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On Imbeddings between Weighted Orlicz Spaces 

M. KBBEC and L. PICK 

Es,werden Bedingungen fur Gewichte und a iintersucht, die notwendig und hinreiche id für 
die Gultigkeit der Einbettung fur. the Orlicz Raume LQ e c.- * Lp 0 sind W1r benutzen zwei Me 
thoden: die erste ist em LimitprozeB, der von den L9-Räumen zur Einbettung von gewichteten 
Zygmund-Klasseñ in den gewichteten Raum L1 führt, die zweite Methods beruht auf der Duali-
tat in gewichteten Orlicz-Räumen, dem Index der Youngechen Funktion und gibt einen all-
gemeinen Einbettungssatz. 

Hafleuu HeoSxogHMlge H AOCTaTO.qHEie YCJ1013HR Ha secossse clyHIuHH Q H a gis Toro, MT06LI 
CUCTB0BJ10 BJIo)seHlfe fl0CTHCTB Opiva C BCOM LQ. Q C-+ Lp,,. HpHMeHrn0TCH psa 
Me'roa: nepsua RBJ1HTCH upeeJIbUb1M npoleccoM if seer OT L-npocvpaHcTB ii aThoH(e-
111110 BecoBIJx RsaccoB 3HrMyHJa B BeC0BOe I1OCTHCTB0 L1 , BTOP011 nOAXOA H11MHHT 
noHaTife pBoflcTBeHuocTu B BeCOBBIX npoCrpaHCTBaX Opsna, 1niJeHca H4yHrnius H AaeT 
06uiy10 reopeMy. aso)sceHnR. 

Necessary and sufficient conditions are given for weight functions Lo and a, which guarantee 
validity of the imbedding between the Orlicz spaces LQ,9 c_,. Lp 0 . We make use of two methods: 
the first of them is a limit procedure leading to the imbedding of weighted Zygnwnd classes 
into weighted L1, the second method employs the concept of duality in weighted Orlicz spaces, 
index of a Young function and results in a general imbedding theorem. 

1. Introduction and preliminaries 

This paper deals with necessary and sufficient conditions for imbeddings between 
weighted Orlicz spaces. Actually, it is an amalgam of. results for weighted Lebesgue 
spaces (the particular case of continuous weights was solved by AVANTAOOIATI [1] 
and the general problem with measures by K&nan.& [3]), ideas about limit treatment 
of necessary and sufficient conditions on weight functions [5, 9], and inequalities link-
ing modulars and norms. We get a general imbedding theorem with no restrictions 
on the growth of the Young functions involved. 

In [5, 9] we have considered two weight weak type inequalities for the maximal 
operator in Zygmund classes L( 1 + log+L) K. It turns out that the necessary and 
sufficient condition on weights can be obtained by considering a limit case of the 
Muckenhoupt A condition. Rather surprisingly, an analogous procedure applied 
to the condition 

f(a(x)1e(x)) PI1i_1)e(z)dx< 00, 1 <-p . < 00 ....... 

which is necessary and sufficient for the imbedding Lp., -). L1. turns out to provide 
us with a necessary and sufficient condition for the imbedding L(1 + log L) K into 
L10 . (As usual, c-* stands for continuous imbedding.) This is the main result of Sec-
tion 2.
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In Section 3 we present a necessary and 'sufficient éondition for the imbedding 
between weighted Orlicz spaces L Roughly speaking, if Qpl is a Young 
function and N is the complementary function to QP', then LQ , Q L3 Lp, iff 

f N(cw(x)/(x)) (x) dx < oo for some > 0. 

An alternative technique of indices of Young functions is employed in Section 4. 
We obtain various relations concerning imbeddings in question under certain restric-
tive assumptions (as 42, 4 3, conditions on indices etc.). 

Throughout the paper, Q will be a measurable subset of IR". The symbols e and a 
will denote weight8 in Q, i.e. measurable and a.e. positive functions in Q, L9 will 
stand for the usual weighted Lebesgue space with norm The reader is supposed 
t be familiar with the basic facts from. the theory of modular and Olicz paóes 
(è refer, e.g., to [8,4]). Here, we shall work with (real) weighted Orlicz spaces in the 
following sense: For any Young function M, we consider the mdutar 

mQ(/, M) =f MO/(x)J) e(x) dx,	 I 

the weighted Orlicz 8pce	is the linear hull of the class of functions with finite

modular. This space is endowed with the .&uembirg norm 

IVIIM	inf JA > 0, me(//1, M) :5, 1} 

Recall that the Young function M satisfies the A, condition (sometimes we write 
M € 42) if M(21) ;5 CM(t) for large t. We shall say that M satisfies the 42 condition 
globally on (0, oo) if M(2t) ;5CM(t) for each t .0. If N-is the complementary Young 
function with respect-to M,i.e.	•. .	 , .. 

N(t) = sup (tr..- M(r)), t L> Oi 
rO 

then
t	.M-'(t) 1V- 1 (t)	2t, t	0, - 

and the spaces	and LN. Q are naturally associated with the duality 

(/,g)=f AX) g(x)e(x)dx, /ELM.Q ;gELY.Q ,	.	S. 

giving birth to the4 so called Orlzcz norm, on LM it 

•	
III/III.e =sup{f /(x)g(x)(x)dx; 'me (g, N)  

It is easy to check (quite analogously as in the case of non weighted spaces) that 
•	

IVftc.	ill/I JIM.	2I9Iu .	•.	 4	 ., 

We shall denote by EM. Q (Q) the closure in LM . Q (Q) of the set of all bounded méasurablé 
functions with bounded support in Q. Then LN. Q is the dual space of EM.Q. 

Let us still recall that a Young function M satisfies the 4 3 condition (M € 4) iff 
there is K >0 such that tM(1) M(Kt) foi large LIf ME 4 3 , then N E 42 and 

.N(t) ^ CIM-'(Ct), :t	T,	 '	 (1.2)


for some C. T 0.
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The basic properties of weighted spaces used here do not go beyond the limits of 
an easy verification. 

We only mention several useful assertions on general modular spaces (for the con-
cept see, e.g., [8]). The modulars in question need not be necessarily strictly convex 
so that any weighted L1 space is included.	0 

Let (Xi , m) be a modular space with the (Luxemburg) norm (i = 1, 2) and let 
T :I -- X be a sublinear operator. It is clear that the modular inequality 7%(TI) 
^ Cm1 (f), / E 11, implies its norm counterpart J IT111, Cflf 1 , / E X 1 . The converse 
is not true, however, we have (the proof is easy and therefore omitted) 

Lemma 1.1: Let T. X, X2 be as above. -Then the following two assertion8 are equi-
valent:

(i) There exf8t8 C ^ 1 such that IT/i12 ;5 0I0  
(II) There exi8t8 K ^ 1 such that m2(T11K) ;5 1 provided m1(/) 1. 

Moreover, the best constants in (i) and (ii)-coiñcide.	 -. - 

Later, we shall also make use of 

Lemma 1.2: Let T, X 1 ,	beas above. Let h be a positive function defined on (0, co)

and bounded in some right neighbourhood of zero. If 

IT/I12	h(m1(f)), / E X,	 (	 (1.3) 

then there isC^tlsuch that for 
all 

/	 - 

IT/112	C 111 111	 " (1.4) 

Proof: Suppose (1.4) is not true. Then there is "a' sequence {f,,} X 1 such that 
11f111 0 and 1T/II2 A oo. For large n, m1(/)	[f,fl	1, whence m1(f) -. 0, which 
contradicts with (1:3) I	- 

As currently adopted, different constants are denoted by the same letters if no 
confusion can arise.	 '-	, -	 ,.. 

2. The limiting approach 

In what follows, p and p' are conjugate exponents, i.e. p E (1, oo), p' = p/(p 
Let us mention the elementary and frequently used formulas 

p'/p = p' — 1 = l/(p — 1). 

We start with a special case of a weighted imbedding theorem which appeared 
in AVAIcTAOOIATI'8 paper [1] for continuous weights and generally for measures in 
KABuL& [3] . For the sake of completeness, we present a proof based on the latter 
paper, which will, additionally, provide us with a relation between important con-
stants. 

Theorem 2.1: The following 8taiement8 are equivalent: 

(I) f If(x)j a(x) dx	C(cr, ) (f If(x)I P e(x) dxr'P;

Q.  

(ii) B(a, ) =J ((X)/(X)) P (x) dx < 00. 

Moreover, the best C9(a, ) in (i) equals (B(a, e))''.
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Proof: Let (i) hold. Putting /(x) = (a(x)/e(x))'iP" we get 

L (0 X' ) dx	j/(x) I a(x) dx 
OW	f 

C,(a, eY(f I/()I 6(x) dx' P .	 S 

a(x) P	 lip 

= C(ci, ) (f	Q(x)dX) 

The last term is finite as for each g Lp(e)	•s. . 

If	e(X) 
g(x)	e(x) dx =	

g(x)a(x) dx, 

f1g(X)1 a(x) dx	C(or, e) (f g(x)I e(x) d--\ 11P 

	

0	 / 

so that the function alp represents a bounded linear functional on L . and belongs 
to^ 'Lp%e . This yields f (c1(x)/(x))9' e(x) dx :!^-, C(a, 0)P', hnce B(ør, ) ^ C,,(a, ç)P'. 

Conversely, if B(a, e) is finite, then 

J f(x) a(x) dx =f J/(x)I a() O1IP(x)	(x) dx	 . 

/ 

;5 M/II	(J (a(x)1(x))9 (x) dx)hIP = (Bp(a, o))	Il/lip 

Therefore, (i) holds and C(a, )	(B,(a, 0))1/P'I 

Let 1 K < 00. We introduce the Young functions 
fgl,	 0:!E^:1:5:1,  

JCO_ g(1 __ log t)K,	1>1,	 . 
tI / 1 )j(K

F(t)
 

We shall denote by !I'K and (Ix the complementary Young functions to (P and F, 
respectively. 

The rather lengthy and tedious arithmetical proof of the following lemma is 
postponed to Appendix.	 . S 

Lemma 2.2: There exi8t8 a constant	1 such that 

F(t) > exp (g liKfflx) - LIIK/flx - 1, t. 1.	.	. 

It is worth to notice that the function exp (t'/") gl/K - 1 is equivalent to 'K 

for large values of 1. Indeed, it is easy to verify that . (1)(t)/t<C(P(}'i)/ITi' t ^t 1, 
with, say, C = 3". Thus, by [4, Theorem 6.8], VIK satisfies the A 3 condition and, 
on using (1.2), WK - 1 is equivalent, to (1 + log t)" for large t.	.	S



FK(IL 
a(x)	 IL1	1 51K-i) 
__5-)e(x)di=E_1-(1	) 

__ ii i 

^
/	1	)j(K-1) 

j2)! 'j— 1
j(K-i) 

00	1 

= E-T. (CII)', 
52 2.

f
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Lemma 2.3: The funakm8 F, OK, 8a4isfy 
(i) ØK(t) :i!t	 /or t2- 1; 
(ii) 2FK (1) ^!! £	 fort ^ 1; 
(lii) !PK (t) ^5F(t)	 forO g-,t	1; 
(iv) GK(t) ^5 CKØK (t)	 fort	1; 
(v) ØK (t)	Ct"(p - I)- ' K	for £	O and, p E (1, 2). 
Proof: The statements (1)— (iii) follow immediately. We prove (iv). Note that 

FK E 4 3 , thus, in virtue of J1.2), ()(t) CtFK '(Ct) for some C	1 and all large t. 
Making use of Lemma 2.2 we have FK (t)	K exp (t'/"flx) with some	>•O, 19K

from Lemma 2.2, and for every t 1, so that passing to the inverse functions, 

GK(t) ;L_ CIPKK log' (Ct/aK )	C,t logK £ CK )K(t) for t	1. 
As to (v), it is easy to check that max 'P(t) t-P ^ K9p - i)_IC, so that we can put 

= KK I	1>0	- 

Lemma 24 There eXiet8 a constant ÔK &uch that the (modified) Young inequalily 
ab:i^:ôK (FK (a)+øK (b))hold8fôr all a,bO. 
• Proof: We shall make use of Lemma 2.3/(1)—(iv). If a, b,:5: 1, then ab 

ØK(a)+ Y'K(b) ^x(a)+ F(b):Ifa.< 1, b ^ . 1, then ab < b ^2FK (b) ^K(a) 
+2FK (b). If a 1, b <1, then ab <a .1(a) ± FK (b). Finally, if a,b >1, 
then, according to the Young inequality, ab :!^: G(a) + FK (b) CK )K (a) +FK(b) 
Putting ô, = max {2, CK} concludes the proof I 

Lemma2.5: There exi8t8acon8tantO8uchthat	 •-..'-

OK 
ltfII..	(p - 1)x lifH.	f € Lp,5 , p	(1,2).	•,. 

• Proof: The theais follows directly from Lemma: 2.3/(v) , and frOm the definition 
of the Luxemburg norm I 

• Theorem. 2.6: The following conditions on a, ç are equivalent:. 
(i) Lp,0(Q) ^ L(Q); 
(il).C9(a,e)C(p .._l)_1C, pE.(l,2); 
(iii) (ale) E LFK.Q(Q).	 • 

Proof: We show (i)=. (U) =' (iii) > (i) Let (i) hold. Then; according to 
Lemma 2.5, IVI6.	(JK (OK/(p - 1)") IIfll, p € (1, 2). 

Now suppose that (Ii) is valid. Employing the relation between the best constants 
from Theorem 2.1 (f is the conjugate exponent to j) we.get

)KI 

C17	
- 1) 

the last sum being finite provided 0 <a < (Ce)' 
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If (iii) is true, then the modified Young inequality (Lemma 2.4) implies 

ff(x)j a(x) dx	lf(z)I !	(x) dx	 . 

•	 !(I/()l)'à()dx + 
L 

f IOK 

(a(x)) (x) di 

= CK. K(If(Z)l) (x) dX+.CK.pBIog.K(Y) O.i .' 

Application of Lemna 1 2 (with h(t) = C, ,(t + B!OK(a, LO), ,I	 to the nbedthng 
(i)I	

' 

Rem ark 2.7: By duality argunient, we have also 'characterized those weights 'Lo and a for 
which ItI/eIIvJr;Q	c1WoiI:  

For K = 1 and Q bounded, Lo., is the weighted Zygmund cta88 L(1+ log 
crn'istiñg öf all fw:ictions / With f (x)( (1 + lorIf(x)I) (x) dx < oo.Lét' us state 
the following particular	a  

Corollary 28 Let Q be bounded and E L1(Q) Then the weighted Zygmund e2a88

L(1 + log L)Q is iinbedded into L10 ill f exp (uci(x)/e(x)) Q(x) dx < o for some


at 

3. General imbeddings  

In the rest of the paper, P and Q are Young functions. 
• Definition 3.1: For a , couple.of , Young functions PQ y , introduce .the -set 
Y(P, Q) = {K > 0; Q(KP'- 1) is equivalent to some Young function}. For K .Y(P, Q), 
the Young function equivalent to Q(KP"1) will be denoted Q(KP_1) again. Recall 
that two functions F, G are equivalent. iff tx'F(a 1t) G(t) &.F(at) for all £ and 
some a ^- 1 independent of t.  

Remark 3.2: Note that if at least one of the functions F, Q satisfies the z1 2 condition glo-
bally on (0, cc), then Y(P, Q) is either empty, or equal to (0, cc).	. 

Proposition 3.3: Suppose that QP isa Young. function. Then the following 
8iatement8 are equivalent:  

(1)	IL/llp.o	II/lio.	• 'forall f, .' 
(ii)	11/111.0 ^5 l/iip_i,	for all f .	•	 ' .	

S S 

Proof: According to Lemma 1.1, (i) is subsequently equivalent to the implica-
tions m0(/, Q) <^ 1 => m0(/, F) ;^L 1, and, on taking g = P(f), m0(g, QP')	1 => f ga


1. The repeated use of Lemma 1.1 completes the proof I 
Realizing that K il/ lio.	IIIIIQK.e ' where Qx is the Young function given by QK(t)


= Q(Kt), we easily obtain 
Corollary 3.4: LetKE Y(P,Q).Then 

li/li,'.o ^5 Kf	Vf	111111.0	l!fIIQCKP_ 1 .s Vf. 

Conver8ely, if K E Y(P, Q), then for every C 1 

ii/lI. ^5 ClI/IiQ(Kp- x ).Q Vf	iIfiIp.o ;5 KCii/iio. Vf.
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Corollary 3.5: Let at least one 0/ the funcwins'P, Q 8a1i8fy the A, condition globally 
on (0, oo). Then L L Lb,,, I/f LQp-a Q	L10 provided QP- 1 1.8 a Young function. 

In the sequel, we will assume that QP- 1 is a Young function. 11 K € Y(P, Q), 
we denote by NK the function complementary to Q(KP-1 ). We shall study, relations 
between the imbedding L0, c.-	and the condition 

fN,(4aa(x)1(x)) e(x) dx < oo for some 1s > 0. 
S 

Proposition 3.6: Let f Nx(/w(x)/e(x)) o(x) dx be finite for some positive K, u. 
Then L0,0	L,.	-	 .	. 

Proof: Making use of the Young inequality, we have 

11/ IIp. = KILI/KI[,,,0	K (1 + i.r'fP(If(x)I/K) (a(x)/e(x)) ,ie(x) ax) 

K ± ;(K/ii)f Q(If(x)I) e(x)dx ± (Kl)f.NK(iw(x)Ie(x)),e().dx: 

=C+(K/)m(/,Q), 

and in virtue of Lemma 1.2 we arrive at the desired imbedding U 
Proposition 3.7: Let the imbedding LQ, - Li,,, hold and suppose K € Y(P, Q) 

for some K ^! sup (I/IIpO/ftfjIQ; / 4 0}. Then f NK (4ua(x)1o(x))e(x) dx < eo for some 
u>0.  

Proof: Assume g E EQ(Kp-').5(Q). Then, by Corollary 3.4, 

I! 
g(x) (a(x)/e(x)) ç(x) dx ^ IIgIIi.a	IIgIkxP-'),p, 

in other words, (ale) € LNK . Q I	S 

Let us summarize the results of this section. 
Theorem 3.8: Let at least one of the functions P. Q satisfy the J 2 condition. Then 

the following statements are equivalent: 
(i) L0,0 (Q) c-b. Lp.,,(Q);	 S. 

(11)1 N(jza(x)lo(x)) e(x) dx < oo for 80525 c; p > o. 

Theorem 3.9: Suppose that Y(P, Q) contains a sequence K. ,' co. Then the following 
statements are equivalent: 

(I) LQ0(Q) + Lp0(.Q); 
(ii)f Nc(w(x)/(x)) (x) dx < co for some C, 14 > 0. 

Rem ark' 3.10: The duality argument applied to Theorems 3.8 and 3.9 gives the characteri-
zation of Lo and a such that 1 1NO11 0 IL//uII., where P and are the complementary 
Young functions to P. Q, respectively. 

4. Some remarks on an alternative approach (employing indices) 

First, we recall the concept of the lower and upper index of a Young function. Actu-
ally, it is a certain refinement of the A, condition. The existence of finite indices 
for functions satisfying z1 2 can be proved e.g. on the base of the theory of submulti.. 

8 Analysis, Bd. 10, Heft 1(1991)
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plicative functions. We refer to MATUSZEWSKA and Oaucz [7], . GtTSTAVSSON and 
PEETRE [2], and the comprehensive paper by MAIaGBANDA [6]: 

Definition .4.1: Let 0 E 4 globally on (0, oo) and-

A) = sup (Ai)'/ø(t) A	0.

t>o 

We define the lower index of 0 as 1(0) = ' lixn'log h(2)/log A andthe upperindexo/0 
as 1(0) = inn log h(A)/log A.

S	 , •• 

It follows easily from the definition that for each € > 0 there exists C8 '1 'such 
that	.	 .5 

	

^S C, max {ii()_1,AI(0)+t} 0(1), £	0, 2	0, 
min {pi(5)_s,jI(5)+s}4)(j) ^5 C,(1a), t	O,	0. 

The following asrtin linki g modulare and norms in- weighted Orlicz spaces is 
an immediate consequence of the properties of indices and the Luxemburg norm. 

Proposition 4.2: Assume IIfIIp.o	.CII/IIQ.Q and let 6 >0.	 . . 
(i) 1/FE J2 globally on (0,'o o) hen'	 .	. 

M,(/, F)	C. max 1111	L 
ILIlIr'} 

(U) 1/ Q E z1 2 globally on (0, cc), then	 . 

min {IVII	I/II)4e} :5^' Cm(f , Q). ..'.	. . 
(iii) If F, Q E J2 globally. on (O,.co), then :-

m0(/, F) ^5 C max {(m(f, Q))(i(P)I1(o))_e, (mQ(/,Q))('(f)/I(Q))+'}..	. 

Proposition 4.3: The/ollowingtwo,statemen.ts are true: ,•	 . .. 

(1) Let 1(Q) > a > 0 (1(Q) = oo 18 admI8sIble here). If I/fl> 1, then we have 
1111G, e	C(m(/, Q))11 

(11) Let 1(Q) < and 1 1111	1. Then IIfIIo.p	(.(mQ(f, Q))1'	:...' 
Proof: (1) If 1010, > 1, then obviously m(/, Q) 	TherefOre.suppose that 

m(f, Q) < oc. The definition of 1(Q) guarantees the existence of AO E (0, 1) such that 
hQ (A)	Aa for 2€ (0,.4). Set Ca.= ) : ..We get:, .	.	. 

MIAX)l	
Lp(x) dx A06 < 1 

(11) Under. our assumption we have Q(At). ;5 APQ(t) , £ 0, 2 A, for,some A# > 1. 
Therefore ........ S	 S	 *•	 * 

WO f Q (Afti-P (m(/Q))'/8) e(x) dx A_P f Q (1,(m)'/) 
(x) dx 

	

^ Ap P (	 \. m Q) = 1. -	, tmj Q))1/fl /	
Q 

It ' suffices to choose CO = A8'
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Remark 4.4: If e € L1(Q), Q E t, and P E A. globally on (0, oo), then the necessity of the 
condition . (a/Lo) € LN, for the imbedding LQ L L 0 can be proved directly without use of the 
representation theorem. Actually, easily QP-' € i, thus N € A,. Combined with (1.2) and Pro-
position 4.2/(i), this gives	 - 

(z)\ C(Q) + cf PQ1 
( e(X)

a(x)dx a
j 

a	 a 

(f) + C1 maxjIIQ_1(o/e)IIt, !Q1eI!} 

	

^5 C(Q) + C. (1 +f QQ(a(x)/Q(x))e(x)dx)Ht	
S 

= C(Q) + C7(1 + a(Q))1(i. 

All above quantities are finite; e € L1(Q) was an assumption and the integrability of a over 9 
follows from membership of constant functions in L(Q). 

Remark 4.5: If P,Q € All and 1(P) < 1(Q), we can get a:quantitative relation for 
B=fN(a(x)/e(x)) e(x) dx.	

S 

Indeed, setting H(t) = P-l (N, (t)/t) it is easy to check that QH(t)	N(f), S 0; to clarify this

we invoke (1.1). Choose r> 0 and a, fi in such a manner that 1(P) + r < tx <1(Q), 1(Q) <fi. For k natural put	 S 

Qe = {xEQ ; IxI< k, a (x) < k,Q(x) > k_1), 90U, 

	

•	--k	 -- 

and
B = f N(a(x)/(x)) (x) dx r f1h1(z 1(x) a(x)/(x))a(x) dx 

S	 2 

Applying Proposition 4.2/(i) and Proposition 4.3 we can continue 

Be	C. Max {IIH xQkaIe)Iij' I(Xoa/e)iIf1 

C. max {Cl(mQ(XQa/Q, Qff))(:(P)+1)Ia Cp(m(±a/, QH))(*1)/'} 

C1 Max {C1B(	+1)/I CB("')I'}. 

Now, Be < oo, both the exponents (J() + .e)/ and (1(P) -	are smaller than 1, and

D\D I =0. Thus, B max {(C1C1)hI(a_1(0)_1), (.C)'/(t')}. Note that 1(Q) > 1(P) 
implies i(Q111)> 1, hence N € i and therefore the constant p in the argument of N 'óán 
simply be omitted.	

S 

Remark 4.6: Let us notice that Theorem 2.6 is partly covered by Theorem 3.9.. On the other 
hand, the procedure described in Remark 4.4 cannot be applied in thatcase. 

Appendix. This "arithmetic supplement" is added for the sake of completeness. 

Proof of Lemma 2.3: We shall show the existence of a constant (= Pic) such that 
ti/K	00 0 / 1	j(K-1) 

• j=2	 j! 

inseveral steps. As usual, [.] denote the integer part. Let us write	 S 

gj/K	12K1	00	 (SKI	 CO •. 

Z— E+Z E =82+z81: 
j=2	j2 13 j''((l-I)Kl+l	1=3 

8
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Step 1 (an estimate of 52): 
(2)(1 tj1K	-t	[2K] + 1 
so -  

j=2 131j! - [(2K] + 1)!	13[2K] 

X (1 + 13[2K] +132[2K]([2K] —1) +	+P2K1[2K]!2). 

The last sum contains [2K] - 1 terms and the largest one equals 2' 1[2K]! 1312K1-2• Thus 
t	([2K] - 1) ([2K] + 1)! 

([2K] + 1)!	2132	 - ([2K] + 1)! 
for sufficiently large 13. 

Step 2 (an estimate of S,1 ^- 3): 

st,	
IIKI	t)IK	 it	[1K] + 1 
Z.	[(1K] + 1)!	13UK1 .	 V	 V 

x (i . + fi[lK] + 132 [1K] ([1K) - 1) +	+ flhIKi—t(I-1)KJ--1 ([(1— 
K] + 1)!) 

Now, there are [1K] - [(1 - 1) K] terms in the last sum and the last is the largest of them. 
As [1K] —[(1— 1) K] K , ± lwe,obtain	

L	

V 

-

	

it	K + 1	([1K] + 1)!	13LIKI—l(1-1)Kl—L	
V 

- ([1K] + 1)! p(ZKJ ([(1 - 1) K] + 1)! 
it	

K+1 (IK+1)K+1 
- ([1K] + 1)! 71(1+1)K1+1 

it	/(IK + 1)1+1IK(K .+ 1)11K K 
— ([1K] + 1)	 I 

The last ratio is smaller than - 1 próided flia sufficiently large (uniformly with respect to 1), 
again. Hence, for such 13, S ^5 t'f([IK] + 1)! 

Step 3: Combining the estimates obtained we get for 13 large enough 
oogj!KV	tS

	

V	

, 

j=2	j=2 ([7K] + 1)! 
Easily,	 V

37
V	1	.	1	 i(i\ tjKI+1—j	.1 (T=l )jK—j 

([jK]+1)!j!(j +1) ... ([jK]±1)j! 
and, finally,	

V	

V V	
V	

V. 

1j1K	 tI / 1 
Lr t1	

V	
V 

-.	 j=S2P)!	j=2 	\9 — 1/	 V 

the desired inequality U	
V	 V 
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