; g(f/d, M) < 1.

Recall that the Young function M satisfies the 4, condition (sometimes we write
M € 4,) if M(2t) < CH(t) for large t. We shall say that M satisfies the 4, condition
globally on (0, oo) if M(2t) <.CM(¢t) for each ¢ = 0. If N.is the com4zlementary Y mmg
functwn w1th respect to M de.

(t) = sup (tr - M(r)) b; - - d

then
tSM )N (@) <2, t=0, I BN ¢ B

and the'spa.ces Ly, and Ly, are naturally associated with the duality, .
(fg> ff(z)g(x)g(x)dz’ leLMga geLNO, .' ‘ SR "

glvmg blrth to the so-called Orlwz norm ‘on L_u o it is.

?

|||/n|u.e— sup{ff(x g(z)e(x)dx ma(g,N>31} UL

. R |
Itis es.sy to check (qulte ana]ogously a8 in the cage of non- welght,ed spaces) that

“f”M.q = ”Vl”M.e = 2filsge- e S

We shall denote by Ej,,(£2) the closure in Ly, ,(2) of the set of all bounded measurable
functions with bounded support in 2. Then Ly, is the dual space of Ky ,.

Let us still recall that a Young function M satisfies the 4, condition (M € A,) iff
there is K > 0 such that tM(t) < M(K?) for, ]arge t. I M€ 4y, then N € 4, and |

ll
! EARIPERIN

N(t)SCtM—l(Ct), tZT o h ] "‘(12)

forsomeC TZO ’ s
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The basic properties of weighted spaces used here do not go-beyond the limits of
an easy verification.

We only mention several useful assertions on general modular spaces (for the con-
cept see, e.g., [8]). The modulars in question need not be necessarily strictly convex
so that any weighted L, space is included.

Let (X;, m;) be a modular space with the (Luxemburg) norm {-||; ({ = 1, 2) and let
T:X, - X, be a sublinear operator. It is clear that the modular mequa.hty my(T)
< Cmy(f), /6 X, 1mp11es its norm counterpart ITfll. < Clflly, f € X,. The converse
is not true, however, we have (the proof is easy and therefore omitted)

Lemma 1.1: Let T Xl, X, be as above Then the following two assertions are equi-
valent:

() There exists C = 1 such that |Tflly < Cllfllys = ~ " - -veeee coos e 0 F
(#2) There exists K = 1 such that my(Tf/K) < 1 provided m,(f) =1
Moreover, the best constants in (§) and (#3) coim:rde \ o

La.ter, we shall also make use of

Lemma 1.2: Let T;X,,X,beas above. Let h be aposmve function defined on (0, oo)
and bounded in some n'ght mighbourhood of zero. I, f

I o "Tﬂfz = h(ml(/)) fe Xu ' o o _ . ." “ e ‘ , a (1:?)
then there is C = 1 such that for all f o o
Tl < Clfll- N ¢ )

Proof: Suppose (1.4) is not true Then there' is s sequence {fa) = X1 such -that
Ifall: O and ||T/,ll, » oo. For large =, m,(/,.) < ||f,||l < 1, whence m,(f,) - 0, which
contradicts with (1:3) @ ' -

As currently adopted different constants are denomd by the same letters if no
confusion can arise. “ ' S o C e :

2. The limiting approach .
!

In what follows, p and p’ are conjugate exponents, i.e. p € (1, 00), p" = p/(p — 1).
Let us mention the elementary and frequently used formulas .

plp=p —1=1/(p - 1)

We start with a special case of a weighted imbedding theorem which appeared
in AVANTAGGIATI'S paper [1] for continuous weights and generally for measures in
KasBamwa [3]. For the sake of completeness, we present a proof based on the latter
paper, which will, additionally, provide us with a relation between important con-
stants,

Theorem 2.1: The following statements are equivalem
(t) f ) otz) dz < Cylo, 0) (f IH=)[? o(x) dx)'fv ’

@ B,(o, o= J (o(x /e(x))” 0(2) dz < co.

Moreover, the best Cy(a, o) in (i) equals (B (o, g))‘/p
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Proof: Let (¢) hold. Putting f(z) = (o()/e(2))*~1) we get

. -»./\(U(x))pf"-' _f . ! C

L ER) e de = | if@) ola) de Lo
vy e(z) 3 o - o
<'Cylo, e)'( [ 1) o(=) 'dz)ff» .
9 . o S

A a(z) » 1/p
= ,,(cf, g) ( Df (?(x—)) e(x).d:‘c).
The last term is finite as for each g € Ly(e) = . -

’fg(x) = o(@) dz 'fg(x).q(z‘)'dx. o
Q e Q v

S o Sf lg(x)| a(x) dz Sop(a,e) (af lg(w)l” e(x) dz)"” :

Voo
v

so that the function ¢/p represents a bounded linear functional on L, . and belongs
to L, ,. This yields f (o@)/e())” elx) dz < C,(a, g)” hence B,(o, o) = C’,,(o', g)’

) Conversely, if By(o, g) is finite, then
| f I/(x)l o(z) dr = f If(2)] o(x) 0!'P(2), e“"”(z) dz

< ufu, e ( 1 (ol x))v @ dx)"v (Bo(o, )" Ifllp.g -
. - IV SAE] - )
Therefore, (i) holds and 0,,(0, 0) < (B,(a, g))l/v ]
Let 1 < K < oo. We introduce the Young functions

2, 0<sts1,
¢"(') {t(l + ]og HE,  t>1,

oo tl HK~1) -' ’
Fel) = 5 2 (7 ) 1=0.

j=2 7

We shall denote by !I’K and Gy the complementa.ry Young functions to @, and Fy,

respectively.
The rather lengthy and tedious arithmetical proof of the followmg lemma is

postponed to Appendix.
Lemma 2.2: There exists a constant fx = 1 such that
Fy(t) > exp (¥ [By) — 01¥[p — 1, t.21,

It is worth to notice that the function exp (/M/X) — (/K _ 1 ig equlva,lent to ¥y
for large values of ¢. Indeed, it is easy to verify that Py (t)/t < Cd),((}/—)/}/_ t=1,
with, say, C = 3%. Thus, by [4, Theorem 6.8], ¥y satisfies the 4; condition and
on using (1.2), ¥x~! is equivalent, to (1 + log ¢)¥ for large ¢. : . _
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Lemma 2.3: The functions Fy, Dy, ¥y satisfy

(5) Px(t) =t fort=1;

(#5) 2F(t) =t : fort=1; .

(##8) Px () < Fi(2) fr0<t<1;

(i) Gk(t) = CxPk(t)" o fort=1;

(v) Plt) < CytP(p — 1)K fort = 0and pe(1,2).

Proof: The statements (¢)— (¢i¢) follow immediately. We prove (iv). Note that
Fy € 4,, thus, in virtue of (1.2), Gy (t) < CtFyx~'(Ct) for some C = 1 and all large ¢.
Making use. of Lemma 2.2 we have Fy(f) = ax exp (#/%Bx) with some ax >-0, ﬂK
from Lemma 2.2, and for every t = 1, so that passing to the inverse functions, ¢

) . Gx(t) S Ctﬂxx log (Ct/ax) S CKt logxt S 0K¢K(t) for t 2 1.
As to (v), it is easy to check that max D)t ? < KK(p —1)X 80 that we can put
CK =Kx® .

Lemma 24: There exists a constam 6K e'ud; tluu the (modi/wd) Ymmg tnequality
ab = 6K(Fx(a) + (DK(b)) holds for all a,b = 0. e v

Proof: We shall make use of Lemma 2.3/(#)—(iv). If a,b <1, then ab
< Oyla) + YY) = (D,((a) + FK(b) fa<1, b='1, thenab < b < 2FK(b) < 'Oyla)
+2Fy(b). If a=1,b<'1, then ab < a S Dy(a) + FK(b) Finally, if a,b >°1,
then, according to the Young inequality, ab < Gx(a) + Fi(b) < CxPx(a) + Fg(b):
Putting ¢ = max {2, Cx} concludes the proof i

Lemma 2.5: There exists a constant 0x such that B T RO I PSS
0k
]1"]0;9_( l)x ”f”pe’ileLpe» pé(l 2) et e

Proof The thesis follows dmectly fnom Lemma 2 3/(0) and from the deﬁmtlon
of the' Luxemburg norm'l -

t

: Theorém 2.6: The /ollowing comlitume on g, p are equivalent : co
(£) LgpolR) & Ly o(2); ' ; S
. (#8).Cyo,0) = C(p — 1)-¥.pe(1,2); .
(£44) (0/e) € Lpyo(22). S
Proof: We show ()= (§)=> (¢#f) = (¢):* Let (¢)- hold :Then, accordmg to

Lemma 2.5, [l . < Cx(Bx/@ = 1)¥) Ifllp.e» 2 € (1,2).
Now suppose that (ii) is valid. Employing the relation between the best consta.nts
from Theorem 2.1 (5 is the conjugate exponent to 7) we.get

.opr HK—=1) )
fFK( ol ’) ) d A—): L ) Bio,0) o
J e =& TGTT L

iy - ‘ ;
1 \itk-n of 1 \ki
T =1 =1,

]
o 4 1 \ik-1 iK-1n
g):i.-(—. J* o ()"

A
8
~ |':

the last sum being finite provided 0 <. u.< (Ce)™1. -
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If (#i) is true, then the modified Young mequahty (Lemma 2.4) 1mp11es
flf(z)laz)dx—fl/( P )e( ) d

ax o(x)

Oe(f@) oo dz + & f Fx (,,‘ (x,) o) di

T o, 0@ of6) di'+ R
Apphcatxon of Lemma 1.2 (thh h(t) =0Op. ,.(t + B,og,x(a, o), leads to the Lmbeddmg
L

Remark 2. 7 By duslity argument we have also characterlzed those welghta g and o for
which |[ffellv, < Olf/olloo: . N

For K =1 and 2 bounded Ly, is the weigkled Zygmund class L(l + log+ L),

consisting ‘of all functions f with f If)] a + log* |f(x)l) e(z) dz' < 0. *Let ‘us state
the following partlcular

Corollary 2.8: Let Q be bounded and ¢ € L,(Q) ‘Then the weighted Zygmund clansa
L(1 4 log* L), 48 imbedded into L,., iff f exp (pa(x)/g(x)) e(z)dz'<.co for some
;t >0 R .

\'.‘. e S . Aill.“ '.‘,-'n"

U AE R PR . . D Y S N ’

3. General imbeddings o T e T e

In the rest of the paper, P and @ are Young functions.

Definition 3.1: For a couple of Young functions P Q we introduce the set
Y (P,Q) ={K > 0; Q(KP“)lsequlvalenttosome Young functxon} ForK €. Y (P, Q),
the Young functxon equivalent to Q(KP-!) will be denoted Q(KP“) again. Recall
that two functions F, G are equivalent.iff a~ F(ax™1) < G(t) < «aF(at) for all ¢ and
some x = 1 independent of ¢. o

Remark 3.2: Note that if at least one of the functions P, Q satisfies the A, oondmon glo-
bally on (0, oo), then Y (P, Q) is either empty, or equal to (0, o0). . . S

.. Proposition 3.3: Suppose that QP‘l isa thng fundion Then tlw /ollowing
8talement8 are equivalent:

(@) e = oo muu, L- . ; gmpu
(#)  Wlho < llop-r, forallf. * R RESTI

Proof: According to Lemma 1.1, (1) is subsequently equlvalenﬁ to the implica-

tions my(f, Q) < 1=> m,(f, P) < 1, and on taking g = P(f), m,(g, QP~') < 1= [ go
=< 1. The repeated use of Lemma 1.1 completes the proof i

Realizing that K||fllo.. = |[fllox. o where QK is the Young function given by Q(¢)
= Q(Kt), we easily obtam '

Corollary 3.4: LetK € Y(P,Q). Then
Wllp.e = Kilflle.e Y/ = .o = IVllomHn vf.
Conversely, if K € Y(P, Q), then for every C = 1
Ifh.e = Cllflloxp-r.e Vf = flle.c < KC|fllo.e V-
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-Corollary 3.5: Let at least one of the functions P, Q satisfy the A, condition globally
on (0, 00). Then Lgy > Lp, iff Lop-1, > Ly, provided QP! is a' Young function.

In the sequel, we will assume that QP! is a Young function. If K € Y (P, @),
we denote by N the function complementary to Q(KP-!). We shall study relations
between the imbedding Lg , < Lp, and the condition

f NK(,ua(x)/g(x)) e(z)dz < co for some 4 > 0.

¢ - v KX

Proposition 3.6: Let fNK(,uo(x)/g(x)) o(z) dz be finite for some posuive K, u.
Tken L09<—>Lp, : . . .

Proof: Making use 6f the Young mequallty, we ha.ve
lp.. = K II//KIlp <K (1 + /f‘ f P(I/(x)l/K) (a(x)/e(x)) /te(x) dZ)

G =K + (K ) f Q(I/(I)l) o(2) dz + (K/u) f Nx(w(x)/e(x)) e(x) dz

20 o (Kluymitf, Q) o
and in virtue of Lemma 1 2 we arrive at the desn'ed 1mbeddmg l .

Proposition 3.7: Let the imbedding Ly, e Lp., hold and wppoae Ke Y(P Q)
for 88’”6 K 2 sup {[lfllp.o/lflg.c; f % O}. Then f Nx(w(x)/e(x)) e(z) dz < oo /0f some
B>

Proof: Assume g € Eq g p-1).,(2). Then, by Corollary 3.4, L.
l J 9(2) (ol2)/e(z)) e() "”‘I < lgho < lglokpnes - = 0
2

in other words,"(o/g) €Ly, 1
Let us summarize the results oi thxs section.

Theorem 3.8: Let at kast one of the jmwttone P,Q mie/y the 4, oondition Then
the following statements are equivalent:

(6) Lo.o(2) & Lp.o(2);

(#) f Npo()fe(@) elz)dz < oo for some C,p>0. -

Theorem 3.9: Suppose that Y(P Q) contains a sequence K, x oo. Then tke following
statements are equivalent:

(£) Lg.o(R) & Lp4(2); L
(#£) f Nc(ya(x)/g(x)) o(x)dz < oo for some C,u > 0.

Remark' 3.10: The duality argument applied to Theorems 3.8 and 3.9 gives the characteri-
zation of ¢ and o such that ||f/ollg., < C |lf/ol|$.., where P and @ are the complementary
Young functions to P, @, respectively.

B : . ‘-} :
4. Some remarks on an alternative approach (employing indices)

First, we recall the concept of the lower and upper index of a Young function. Actu-
ally, it is a certain refinement of the 4, condition. The existence of finite indices
for functions satisfying 4, can be proved e.g. on the base of the theory of submulti-

8 Analysis, Bd. 10, Heft 1 (1991)
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plicative functions. We refer to MaTuszewska and Orricz (7], GUSTAVSSON and
PEETRE [2], and.the comprehensive paper by MALIGRANDA [6]: . :

Deﬁmtlon 4 1: Let (D €4, globally on (0, oo) and-
R = ha(d) = sup PEYB(),, % =0.

We define the lower indez of ®@ as #(P) = hm ‘log h(l)[leg 4 and the upper index of D
as I(d5) 11m log h(}.)/log ). =0+ '

It follows easxly from the definition that for each € > 0 there exists C’ =1 such
that . p ; . :

q>(/u) < C. max {).'W’—' 1"°>+=} q>(¢) = o iz 0,
min {u@)—, ww} () < CBut), ¢ z 0, u=0.

The followmg assertion hnkmg modulars and riorms in- weighted Orlicz spaces is
an immediate consequence of the properties of mdjces and the Luxemburg norm.

Propomtxon 4.2: Assume |fllp., < C||f||o, and let e> 0
(i) If Pc¢ 4, globally on (0 ‘00), then

i, Py < O, max (MR, IED .
(ti) If Q € 4, globally on (0, o), then
min {|/IF%~, IIED*) < Oamy(f, Q). - -. T B
(##1) If P, Q € 4, globally on (0,.00), then = . 4
my(f, P) < C, max {{m (f, @))Prm@)=, (m (f, @)@y

Proposition 4.3: The following two.statements are true: e
(?) Let ¥(Q) > >0 (z(Q) = oo 8 admwsﬂ)le kere) I/ ”f“o e > l, tken we have
e < Calme(f, @)~ e .
(20) Let I(Q) < B and |Ifllg.. = 1. Then IIfIIo < C’a(me(/, Q))""

Proof: (i) If |Ifllo., > 1, then obviously m,(f, Q) = lifilo..- Therefore suppose that

my(f, @) < oo. The defmrtlon of #(Q) guarantees the existence of ).0 € (0 l) such tha.t
ho(l) < ).“ for 2 € (0, ). Set C,= ).0“ -We get. 3 .

von?

L (%), Under our a.ssumptlon we have Qu). = lfQ(t),t = O A 2 lp, for some ).,e > 1.
Therefore o S o

fQ( - el(//(,é)?l))"’) olz) dz < 176 fQ(x,'—i/’-(z'WE)”(;)di

oo o e an

. | Y N
," . .. ol .. ) _S_;'ﬁ ’((mo(f)Q))llﬂ) e(f’Q) = 1.

It suffices to choose Cp= A1 .- .. -+ . ~
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Remark 4.4: If g € Ly(Q), @ € A,, and P € A, globally on (0, o), then the necessity of the
condition (6/g) € Ly, for the imbedding Lg Q.¢ &> Lp,, can be proved directly without use of the
representation theorem. Actually, easily QP! € A,, thus N € A,. Combmed with (1.2) and Pro-
position 4.2/(s), this gives -

fN(Z:"’) (z)dzscg(9)+ofpgrl("("‘)’)o(z)dz '
A 2

S Cg(g) + C max {“Q—l(a/g)”c(i’)—l, "Q—l(ale)lllll’)yil
< Cg({)) +C, (1 + fQQ—l(a(z)/e(z)) olz) dz)l(P)n

= Co(2) + C,(1 + 0(9))’“’)“ .

All above quantities are finite; p € L,(£2) was an assumptlon and the mtegra.blhty of ¢ over 2
follows from memberslnp of constant functions in Lg ().

Rem srk 4.5: If P Q¢ A, and I(P) < #(Q), we can get a.quantitative relation for
B f N(o(z)/e(z)) o) dz.

) v ,'.‘-."

Indeed, setting H(t) = P-*(N, (t)/t) it is easy to check that QH(t) S N (!), ¢ 2 0; to clanfy thls
we invoke (1.1). Choose ¢ > 0 and a, ﬂ msuch & manner that I(P) +s < x < 5(0), I(Q) < 8.
For k natural put

' . . ¢,
B

2, ={ze€2;|z| <k a(z)<lc, g(x)>k‘1}, 2y ="U S,
e T e 3 . -
IR P

= [ N(o(@)/o()) e(z) dz = f:a{’{l(xpt(x) q(f)/e(x))'ot(z_) dz.
o, : i bo

and

App]yjng Propositiqn 4.2/(9’) end Proposition 4.3 we can continue ,

TeonT o i

BI: = C max {”H(xa a/g)“t(P)Tz "H(XQ G/Q)HI(PN'.} '; -‘." ~': ‘
= C, max {C (mo(l.o aje, QH))(I(P)+:)/a Ca(mo(lg 0/9 QH))"‘P"')/"}
< C, mox {C,B\"P*9/%, g p(P-lP}, '

Now, B‘, < oo, both the exponents (I(P) +.€)/« and (l(P) — ¢€)[B -are sms.ller than 1, and
I9\Q,| =+0. Thus, B < max {(c C,) == 1P=) (¢ Cy)ele~ '“"+‘)} Note that (Q) > I(p)

implies {(@QP-!) > 1, hence N € A, and therefore the constant ,u in the argument of N-'¢an
simply be omitted. . .

Remark 4.6: Let us notice that Theorem 2 6 is partly covered by Theorem 3. 9 On the other
hand, the procedure described in Remark 4.4 cannot be applied in the.t ‘case,

. .
e

Appendix. This “arithmetic supplement” is added for the sake of completeness.
Proof of Lemma 2.3: We shall show the existence of a constant 8 (= ) such that ..

o (jlK © ¢f JE—1) :
ti t( 1 ) P oisa,

Z —_—

j=2 B! T2t i —1

in"several steps. As usual, [-] denote the integer part. Let us write -

.. ¢iIK 12K) =) K oo )
==l + X 2 =85+X48.
j=2 BYj!  jo2  1=3 je-nKI+1 =3

8¢
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Step 1 (an estimate of S,):
' | (2K gk oop (2K] + 1
ST B SfekT o pen
X (1 + B2K] + P2K] ((2K] — 1) + -+ + 2KI-2[2K]1 2-1).
The last sum contains [2K] — 1 terms and the largest oee equals 2“[2k]! ﬁﬁkl—z. Thus
8, < ¢ ([2K) — 1) (K] + ) _ 8
@E+ 2 =ER T

1

for sufficiently large B.
Step 2 (an estimate of 83,1 = 3):
ugl gk _ g K]+ 1
j=w=nk1+1 B4 T [0K] + ny, puEr. .
- (K]t
1+ BUK] + PIK] (UK] — 1) + -+ + PUKIHU-DEI1 ——-—)
( , ([(’—I)K]'i-l)
Now, there are [IK] — {(! — 1) K] terms in the last sum and the last is the largest of them.
AB[IK]—[(I—I)K}SK+lweobtaln _ . ‘. L
o 8 < ¢ K+1 _ (OK1+ 1)' BURIHU—1K-1
(OK] + 1)t BUKT ([ — 1) K] + 1)'
¢ ' K41
= KT + 1)1 purnRI
< g (IK + 1)1+VE(K - 1)VE\K . ST
(K] + 1) g1 '
The last ratio is smaller than'1 provided g is sufficiently l't;rge (umformlyv'nth respect o b,
again. Hence, for such g8, S; < ¢}/({IK] + 1)!
Step 3: Combining the estimates obtained we get for § large enough

8).=

(lK + 1)K+

Eu”{"‘s.gv ‘i tZl . \_ i
j=e BYjt TS (GKI+ 1) T

Easily,
1 , 1

_ ‘ S__l_(l 1 )"x’”_’g_l_ 1 )ﬂ(—: .
CGEIFN GO GRI+D G —1) T (7‘ 1) 7

’

and finally,

o tjiK o 3§ JHK—1)
e j=2- ﬂ’]' j=eti—

the desired inequality l
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