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We treat the method of ascent for partial differential equations by means of transmutations. We 
construct a kernel function for the radial generalized axially symmetric potential theory Dirichlet 
problem that involves n radial variables. We also construct ascent type formulas for hypergeo-
tiletric functions of operators and apply one of them to construct a solution of an ill posed Cauchy 
problem. Generating functions of special multivariable solution sets of partial differential equati-
ons are also considered. 
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§1. Introduction 

The basic idea behind the method of ascent in partial differential equations is to construct 

solutions of problems involving several variables from associated component problems that 

involve fewer variables. The origins of this approach may be found in the technique of sep-

aration of variables. A number of systematic studies on ascent were initiated soon after J. 

Hadamard's development of the method of descent for the wave and other hyperbolic type 

problems [19]. In [10], for example, F. J. Bureau used an ascent approach to treat prob-

lems related to wave propagation. His technique involved introducing additional variables 

into solution forms for associated lower dimensional problems and carrying out suitable 

manipulations on these variables. Investigations over the past twenty years indicate that 

a very promising approach to ascent can be tied to the construction of solution operators 

for higher dimensional problems from component solution operators for lower dimensional 

ones by means of transmutations. This permits bringing in a wide variety of tools such 
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as semigroups and continuous groups, distributions, operator theory- and in the case of 

complex equations, function theoretic tools such as the Bergman kernel. R. P. Gilbert 

employed this method to treat boundary value problems in [15, 161. It was further used 

by L. R. Bragg and J. W. Dettman in [8) to determine convergence regions for multino-

mial representations for a class of singular initial value problems in several space variables 

from a knowledge of the bounds on polynomials associated with corresponding one space 

variable problems [7] and by L. R. Bragg [3] to construct solutions of "higher dimensional" 

abstract wave problems. The ascent method has also been called upon in [14, 21, 241. 

In order to illustrate some key ideas of the approach of this paper, we summarize 

some of the notions from [3]. Let X be a Banach space and let A1 = B,i = 1,2, in 

which the Bi are generators of bounded continuous groups in X. If B 1 B2 = B2 . B1 and 

cp e 1)(A 1 ) fl D(A2 ), then a solution of the problem 

(1.1)	
d2W(t) 

= (A 1 + A2 )W(i), t > 0; W(0+) = 0, W,(0+) = 

can be expressed by means of the transmutation formula 

(1.2)	 W(t) = r()1;' {3UA i (_) [UA,(-)J } 

in which the UA, (t) denote the semigroups of operators generated by the A i and £' { } a-.r 

denotes an inverse Laplace transform with .s the variable of the transform and r the 

variable of inversion. Upon rewriting the right member of (1.2) in the form 

I'()C {s [(s UA 1 ()] [5 -t UA,(),O] },-.t2 and carrying out the inversion by calling 

upon the connection between the group of operators generated by the Bi and the corre-

sponding semigroups of operators generated by the A 1 , it was shown that the function 

W(t) could be expressed as a real convolution of wave type solution operators VB 1 (vi) 

and V83 (/), corresponding to B1 and B2 acting on the data . This convolution served 

to define the cosine of a sum of semigroup generators [17]. Thus, the transmutation in 

(1.2) transformed the product property for semigroup operators into a real convolution 

property for continuous groups.
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From this description, we can give at least one plausable formulation for constructing 

ascent formulas that will serve as a model for later developments. 

Theorem 1. Let SA(t ), i = 1, 2, denote solution operators for a pair of well posed ab-

stract problems that involve the semigroup generators A,. Further, assume that there ex-

ists an invertible integral transformation T such that SA(t )p1 = TUA .(t)c,, i = 1, 2, in 

which the UA,( t ) are the semigroups of operators generated by the A i and Vi E V(A 1 ). If 

E D(A 1 ) fl V(A2 ), then 

SA,+A 2 ( t)P = T [(T'SA,(t))(TSA,(t))J. 

Proof. This follows by the straightforward calculation 

SA+A 2 ( t )p = T[UA 1 +A 2 (t)S] = T[UA,(t)(UA3(t)ç)] 

= T [(TSA,(t))(T'SA3(t))] 

If we further assume that the properties of T' permit rewriting the last member of 

this relation in the form T ['{SA, (t)(SA2(t)))] where 1' is some appropriate integral 

operator, then we have 

(1.3)	 SA, +A 2 ( t )p = T [t {SA I (t) (SA 2(t)SP))] 

This gives a decomposition of SA, +A 3 (t) in terms of component operators 5A1 (t) and 

SA 3 ( t ). a 

The types of assumptions needed to obtain (1.3) are fairly restrictive and it is a rare 

situation in which one can obtain the precise form (1.3). One can, however, obtain formulas 

that are slight departures from (1.3) that have the ascent flavor and which are convenient 

for application to a wide variety of well posed and ill posed problems in partial differential 

equations. Of particular interest are those cases in which the SA,(t) is in some restricted 

class of hypergeometric operators. The operator T can then be taken to be one of the
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following: the Laplace transform, the inverse Laplace transform, or a convolution [2]. For 

other classes of solution operators 5A, (t), the Fourier transform or the Stieltjes transform 

may well serve as possible choices for T (see [11, 12]). 

In this paper, we exploit the use of the scheme suggested by (1.3) to construct a number 

of ascent type formulas and to construct multivariable Green's functions for Dirichlet 

problems. For the case of ill posed problems in partial differential equations, we make use 

of a number of results from [4]. The approach suggested by (1.3) also appears to offer a 

convenient means for developing special function representations of solutions of well posed 

and ill posed problems. While we will construct some generating functions for some of 

these functions, we defer the treatment of expansion theories to a later paper. 

In Section 2, we introduce some notation and provide evaluations for some complex 

convolution integrals that will be used for Green's function representations. We also re-

call some facts about the kernel for the initial value radial heat problem and summarize 

formulas on transmutations as well as formulas from [4]. In Section 3, we give a complex 

convolution formula for the Green's function for a standard abstract Dirichiet problem in 

terms of lower dimensional component Green's functions and in Section 4, we construct a 

Green's function for a generalized axially symmetric potential theory type Dirichiet prob-

lem in which the underlying equation involves a sum of several radial Laplacian operators. 

The convolution decompositions of these Green's functions will be stated as theorems. In 

Section 5, we deduce a number of theorems, somewhat analogous to (1.3) when the SA, (t) 
is one of the hypergeometric operators 0F1(_;8;tA,), iFo(c;_;iA), 0F2(_;01,02;tA2) 

and 1 Fi (c;$;tA 1 ). Finally, in Section 6, we couple the ascent method with complex trans-

formation notions to obtain a solution representation for an ill posed generalization of the 

wave equation and to construct convolution versions of multivariable generating functions 

and the functions they generate.
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§2. Some Preliminaries 

(a) Notation: Throughout Sections 3 and 4, we call upon the Laplace transform and 

its inverse ([13, 22, 26]). if F(s) is the Laplace transform of f(t), we write F(s) = 

£(f(t))1_.3 and 1(t) = £(F(s)),... if F1 (s) and F2 (s) are the respective transforms of 

f1 (t) and f2 (t), then we write 

(2.1)	fl ( t) f2 (t) =	(F1(s)F2(s))j_g = fo f, (t - )f2()d. 

To avoid confusion, we use the symbol A to denote the complex convolution and write 

T im
+oO 

 
(2.2)	Fi(s) A F2 (s) = £(f1(i)f2(t))_9 = ( 27ri)'	F, (s - F2)d(. 

(b) Some Laplace Transform Formulas. Since 

= r()/s°, a > 0, and	= r(/3)/s, fi > 0, 

it follows by (2.2) that £(t° 2 )..., = r(c)r(fl)(s-° A s) for x,j3 >0 and a +/9> 1. 

But £(t0_2),....3 = I'(c + 3 - 1)/s0 . A comparison of these gives the formula 

(2.3)	s A	
=	+ -1) (a+,6-1), a"6 >0, a + >1. r(c)r(i9) 

By carrying out a calculation similar to the one above, one can show, using formulas 4 

and 5 on page 73 of [22] and the duplication formula associated with r(2z), that if a > 0, 

/3>0, +2/3-1 >0, then 

s A (2 - A2) = 
r( + 20 - 1)	1 
r()r(fl)2a- 1 3o+2fl-I 

(2.4)
\ f a+2/3-1 a+213+1	1 A2 

/3-I-) 2F1(	2	'	2 

From (2.3), one can, with shifts in contours and the use of analyticity, obtain the familiar 

integral evaluation 

(2.5)	(2iri)' Ili.
+i	d( 	r'(z+v-1) 

(a + )(b - )v - r(,A)r(v)(a + b)P
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if u ,v > 0,p + v>1, a,b>O with 0 <c < b. 

(c) The Radial Heat Kernel. The initial value problem for the radial heat equation is given 

by	
0 

(2.6)	 u,(r,t) = (D +	D, u(r,t), u(r,0+) =V(r), ju > 1, 
r	. ) 

and its solution is defined by the formula 

(2.7)	 u(r,t) = 
or K, 

(r, ^, t)w(C) dC 

in which the heat kernel K(r,,i) is defined by the formula (see [1]). 

(2.8)	 t) =	r1_ee_ (,22) 
2t	 2t 

In this, I(z) is a modified Bessel function of index v. If we replace (2.6) by the multivari-

able heat problem 

(2.9) 

where L 11 .	D 2 +	 then its solution is given by 

(2.10)	U(ri...rnt)=j 

in which E+ denotes the portion of n-dimensional Euclidean space En in which all of the 

coordinates are non-negative. 

(d) Some Tran.,muiation,, and Related Formula.,. The formula used in (1.2) expresses the 

solution of the wave problem (1.1) in terms of semi group operators acting on the data W. 

We can express this formula in an alternative form, namely, if u(t) is a bounded solution 

of the abstract heat problem 

(2.11)	 u,(t) = Au(t), I > 0; u(0+) = p, p E V(A),
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then the function 

(2.12)	 W(t) = r( )c- ' {s_u(__) 
4s }8_ 

satisfies the initial value wave problem 

(2.13)	 W(t) = AW(t), W(O+) = 0, W(0-4-) = 

The formula for the solution of (2.13) with initial conditions interchanged is (see [5]) 

W(t) = r(1/2)tc' {su(1/43)}9_.j2 

Similarly, the function 

E(t) = t i--r ((a + 1)/2) £ {s4u(1/4s)},_t2 

is a solution of the Euler-Poisson-Darboux problem 

Et (t) + E(t) = AE(t), E(0+) = , E(0+) = 0 
It 

where a 0 [5]. 

Finally, the function 

(2.14)	 v(t) 
= r(-)	

e_ct2a_uja, a < 1, 

defines a solution of the Dirichiet problem (see [ 2]) 

(2.15)	 vt,(t) + v(t) + Av(t) = 0, t > 0; v(0+) = 

provided that A = B 2 where B generates a bounded group of operators. if A is the 

standard Laplacian operator D,. + + D and a = 0, then (2.15) reduces to the 

classical Dirichlet problem. 

For a number of problems we will consider, the operator A in the equation (2.11) will 

be replaced by a general polynomial partial differential operator P(D) = P(D 1 ,. . . , D).
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In this case, the problem (2.11) with W = (x 1 ,. . . , x,) is generally ill posed. However, it 

may have a solution if we restrict W to lie in some suitable class of functions. In [4], this 

class was selected to be the set Ot_ (x) of entire functions (x) = , x,) satisfying 

the condition 

(2.16)	 I(x)I Mexp 
(trixiii) 

in which M is a generic constant and 0 < pj < 1, r > 0 for j = 1, 2,. . . , n. Under these 

conditions, it was shown that we could construct a solution of 

u(x,t) = P(D)u(x, t), u(x, 0) = 

Moreover, it followed that 

(2.17)	 Iu(z, 01 M(p, r)ekI exp (> TIXiIl1) 

in which M(p,r) is a constant depending on the Pi and r and in which K is a positive 

constant determined by the coefficients in the polynomial operator P(D). This bound on 

u(x, t) suffices for the existence of the inverse Laplace transform in such formulas as (2.12). 

On the other hand, this growth is too large for an integral of the form (2.14) to be assigned 

an evaluation. 

Finally, we note that if 1(z) is an entire function of z and (x) E C(z), then we can 

define the symbolic function f(tP(D))(x) by the formula 

(2.18)	 f(tP(D))ço = 10 00
 e(f() o u(x,)) do, 

in which f(t) o u(x,) denotes the quasi inner product (27r) f 
2 f(te )u(x,ce )dO. 

One can establish a growth bound on If(tP(D))p(z)I similar to the bound on u(x,t) in 

(2.17).
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§3. A Green's Function Convolution Formula 

In view of the fact that the solution of the wave problem (1.1) can be expressed as a real 

convolution of solution operators acting on , it is useful to see how ascent is exhibited in 

connection with the abstract Dirichlet problem 

(3.1)	 Vit 	+ v,(t) +	A 1 v(t) = 0, t > 0; v(O+) = 

where A = B with Bi the generator of a bounded continuous group in the Banach space 

X and W E flD(A). While this formula will offer little specifically for the problem (3.1), it 

will illustrate a useful means for tackling more complicated problems in which the Green's 

function is not known. 

Now, it is a relatively easy task to show that 

(3.2)	 v(t) = J	(GB(	...de 
) 

in which the GB) are the groups of operators generated by the B, and in which 

K(e1, . . . ,,,,t) is the Green's function for the classical version of (3. 1), namely 

(3.3)	V,(x,t) + V(x,t) + AV(x,t) = 0, t > 0, V(x,0) = 

,1 where x=(xi,...,x) and L =D2 +•••+D 

On the other hand, we have (using the kernel function for the heat equation u(x,t) = 

Lu(x, t) in (2.14))

jl_a	• 00  

(3.4)	K(1,. . . , c,,, t) =	 /	
_ 21 ( 

[J 
e0

) 

If we select .s = t2 and transform all of the individual factors in the second member of (3.4) 

(n + 1 of them), then we obtain
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Theorem 2. The Green's function K(e1,. . . , , i) in (3.2) is given by 

	

(1,00 
K( 1 .. .0,t) =	/2f(la) (fe_a	dci) A	 c_8e_dcr

 
/ •00 

A I I e'e' do) 
'Jo 

- r(n—+i)ti—a 
/2r(	

/ 1	1	
1 2)	= P. -	i=) (	

A +
	

A ... A
. + e 

The last member provides the desired complex convolution formula for obtaining the re-

quired Green's function by ascent. 

One can construct the closed formula for K(e1,. . . , 0 ,t) from this theorem. For 

example, suppose we take a = 0 and n = 2. Then the last member in Theorem 2 becomes 

(3.5)	K(.1,2,t) = (27r) — 1 t . (s1 A (s + )' A (s + e)) 

But, by (2.3), (s+)_1 A(s+)' = ( s +?+) and, by (2.5), s A ( s +?+) = 
(2irz) f C+

_00 
tOO 
(s - )-(( + + d = (s + + Upon replacing s by t2 and 

inserting this into the last member of (3.5), we obtained the desired classical two space 

	

variable kernel K(1,e2,t) = t/ [27r(t2 +	+) J. It is left to the reader to show 


that the last member of Theorem 2 permits one to obtain the well-known formula 
ti_a 

t) 2 
 = n/2 r( 1 ) [ t2 + 

§4. The Radial Generalized Axially Symmetric Potential Theory Kernel 

We now follow up the construction of the formula (3.5) with the construction of a corre-

sponding Green's function t) involved in the integral representation of the solution 

of the generalized radial generalized axially symmetric potential theory Dirichiet problem 

	

W,,(r,t) + Wf(L t )+ 	A,, W(r,t) = 0, t >0 
(4.1)	 j=1 

W(r,0+) =
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where r = (r i , . . . , r,,) and the L, are as in (2.9), j = 1,2,..., a (see [251 for a general 

background on this equation). In the work to follow, we assume that (!) has compact 

support. To obtain this kernel, we call upon the transmutation (2.14) as well as the 

formula (2.8) for the one space variable radial heat kernel. Because of the special Laplace 

transforming properties of the modified Bessel functions I,, that appear in (2.8), it is useful 

to first treat the case of (4.1) when n = 2. We then use ascent to handle the general case 

of (4.1). 

From [2] and in analogy with (3.4), the solution of (4.1) for a = 2 is defined by 

	

,	ti—c 
W(ri,r2,t)

J =	i—a E r(—r-) 
(4.2)	

2 

X 
1100

e_12a_	 d1de2 

in which the Kpi are as in (2.8). Upon inserting the expressions for the K,, into this, we 

find that 

(4.3)	 W(ri,r2,t)= I F2(ri,r2,i,2,t)(ei,e2)deid2 
J 

where
4j1-.a 

..772 (r i , r2 ,	e2, t) = r(j_!)n1	r2 
(4.4)

X I eI(Aci)I_1(Bi)do, 
Jo 

with 

(4.5) 

But, for c + v 1 + v2 > —1 (see [221), 
(00 

j
e_8CccI(Aa)I(Ba)dcr 

0 
(4.6) 2CAVI B° 2 1'((c + Vi + V2 + 1)/2)r((c + V1 + V2 + 2)/2) 

=	ir(vi + 1)r(v2 + 1)sdt+2
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With the identifications v 1 =	- 1 and c = (3 - a)/2, it follows from this and (4.3), 

after simplification, that 

(4.7)	W(ri,r2,t) = 
AfE	

tie13(t,e2) 
 [j2 + r? + r + + ](i++p3—a)/2 <142 

where	 - 

(4.8)	A = 2(3+P12_(2)/2 l'((l + j-z i + P2 - a) /4 )F((3 + P1 + J12 - a)/4) 
ir	( 1 ,'2)r(p2/2) 

By using the duplication formula associated with r(2z) by selecting z (1 +pi +P2 —a)/4 

[20], the expression for A can be simplified to 

(49)	 A - 2r((1+p1+p2a)/2) 
 r(pi/2)r(p2/2) 

Let us next consider the case of problem (4.1) when n = 2m. Corresponding to (4.2), 

we have 

(4.10)	 w(rt)=J ço().12m (r,,t)de, d=de i ... d2m 

in which

I 2m 
(4.11)	 , , 

'r2 (L'
	 I	(Hiriei1/4a)) da. j = r( J. -) Jo	 \1i 

Using the expressions for the K, , , this can be written in the form 

/ 2m 
2m(i,e,	- 22m (Hr_ fftet) ji_0J2m (4.12)	 t)  

\j=1 

where

( 2m 
(4.13)	 J2m =

	
e8i2n714 

[JI!tI(2rieio)) dci 

with s ! 2 + 2 +t2 ,! 2 = ande2 = + ••• + m . The integral j2m in 

this is simply a Laplace transform of the in + 1 factors 

ci2mt4 and I	 j = 1,. . .,Tn.
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Since (1 L2j-1 + /A2j)/2 > 1, we find that 

I2mr(2 Y\ -	3(2m-f+) ) 

(4.14)	 vs 
A(HA1000 _a2 

If we make use of the evaluation (4.6) for each of the transforms appearing under the 

product sign in (4.14) and use (4.14) and (4.12) in (4.11), we obtain the required ascent 

relation as stated in 

Theorem 4.1. The kernel function .F2m(,,t) is given by 

fm 
F2m(,t) = 2( j1 1)/2 t 1_a fl el_i) 

(4.15)
fm 

X	 A fl As(2j_1+P2l _2)/2) 

j= 1 

in which

- m/2r()

	

	 nj=1 r()	 ) 

- (2 + i) 

vs (r(_' 

+ /L2j - 2)/4))r((,L23_I + IL2j)/4)) 
2vn 

with s replaced by r 2 +	+ t2 after. carrying out the convolution where 

Applying the duplication formula for the products of the gamma functions in the 

numerator of the expression for .\, inserting this evaluation in (4.15) and evaluating the 

convolutions in (4.15) via (2.3), we finally obtain, alter replacing s by t 2	+2: 

2 -(	. 
-	= A't 1 (fl el_1)} (t2 +r2 + )	'=' .12m(r,{,t)	

{	2m 

j=1 
(4.16)

) /{r(1	
2m 

'V.(
	(f2vn 

-t) +i)	()I• = 22mr(( 2 )flr 2 
j= I
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Finally, we consider the case of problem (4.1) when rz = 2m + 1. Following the 

development for the case n = 2m, we have 

	

J17	t)	
22m+111—a 2rn+1 

	

r(.ij-a ) (ii
	

/2	/2 

--	 2m+1 
X j e_a2m+1_t_ (H I i (2riia)) d 

with s = t 2 +r2 + 2 ,t 2 = r +	+r2m+I, and = + ...	By regarding .s as 

a transforming variable in this, we can express that relation as 

Theorem 4.2. The kernel function .r2m+i(r,0 is given by 

'2m4-1 22m+1j1—a (


- f(ia)	
.'	) 

{j°° e_ _ h IL I (2r2m+12m+ l 7)da}01

	

110—	

'2m
A	 (II I . _(2ri ei 7)) dCJ}
 \11 

We must restrict /1 2m+1 so that 2m + - -/4229±.L > —1 or 12m+1 <4m - (a - 5). 

In order to make use of the formula (4.16) in the second bracketed term in the right 

member of Theorem 4.2, we let a 1 = a + 12m+I —4. Then with some rearranging of terms, 

F2m+i(r,,t) can be written as

'2m 
F2m+i(r,e,t)	_22m (Hr1_,zJ/2) 

r(i..L)

/ 2m 
X J e_accy2m_#_4 ^fJ14-1(2rjeja)) dc}

(4.17)	 0i1 

_____	 jL±i 

	

2m-t-1	e2m+1 All 

X je3 hI±LI(2r2m+ie2m+l Or) d}.
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Now, the first bracketed term in this, by (4.16), has the evaluation 

(4.18)	
22mr(ai)	jl_al(fJ2melLil) 

r( '=i.) -2vn 
2	j1

Sol 

where a 1 =+	The second bracketed term in the right member of (4.17) 

can be computed by using formula 5 on page 73 of [22] and has the evaluation 

L) 2U+1	t4_U2m+1r(f3i)	—1 2m.j.i 

F( Jj)	ir	[s2 -	 2m+1] ' r22m+I '2  

with f3 = (P2m+I - 1)/2. Introducing this and (4.18) back into (4.17) and simplifying, we 

find that

22m+012+j-1	r(ai)r'(81)	1—a 
(fl 2 ,_1r(i)) m 

(4.19)	
2m+1	 1 [J e"' x -L A (22	2 j	

—4r2m+l2m+1 j= I 

These calculations are valid provided a 34 2k + 5 - 2m+I, k = 0,1,2.....The complex 

convolution in (4.19) can now be carried out by using the formula (2.4). if we do this, 

replace s by t2 + L2 + e 2 , and simplify, we get 

/2m+1  
.r2rn+i(t,,t) = tI_a H 2 ai+2fli— 

j=1	-'	[t2+,!2+] 

1a 1 + 2/3 —1 a 1 +	+ 1	1 4rrn+iem+i "t 
X 2F1	

2	'	2	;fii+; [t2+r2+e2]2) 

in which
22m2,+tt 1'(a i + 2f3 - 1) 

=r(.'j.)(fl1 r(1L)) 

Note that we employed ascent to compute .F2rn+ 1 by complex convolution from a 

knowledge of the form for .F2-M- . Thus, we have a reversal of the descent procedure of 

Hadamard who first solved the wave problem in 2m + 1 space variables and then obtained 
10 Analysis, Od, 10, Hell 2 (1991)
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the solution of the corresponding problem in 2m space variables by projecting out the 

additional space variable. 

§5. Some Hypergeometric Ascent Formulas 

The transmutation formulas given in Section 2 and employed in Sections 3 and 4 are basi-

cally disguised versions of hypergeometric type operators [2]. From these formulas, we were 

able to develop ascent relations for the initial value wave problem and Dirichiet Green's 

functions. Hypergeometric solution operators appear rather regularly in connection with 

well posed and ill posed initial value problems. As a further example of this, let us observe 

that the solution of the ill posed problem 

DZ(x,t) = P1(D)Z(x,t),Z(x,O) = cp(x),Z,(x,O) = Z(x,O) = 0, 

in which P1 (D) is a polynomial in the derivative operator D, can be symbolically ex-

pressed by the formula

Z(x,i) = 0 F2	 ;;t3Pi(Dr)) 

If (z) is entire in z of growth p, 0 < p < 1, and type r > 0, then the right member of 

this can be assigned a meaning by employing the results of [4]. if the polynomial operator 

P1 (D1 ) were to be replaced in this problem by P1 (D) + P2 (D) (P2 (D) a polynomial 

in Dr), (x) were to be replaced by a data function i(x,y), and if Z(x,t) were to be 

replaced by Z(x, y, i), then the formula for Z(x, i) could be replaced by 

(5.1)	2(x,y,t)= 0 F2 (_J	 t3(P1(D)+P2(D))) .,b(x,y). 
3 3' 27 

The question then arises: can we replace the formal solution operator in (5.1) by some 

ascent formula of a type similar to the once suggested by (1.3)? if yes, then we can 

employ the techniques of [4] to assign a meaning to (5.1). In this section, we exhibit ascent
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formulas explicitly for operators involving the hypergeometric functions oF1 , 1 F0 , 0 F2 and 

1 F1 . Some of these will have a limited applicability because of restrictions imposed on the 

data function by the particular form of the resulting ascent formula. We return to (5.1) in 

Section 6. 

(i) The 0 F1 Operator. The canonical problem that leads to this operator is given by 

(5.2)	 ttD,(tDj +,8 - 1) - tA 1 ] u(t) = 0, u(0+) = W, 0 > 0, 

in which A 1 is a semigroup generator in the Banach space X and w E D(A 1 ). The solution 

of this can be given in the symbolic form u(t) = 0 F1 (_; /3; tA i )p and this can be expressed 

tvi

oFi(_;13;tAi)p = t'F(3)J{sUA,(11s)ço}_j. 

We give two types of ascent formulas for this 0 F1 operator, a simple version and a more 

complicated one that involves derivatives. The form of the resulting formula will be deter-

mined by the selection of the parameters 8, (see below). 

For the simpler version, we write 

0 F1 (_;/3;t(A i +A2))p 

(5.3)	 = t 1 C 1 {SUA1+A2(113)ço}8_.j 

= 

in which W E D(A 1 )flD(A2 ) and where,61 and 02 are selected to be positive with 0 1 +132 = 

/3. From the real convolution theorem for the Laplace transform, we deduce 

Theorem 5.1 An operator addition formula for 0 F1 (_; /3; t(A 1 + A2 ))cp is given by 

oFi (_;/3;t(A 1 + A2))ço 

I 

	

=tl_Pf($	 (tI62-1)	OF1(_;$i;tAi)) * F($2) oFi(_;$2;tA2)o)] 

	

r(13)t'-	
f(t - e)	1fl21 [0 F1 (_; flu; (t - )A 1 ) { 0 F1 (_; 132; A2 )}} d
- r(/31 )r(132 ) Jo 

IM
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We note that neither of the parameters i3i or /32 in this can be assigned the value 

Then strictly speaking, the formula in Theorem 5.1 is not of the form (1.3) but is a slight 

departure from it. Nevertheless, it is of the ascent type in the sense that the operator 

oFi (_;f32 ;A2 ) acts on W prior to applying the operator 0F1(_;/91;(i - 

We can select the parameters,6 1 and 02 to be the same and equal /3 by rewriting (5.3) 

in the form

0F1(_;/3;t(Ai +A2))ço 

= F(/3)t'C' {s(sUA , (11S))(SUA2(l1S))}a_.t 

(5.4)	 t'-	( 
J £'(s)_. * / ( t  

S 

x [0F1(_;/3;(t - )Ai){oFi(_;$;eA2)sa}]} d 

If /9 in this is a positive integer, then £; {sfl},.. = b(,6) (t). On the other hand, if 3 = n—v 

with n a positive integer and 0< v < 1, then L. 'fs0 j,—t = (F(v))8(")(t)* t"1. 

Although Theorem 5.1 and the formula (5.4) were obtained by using semigroup no-

tions, the right members of these can be assigned a meaning if A l and A 2 are replaced by 

a variety of differential operators and is replaced by some appropriate entire function. 

(ii) The 1 F0 Operator. The solution operator 1F0(a;....;tAi), a > 0, arises in con-

nection with the canonical problem 

(5.5)	 [tD - tA 1 (tD + )] u(t) = 0, i > 0; u(0+) = 

This has the solution 

u(t) = i Fo(;_;tA i )p = (I'(o)) J e-10,1— ' [UA1(crt)c]dc 
(5.6)

= ([())t	
fo 

e	i° [UA1 (a)c] do,.
 

Suppose we select a, > 0, a2 > 0 such that a—i = (a ' -1)+(a2-1)  or a 1 +a2 = cx+ 1. 

Then the ascent relation for this u(t) can be stated as
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Theorem 5.2 An operator addition relation for i Fo(cr;_; (A l + A2 )t)p is given by the 

formula
u(t)	1 F0 (a;_;(A i +A2)t)ço 

i—a foo  

=	
e" {(1_ I UA l (a))(cr02 UA,(o)co)} di 

- t02-alr(a)r(a) 1

IC— i 0o o

 +tOO 

r(a) 
	- 

IA2 \ \ 
x iFo (ai;_;C'Ai) (oF1 (a2;_; 1— ) ) d. 

Next, suppose that 0 < a <2 and take s = 11i. From (5.6), 

r(a)	 1 

I 
e

0 00	
SO = - 1 F0 (a;_;—Ai). 

Jo	 S 

From this, we obtain 

Theorem 5.3. An alternative operator addition relation for i Fo(a;_;(A l + A2)t )W is 

given by the formula 

u(t) = 1 F0 (a;_; (A 1 + A2)t)p 
So •00

[1_a(a_ UA,(a))(ti°' UA2(o)cp)] da LI/C =	I 1'(a) Jo  

= r(a)I'(2— a)t° ---- A (s° 1F0(a;_; 
1 
—A1)) 
S 

A(s° 1 F0 (a;_; .!A2))} 
a1/i 

This is simply a version of the ascent relation for the operator 1 F0 (a;_;Ai) in which both 

of the parameters ai and a2 are equal to a. 

(iii) Other Hypergeometric Formulas. Ascent type formulas for the oFn type hyperge-

ometric operators can be constructed successively from the corresponding ascent formulas 

for the 0 F i operators by calling upon the classical formula 

(5.7)	oF(_;-yi, . . . ,-y,;at) = r(7)r 1	oF_1(_;7i,. .	
a) (5.7)
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for the -y > 0 and a > 0. Let us specifically consider the case when n = 2 with y' = 8 

and 72 = , /3 > 0, (5> 0. 

If a and b are positive constants, then the formula in Theorem 5.1 can be expressed 

as a classical relation for hypergeometric functions, namely 

oFi(_;$;t(a + b)) 

r(fl)t1—$ I (t - e)	12_I 0F,(_;/9,;(t - )a)oFi(_;fl2;eb)d. 
= 

Suppose we insert this, with appropriate changes of variables, in the right member of (5.7) 

with = 6, 72 = 5. Let 6, 62 > 0 such that 6 + 62 = 6. By carrying out the required 

inversion in the right member of (5.7) by a procedure similar to the one used with (5.6) 

and Theorem 5.1, we can establish 

Theorem 5.4 An alternative operator addition relation for iFo(a;_;/3,tS;(a+b)t) is given 

by

oF2 (_; 9, 6; (a + b)t)
1 r(/3)r(6)t 1 -6 

	1 (1 
= r(/31)r(/32)F(61)r(62) Jo 

jj'(t - q)''' oF2 (_;fli ,6i ;a(1 - )(t - ))oF2(_;02,62;bA)d1 

This can, of course, be expressed in an operator form by replacing the constants a and b 

by appropriate differential operators and operating on suitable data functions (entire). 

We will call upon this resulting operator formula in Section 6. 

With a somewhat more tedious calculation, we can also establish, for appropriate 

operators A and B and data V, that for a], a2 >0 with a + a2 = a + 1 and /31,/92 >0 

with /3 +,62 = 6, we have

r(/3)	r(ai)r(a2) t1i 
J 

(1 _,\)th_1,\2_1 
I'(13,)F(/32)	F(a) 0 

1 (5.8)	 x 1- jC+iOO 
(1 _t1co2 1 F1 

(ai;$i. (1— A)tA) 
1—t( 

{1. (a;;
	

) I 
d(} d..\.
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§6. Some Further Problems 

In this final section, we provide some applications of ascent to ill posed problems by 

employing the hypergeometric ascent theorems along with the formula (2.18). We show, 

for example, how we can assign a meaning to the 2(z, y, t) given formally in (5.1) and then 

consider some applications to generating functions of special polynomials and other special 

functions. Throughout, we make use of the class & of entire functions and the existence of 

solutions of generalized heat problems of the form u(x, t) = P(D1 )u(x, t), u(x, 0) E 

in which P(D1 ) is a polynomial in the derivative operator D. 

(i) The Function Z(z, y, t). Symbolically, the formula (5.1) defines a function Z(x, y, i) 

which satisfies the ill posed initial value problem 

DZ(x,y,t) = (Pi (D)+ P2(D))2(x,y,t), 2(x,y,0) = 
(6.1)

2(x,y,0) = 2g 1 (x,y,0) = 0, &(x,y) E &(z,y). 

With the change of variables r = t 3 in (5.1), the operator obtained from Theorem 

5.4, by replacing a by P, (D4, b by P2 (D,), and t by r, when acting on (x, y) leads to 

the relation 

	

2(x,y,3r) 
=	F()F()	f'(i - 

r(f31 )r( -ø1)r(61)r( -) j0 

If
r  (6.2)	x	 (r -7))61	 0F2(_; fli,i; P1 (D)(1 - A)(r

 

	

X
	 d17}dA 

in which O<flj <,0<S i <. 

Using the results of [4], let u(x, y, r) satisfy the equation u(x, y, r) = P2 (D)u(x, y, 

ü(x,y,0) = t,1(z,y). The variable x is carried along as a parameter in this. Then from 

this u(x, y, r), we can assign a meaning to the bracketed term in (6.2) by calling upon the 

formula (2.18). Suppose we denote the function thus defined by (x, y, ). Then we have 

(6.3)	y, A,7) 	/ c	(oF2 ;	 , 	oii(x Y a)) dc.

Jo
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We can apply the operator oF2(_;/31,6,;(1 - A)(r —)Pi (D1 )) to t);(x,y,t) in the same 

way, namely let t(x,y,r) denote a solution of ,.(x,y,r) = P1(D,)t(r,y,r), &(x,y,O) = 

y, Aq) (here, y is carried along as a parameter). Then let i(x, y, A, 77, r) denote the 

value of 0 F2(_; , 5; P1 (D)(1 - A)(r - ij))(x, y, Ai7). Again, by (2.18) we get 

(6.4)	(z, y, A, , r) fo W e(oF2(_; , j; (1 - A)(r - ))o 4x, y,a)) d 

The entireness properties of the 0 F2 hypergeometric functions and the data guarantee that 

the improper integrals defining tb and tb exist. Finally, we get 

2(x,y,3r) =	r(+)r(I).	
JI(1 -A)#'-' A' r(i3 1 )r( -f3 1 )r( 1 )r( —6k) 

(10	
-	*' (x, y, A, 77, r)dTl) dA. 

Upon replacing r in this by t 3 /27, we obtain the solution of (6.1). 

(ii) Mu!tivariable Generating Function.,. Special functions and polynomial sets play 

a central role in the various representation theories of partial differential equations. This 

is clearly the case for the separation of variables technique. However, it shows up in 

other ways such as in the study of heat solution representations ([1, 23]), the treatment of 

various hyperbolic and elliptic problems [7], and in the development of function theories for 

partial differential equations. In most of the cases considered, the entering special functions 

or polynomials involve two variables. It would be useful to have available multivariable 

extensions of these to treat higher dimensional representations and function theories. In 

the following, we construct two generating functions, in convolution form, that define 

special solution sets for evolution type partial differential equations that involve several 

space variables. The first of these is tied to a generalization of the wave equation while the 

second is connected with the Laplace equation. The terms entering into these convolution 

forms will themselves be generating functions associated with lower dimensional problems. 

Applications to representations of solutions will be deferred to a later paper.
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(A) A Generalized "Wave Equation". Suppose we consider the problem 

_	 - m, 
(6.5)	w(x,t) - "Dr ' +	+ D")w(,t), w(x,O) = 0, w,(,O) - I) 

in which x = (x 1 ,.. . , x,,) and the p i are positive even integers. Now the solution of the 

heat problem 

ug(x,t) = (D + ... + D')u(,t), u(x,0) = exp(a 1 x i + ... + 

in which the a 1 are parameters is given by 

(6.6)	u(, t) =exp (aixi+ta"). 

By making use of the transmutation (2.12) , we find that a solution G(, t, a 1 ,... ,a,) of 

(6.6) with xi" . . . x" replaced by exp(aixl +	+ a,,xn) is given by 

= r()exp(a 1 z 1 + ... + a,x)C' {sei a)/4a } 
(6.7)	2	 a_.t2 

=e(a 1 x 1 . + ... + a0x)sinh ( ) i(a). 

The coefficient of ar1 .. a" in the expansion of this generating function will yield the de-

sired solution of (6.6). However, the selecting out of these coefficients is difficult. It is more 

convenient to express the G in terms of two variable polynomial generators G(x 1 , t, a) in 

which G1 (x,,t,a 1 ) = r()c—' {x_e z.±a'/4a} ,. To do this we rewrite (6.7) in the 

form
G(,t,ai,... 

= e'r() [c_i {}a-_.r , (fi*c-' {sen1h/49})] 
1=1	 t=i2 

= {r()]' [c_
i { 3 i}	* (fj*Gi(x,,r,ai))] 

2	 t2 

* (ñ*Gi(xirai))] = a	,	
,	 1•
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If  = 2m+1, then £ .(s(33)/2)= 8(3m)(r) while if  = 2m, then £(s (3n-3)/2) 

= .-(3m-I)* T.. In either case, it follows from this that the polynomial Pm 1 ....	t) 

of the problem (6.5) can be given by 

Pmi....m,C,t) 

1	am 
= 

	

MI ! . . . M n ! Oar' . . . ôa	G(x,t,ai,.. . ,an)Io__a_o 

	

=k-' {(3n_3)/2}	* (
= 1fI*Pmi(Z i T ))] 

where Pm,(Xs,t) is the coefficient of am' in the expansion of G1(xe,t,a,). 

(B) Laplace Potential Functions. The associated heat functions w(x,t) were 

studied in [23] and their transmutants were employed in [9] to treat representations of 

solutions of Dirichlet problems in exterior regions. These transmuted functions involved 

the real and imaginary parts of reciprocal powers of z = x + iy. It would be useful to have 

multivariable versions of these to discuss higher dimensional Dirichlet problems. To obtain 

these, we call upon the generating functions for w(x,t) and the transmutation (2.14). 

	

The generator for the w(x,t) is given by (47rt) i_.L e -(z-2a)'/4t	 i = 

Hence, the function (47rt) e 122141 generates products of associated heat func-

tions which satisfy the heat equation Ut = if we introduce this generating 

function into (2.14) and denote its transmutant by L(x,t,a,,. .. ,a,), we obtain directly 

that 

(6.8)	 L(,t,aj,.. .,a) =	
2 

lr± [t 2 + 1 (x - 2a)2[. 

Again, it is useful to connect this.L up with some set of known special functions. To do
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this, we first note that

= . _J c_a nui	 da 
(6.9)	 0

(

±2-1 a)	 I2J A HA_+ (x - 2aj)2)) } L. T	
(r = 

Now [t2 + (x - 2a)2] = (t2 + x 2 )' (l - 2)z + z2 )' in which ..\ = r(i 2 + X2 ) A and 

z = 2a(t2 + x2 )_ . Moreover, by [20] we have that (1 - 2)z + z2 )' = U1(A)zIc in 

which the UL. ()) denote Tchebichev polynomials of the second kind. From this, it follows 

that
00	/	x	'\	2kak 

(t2+(x-2a)2) =	 U1

 

k= 1	(1t2+X2) (t2 + j 2" r  

Using this in (6.9), it readily follows that the coefficient of ar t .. ar" in the expansion of 

(6.9) is given by the complex convolution 

r(

 

I	/n	
/	 2_(±!)"

 71 )

!i+i )r+ T 
	

2 )} 
,c 

with r = 
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