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On the Ranges of Realizations in Distribution Spaces 

J. TERVO 

The paper deals with the closedness of ranges and the surjectivity of realizations related 
to linear partial differential operators L(x,D). A characterization (with the help of a cer-
tain coercivity condition) of the surjectivity of the maximal realization L'' k, G in 
BP, k( G ) -	c D'(Ci )I ti	 for some 1' E B ,, , k)is established. Here 2pk (p £ ( 0, 1),

k € K )is the Hdrmander space. Furthermore, the closedness of the range R(A,k(G)) 
corresponding to the minimal realization A k( 0) in local i-Iörmander spaces	G) =


U € D'(G )I 41 si £ Bp , k for any 'I' £ C°(G )} is considered. 
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1. Introduction 

Let L(x,D) be a linear partial differential operator with C(R tt )coefficients. Further 

more, let G be an open set in Rn.Choose p € (1,co) and k € K, where K is the Hbrmander 
class of weight functions k: IR' - R. We shall deal with the closedness of the range 

bc R( AP , k ( G)) of the minimal realization A,, , k( G) in the local 1-lormander space Bp , k (a). 
The closedness of R(A ,k (G)) is closely related to the theory, of L(x,D )-convex sets 

(cf. [3, pp. 41 - 591, [8, pp. 57 - 1201, [5, Pp. 358 - 3711 and [61). This can be seen, when 
we consider, for example, the operators L(D) with constant coefficients. In this case the 
closedness of R(A'(G))implies that R(A'k(G)) B,',°(G) and so also for the maxi- P.

bc ,a	 .	,a	 bc mal realization in BPk (G),say Ap,k(G), one has the equality R(Apk(G)) = B,k(G) 
(cf. [6] and note that N(A,l/k'.'(G)) n E '(a) = {0}, that is, the distributional equation 
L(D)u = 0, u € E'(G) n B, ??,kv(G)holds if and only if u 0). The surjectivity of 

Ap,k(G) implies that G is L(G)-convex (cf. [3, Theorem 10.6.61) and on the contrary 
(cf.[3,Theorem 10.6.7]). Especially, one finds that, if R(A ' k(s)) is closed in B,,'(Q)with 
a fixed pair (p,k) € (i, o') x K, then R(A"k'(G))is closed for any pair (q,k') € (1, 0 ) x K. 

The surjectivity of the maximal realization L,,a,kC in IB,,,k(G) :z {u € D'(G)l u 

"uIG for some fu € B,, k} can be characterized by means of the validity of the inequality 

IIL'(x,D)co II,,' l,k v c. C IIqlI,. /v , CP € C—(G) 

(cf. Theorem 2.2). Also the closedness of R( L' P.  k, ) can be characterized in an easy way.
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The surjectivity of the operator A'k(G) (which in many cases is equal to 1Vpk(G)) 
and the closedness of R(A k(G)) is much more difficult to check. In Theorem 3.1 we 
show a necessary criterion that the range R(A k (G)) is not closed. Furthermore, in The-p, 
orem 3.4 we establish a sufficient condition that R(A,. k (G)) is not closed (under suitable 
circumstances). Theorem 3.6 shows that in some cases our theory will give a characteri-
zation for the closedness of R(A, k (G)). The basic idea is to study the existence of the 
distributional solutions v for the equation L'(x,D)v g, where v E E'( G), g € E'(G) and 
supp v n 6 G * CD, where 6 G is the boundary of G, and CD denotes the empty set. 

2. Definitions and preliminaries 

2.1. For the (unexplained) notations and definitions concerning the distribution theory and 
its related topics, we refer to the monographs [2, 31. Let G be an open set in R' and let 
P E (i, co) and k € K. We recall that B,k is a Banach space and B,1,°(G)is a Frechet 
space. For  < co , the space C' is dense in Bk and C°(G) is dense in B,',°(G). The 
notation BP'k(G) means the intersection Bk ci E (G). The completion of C°(G) in 
Bk is denoted by B k(G). Then one sees that B,k(G) C BP,k ci E(Q). Here E(A) 
(where A C R'1 ) is the set of distributions u € E '(R") such that supp u C A. The set {u 
B,,, k I supp u C A) is denoted by B° k(A). Finally, we denote by B,, k( G) the set of dis - 
tributions u € D(G) such that u = f,,, for some distribution f, € B k ,where	deno-




tes the restriction of f,to G. One sees that IBPk(G) is isomorphic with the factor space 
/B Bjo,k k( R" \ G) and we transfer the topology of this factor space to lB k( G ) in the 

canonical way (note that B, k (R"\ G)is closed in BPk, since R"\ G is closed in R"). 
Furthermore, one sees that for p€ (1, 00 ) the spaces B . l,kv(G) and IB ,k (Q)are in du-
ality with respect to the extension of the bilinear form 

X:C(Q)(G)xCo(G),)(p,4))=JR,,p(x)4)(x)dx. 

Here C ( ') ( G) denotes the subspace of functions 4) in C(G) such that there exists 4 
C'° with 4) = 4K .Note that C(0 '(G) is dense in I BP,k (G), p < co . We also write IB(G) 

fl P, k{ u E D(G)I u = 1UIG with some f. € 

2.2. Let L(x, D) = Iokr a0(x)D ° be a linear partial differential operator with IB(G ) 
coefficients. The formal transpose	IoIr (-D)' (a,* (x )()) is denoted by L'(x, D). Let 
L k	(p € ( 1,co); k € K ) be a linear operator B ,k(G) - B ,k(G)such that 

D(L ,k, o) C,°(G), Lp, k,c p L(x,D)p. 

Then LPkG is closable in B ,k (G): Let {p,,} C C'(G)be a sequence and let g € 
B,, k( G) be an element such that	- 0 and IlL,, , k, a CPn - g II , k - 0 as n - co•
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Then one has for any ci) E '-P0 

g( (D) = urn (Li, , k, G p)((b) = urn 9 1 (L'(x, D )cD) = 0,	 (2.1)


where we utilized the fact that for cp e C005( G) and u E IB. 1/k v ( G) the inequality 

Iu(cp)I s III UIIIp,1/kvIPIIp,k (2.2) 

holds. Here III II1p .1/k v denotes the lB . 1,'kv( G )-norm. In the last step of (2.1) we obser-

ved that L(x,D)'DIo e IB(G) for any ci) € Cr', since a 0 € lB(G). Due to (2.1) one gets 

g = 0, and so LPkG is closable in BP,k( G ) . The smallest closed extension of L k ,G is 
denoted by L,kc 

Furthermore, we define a linear operator I L kG by 

D(1L

	

	
there exists fe IB, k( G) such that } 

,k, c) = {u€BP.k(G u(L(x,D)p)=f(p)V p C(G) 

IL k c u = F. 

Due to (2.2) one sees that IL' ,k, c is a closed operator. In the case when G = R', one sees 

that B ,k (G) B, k = BP, k(G), and we write L k Rn = L,k and so on. 
As we mentioned above the spaces IB Pk (G) and BP.l,kv(G) are in duality with re-

spect to A. Explicitly, this means that there exists an isometrical isomorphism 

p.k IBPk ( G ) -  B_ Ilk" ) ' (.1p , rc U)(p) = U(p) V p € c°(G), 

and similarly there exists an isimetrical isomorphism 

Jp,1rk' BP.,l,k v ( G ) - IB,,(G), (iP .,1,kv v )( p lc) v(p) V cp € C°. 

Here s refers to the dual space. In [7] we have explicitly shown the existence of JP, k and 

ip',1/k" 
Let Li. , 1/ky, 0 be the dual operator of the (densily defined) operator L .	C, -


Then one easily sees 

Lemma 2.1: Suppose that L(x,D) has IB(G)-coefficients and that p €(i,'), k€ K. 
Then the relation 

= J,	 p,k	 (2.3)


holds. 

We verify the next existence result of solutions. 

Theorem2.2:Suppose that L(x,D)has IB(G)-coefficientsandthatp e(l, co ), k  

K. Then the range R(L k o) is the whole space lBPk(G)if and only if there exists a
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constant c> 0 such that 

VL(x,D) cpIIP. l ,k v z C III)y, v for all P E C0— (G).	 (2.4) 

Proof: Suppose first that (2.4) holds. Then the range R(L,. 1/k v Q )is closed in 
B,,. l/k"( G) and the kernel N() is trivial, i.e. N(Ll,kv, c-,) = M. Hence one has 

R(L I/k V G ) = R(L',,,kva) = B,,,l/kv(G). 

Since, by (2.3), IL', kQ = J,, o(L.l,kvG)oJPk,where Jp,k is a bijection, one gets 
that R( I L', k c) IBP,k(G). 

Suppose that R( IL,, k G) = IBPk(G). Then, by (2.3), R(L,k v G ) = B,.,l,kv(G). 
Hence the range R(L,k v Q ) = R(L l,k v G ) is closed and for the kernel we have the 
equality N(L,,l,k'.Q) = N(L,k v G ) = {o} (cf. [4, p.168 and 234:1). Hence (by the 
Closed Graph Theorem) the inverse L 1)k V G is continuous, which implies the validity 

of (2.4)1 

Remark 2.3 : a) Theorem 2.2 says that, when (2.4) holds, then the distributional equa - 
tion L(x,D)u = f, u c JB p, k(s) is solvable for any f  IB,,,k(G). As well known, there are 
several kind of algebraic criteria under which (2.4) is valid. The criterions in question are 
often independent of the underlying open set C. b) The operator IL,,kG is called maxi -
rnal realization of I_C x, D) in IB,,, k( C) and the operator L 1, .,l ,k v, c is called the minimal 
realization of L(x,D) in Bp.,l/kv(C). 

The closedness of R(IL'' k,C) can be characterized by 

Theorem 2.4: The range R( I L', , k , G)is closed in IB,, k (G)if and only if the range 
R (L l/k . c) is closed in BP.,l,k(G). 

Proof: From Lemma 2.1 we obtain that IL ,," k G = J,, o(Ll,kvG)oJpk.Thus 
the range R( IL k c) is closed if and only if R(L',,,l,kv,G) is closed in Bp',l/kv(G). 
Furthermore, the range R (L',,' 1,k v G) is closed if and only if the range R((L',,1,kvG )) 
is closed in (B,,l,kv(G)) (cf. [4, p . 234]). Since B,,. 1,kv(G) is a reflexive space for 
P € (1, co), one sees that (L l,'k v G) = x o L' P^-IlkvG °x, where x: BP. 1/kv (G) - 
(B,,l/kv(G)) is the canonical Isomorphism (cf. [4, p. 168]). Hence R((L.,l,kvG)) is 
closed if and only if R(L'l,kv G ) is-closed I 

With the same kind of conclusions as made in the proof of the previous theorem one 
gets: The range R(1L' kG) is closed in IB,, k(G) if and only if the range R(L.1,kvG) 
is closed in B,,. G), where 1L k,G is the minimal realization of L(x, D) in IB,, k( G) 
and where L .,l ,k v,G is the maximal realization of L'(x,D) in BP.,l,kv(G).



	

Realizations in Distribution Spaces	153 

Let Q be the factor space Bp. l,k(G)/N(Ll,kG) (with the usual norm topolo- 
gy). Denote the norm in Q by ii 11 - -Then the range R(L," l ,k v G ) is closed if and only if, 
with some c> 0, 

Ii Ox, D )cp I
lp,l/k" ^ clip ii" for all p € C0m ( G).	 (2.7) 

The estimate (2.4) implies that of (2.7). 

2.3. Assume that L(x,D)has C00'(G)-coefficients.Then the 
minimal realization A ' k (G) in B4O(G) P.

and the
bc 

maximal realization A', k( G) in B k (G) 

of L(x,D) can be defined (cf.[6]; the definitions go analogously to L '	' 1 kG andILPkG). 
Furthermore, the maximal realization r' k( G )Of L(x,D)in B,. k (G)is analogously de- 
fined. The operator F, ' k(G)is defined by 

I3 a sequence {p,j C C,'(G) and a g € B,k(G) D(r' k( G ))-cvEB k(s) such that p,. - v and L(x , D)p - gin BC k( G) 
F,k(G)v ag. 

In the next chapter we shall consider the closedness of R(L—
	 bc P k( G )) (in Bk(G)), 

which is much more complicated to check than the closedness of R(IL.) orR(L 
k,G) 

(in IB P k( G )) . In the study one must take into account the geometry of G and the cha-
racteristic curves with respect to L'(x,D) ( cf. Theorems 3.3, 3.4 and 3.6). 

To preparate the investigations we present the following lemmas for p € (1, oD) and k 
K ( cf. [61). 

Lemma 2.5: The range R (A', 
k( G)) is closed in	( G) if and only if the range €

R(F,.l,kv(G)) is closed in B,'l,kv(G). 

Lemma 2.6: The relation R(A',', k(G)) = B4O(G) holds if and only if 
(i) R(r;. l/k"(0)) is closed in B,.l,k(G)	(ii) N(r;.l,kV(G)) = f ol. 

Remark 2.7: a) Similarly one has the following: 
10 The range R(A, k( G)) is closed in B1 ,° ( G) if and only if the range R(Fp.1/kv(G)) 

is closed in B.l,'kv(G) 
20 The relation R (A, k( G )) B,°(C) holds if and only if 
(in) R(r..1/kV(G)) is closed in B,.l,kv(G). (tv) N ( rP .,j,kv ( G ) = {o}. 

The proofs of I and 2 goes analogously to the considerations expressed in [61 (cf. also 
[8, pp. 49 - Si]). 

b) We recall that the closedness of a subspace H in B1,k'. (C) means that H ri


', l/k v ( K) is closed in Be . , l.k v for any compact set K C C. Furthermore, the closedness 

of F H n B'1,k(K) in (a normed space) Bp. j,v means that F is sequentially closed. 

I	Analysis. Rd. 10, I-leO 2 (1991)
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3. On the closednesB of R(Apk(G)) 

3.1. We assume everywhere in this chapter that the operator L(x,D) has C- coeffi-

cients.For the first instance we establish 

Theorem 3.1: Suppose that G is bounded. Furthermore, assume that (with c > 0) the 

estimate (2.4) is true, 

F:' Ilk"() rP.1/kV(G),
	

(3.1) 

and that the range R(A'',,k(G)) is not closed in B,°(G). Then there exists elements ye 

Bp-,l,kv(G) and g e B,.,l,kv(G) such that (recall that L;.,1,kV	L.,1/kv,Rn) 

L- , l,k v v g and suppv r 6 G * .	 (3.2) 

Proof: Since we assume that R(A'k(G))is not closed, we obtain from Lemma 2.5 

that R(F, 1/k(G)) is not closed in B,. l,'k"()• Due to Remark 2.7/b) we see that the-
re exists a compact set K C G such that F R(F,.,l,kV(G)) n B,. 1 ,,v(K)is not clo-

sed in B,,. , 1/k"' Hence one finds an element g € F \ F. Choose a sequence {g,} C F such - 

that h g,, -	 - 0 as n -->  co. Since g,, e B,.l,kv(K) and since B,.,l/kv(K) is clo-


sed in B .,1,k v, one sees that ge B,. , k I/ v (K ).Thus g does not belong to R(F,.l,k(G)). 
The assumptions (2.4), (3.1) imply that 

^ C 1 1V 11p,,l1k v for all y e D(r;l,kV(G)). 

Choose v,, € D(F.l,kv(G)) such that F".l,kv(G)v,, = g, Then v,,} is a Cauchy se-

quence in B .,1 ,k v . Choose v € B .,1,k v with II v,, - v I' p ',l/k" - 0. Then v E B .,1,k v( G) 
(since Br ., l/k"( G) is closed in Bp-.Ilk-)- Furthermore, one sees that, for all cD € C,, (G), 

lim fl (F . l,k v(G)v fl )( cD) = urn,, v,,(L(x,D)(D) = v(L(x,D)I) 

and so L., 1/k" v = g. In addition, 

veB. 1/ v(G)CE'(G) and geB,'.,l/kv(K)CB,,l/kv(G). 

Suppose that supp v n a G = ti. Then one has 

suppvC 6 n(R°\aG)(QuaG)n(R"\aG)G. 

Hence in this case v E D(F .,l ,k (G))and F,.,l/kv(G)v = g. This contradicts the fact 

that g t R(F,",l/kv(G)). Thus suppv naG * D, which finishes the proof U 

R.mrk 3.2: a) Suppose that L( D) = IoI r a 0 D° has constant coefficients and that 

C is bounded. Then (2.4) and (3.1) are valid. b) Suppose that A. 1/k	= A'p',1/k( C) 
(this relation holds for any first -order operator L(x,D) = oIi a d(x)D ° in the case 

when p = 2 and k = 1 (cf. [i]). Then one easily sees that (2.4) is valid. c) The assumption 

(2.4) can be replaced by the weaker estimate IL'(x. D) p IIp'l/k v s c IpII " for all p E C°( C) 

(recall that II p II	inf{II	- u 'p',1/k" I U C N(LP',kv,c)).
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3.2. In the sequel our aim is to seek criteria under which the existence of elements v 
B . l ,k vXG) and g  B 1 ,(G)satisfying(3.2) implies that R(A,'k(G))is not closed in 
B,.°(G). 

Assume that h is a real-valued function in C l(LR ZI ) . Furthermore, assume that there 
exist points x 1 and x 2 with 

h(x 1 )<O and h(x2)>0
	

(3.3)

and

( VJh)(x) * 0 for any x € h _1(Q)•	 (3.4) 

We suppose that G = h 1 (-co,O). Then R'\ G h 1 (O,) and àG = h 1(0). In addition, 
by (3.3) one has G * tD and 6G = t1. The boundary âG = h 1 (0)is by (3.4) a regular hyper-
surface in R'. 

The next theorem yields information about the points, where ÔG can touch supp v (cf. 
(3.2)). 

Theorem 3.3: Let G = h 1 (- co ,0)as above and let L(x,D) be a partial differential 
operator with (in R") real-analytic coefficients a 0 . Suppose that there exists elements v 
€ B., l,k V (G) and g€ B . l,k (G)such that (3.2) holds. Then one has 

Lr(X,(Vh)(X)) = 0 V x€ suppv ii c) G, where L,.(x,) 

Proof: a) Suppose that x € suppv n àG. Since suppg is a compact subset of G, there 
exists a constant d > 0 such that dist (suppg, {x}) a d and then L,. 1 ,k V = 0 in B(x, d) 
:r {y € IR"I Ix  - y I < d}, where dist(A,B) is the distance between A and B. 

b) Suppose that L(x,(Vh)(x))* 0. Then there exists a number E € ( 0,d) such that 
L(x,(Vh)(x))* 0 on that patch u. B(x,$) ri àG. Then the patch U is a regular CL 
surface and U is non-characteristic with respect to L(x,D) (note that L,.(x,)(-1) 
L(x,)). In addition, since R"\5 = h - 1 (0 o), one sees that L,1,kv v = 0 in [YE 

h(y) > 0). Thus v = 0 in some neighbourhood of x (cf. [2, Theorem 8.6.5]), which is a 
contradiction, because x € supp V  

A partial converse of Theorem 3.1 is obtained by 

Theorem 3.4: Suppose that 	h1(-c,0), where h obeys (3.3)-(3.4), and that L(x,

D) has (in R") real-analytic coefficients. Furthermore, assume that 

N(L; l ,k V k ) n E(R) = {o}
	

(3.5)


and that for any x € a G there exists a constant €. > 0 such that 

Lr(y,(Vh)(y)) 0 on (B(x,E)\{x}) ri aG,	 (3.6) 
where we denote k() = (1 + 12)1/2) Then the existence of elements v € BP.,l,kv(G) 

11*
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and g € B ., 1/k ( ) satisfying (3.2) implies that the range R ( A kk,.( G)) is not closed in P.
B,°k( G). 

Proàf: Due to Lemma 2.5 it suffices to verify that the range R(rP . 11k . J1. (G)) is not 

closed in BJ,1/kvkr(G) that is, R(F . 1/k"k(G)) n B;.1/kkr(K) is not closed with some 

compact K C G. 

Suppose that V€ BP . l,k (G)and g EB l,kv(G)are such that L,.l,k v = g and 

suppv n 6 G * Choose x € suppv n c)G. Due to the assumption there exists € > 0 such 

that Lr( y,(Vh)(y)) 0 on (B(x,r)\{x}) n c)G. Hence, similarly to the proof/partb) of 
Theorem 3.3, one obtains that v 0 in some neighbourhood Ux of (B(x,t)\{x}) n àG. 

Choose € C°(B(x,8)) such that (x) a 1 in B(x,6/2), where 8 {t/2, dist(suppg, 

G)} > 0. Define distributions tv by w(q) = (v)(p() + 110 (Vh)(x)) (we translate v in 
the direction of the vector -10(7h)(x); note that -(Vh)(x) is pointing to G and that 
('7h)(x) is the normal of OGaf x). Then one sees that, for n large enough, the inclusions 

w, c B1,kvk(G) and g	F;l/kk(G)WzI € 
BpCyl/v(G) 

hold. Note that g = (L,. 1/kvk.w)n, where w = v and where (L . , l/kvkrW)n is similarly 
defined (via translation) as w,,. Furthermore, one finds that g,, - g	L;.,1/kvkr(v) In 

B,.1/kvj<(G). Since N(L'. 1/k vk ) n E'( R")	{o} and since v B,.1/kvk(G), one 
sees that R(r .,l/k V k ç. G)) is not closed in	 G)I 

Remark 3.5: a) Suppose that L(D) has constant coefficients. Then the relation (3.5) 
is valid. b) The condition (3.6) isin many particular cases superflous, as we shall make 
explicit below (Theorem 3.6). c) Also the Theorem 2.5 in [5,p. 367] can be applied (as 
above) to the study of the closedness of R(A kk(°)). d) In the case of constant coeffi 
cients,the assertion inTheorein 3.4 can be replaced by the following:The range R(Ak(G)) 
is not closed for any (p,k) c (l,) = K (cf. the Introduction). o) Suppose that C and L(x,D) 
are as in Theorem 3.3 and that L(x,( Vh )( x ))r.O for all x c G. Then there do not esxist 
elements v c Bp.,1/k.'( C) and g c Bp Cl,k' ( C) such that (3.2) is valid (cf. Theorem 3.3). f) 
We also remark that (under the assumptions of Theorem 3.4) the points where supp v can 
touch 0  are isolated points of C (cf. the proof of Theorem 3.4) 

3.3. We consider some examples. 
A. Let L(x,D) = -i(x 1 D 1 +x2 D2 )and h(x 1 ,x 2 ) 1 - x - x.Then one sees that G 

B(0,1), (Vh)(x) = (-2x 1 , -2x 2 ) * 0 for any x€ h(0) and h(0,0) < 0, h(2,0) > 0. In 
addition, one gets 

Lr(X,(Vh)(X)) = L r( X ,( 2X i, -2x 2 )) = -2i(x? tX 2)
 = -2i 

for x E I7_1(0) and 

Re(L(x,D)cp,cp)0

	

	 p)) 1/2((i(x iD1 +x2 D2 )p,p)0 + i(c,Dj(x 1 p) ^D2 (x2o) IIplI
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for all p E C. (here (p,4)0 fpfl p(x)() dx). In virtue of Theorem 3.1, Remark 3.2/b 
and Remark 3.5/e one sees that the range R(A 2 1 (G)) is closed in L 2be 

(0). 

B. Suppose that L(x,D) is as in Example A and that 0 = R2 \ B(O ,1).Then due to Re-
mark 3.5/e one sees that there do not exist elements v £ BP . 1/k v ( 0) and g €B . 1/k v ( 0) 
such that (3.3) is valid. It is remarkable to note that, when L(D) has constant coefficients, 

when L(D) is non-elliptic and when G = R2 \B(0,1), there exist elements v £ C°(R"), 

g e C(R")such that L(D)v g (in R2 ), suppv C dand supp v n àG * D (cf. [2: Theo-
rem 8.6.71 and Figure 1). Hence by Theorem 3.4 one gets that the range R(A k (G)) is 

Figure 1 

not closed in B,°(G). Here one must note that any v C° with suppv C 5. belongs to 

BP .,l,k v (G) (since in this case B,l,k v (G) = B,.l,k(G)). In addition, one sees that 

(3.5) - (3.6) are valid. 

3.4. We finally consider the operator L(D)with constant coefficients. Suppose (as above) 
that h  C 1 (R') is such that (3.3) - (3.4) hold and that G h 1 (-w,O). Denote S(O,1) 
{x € R"I I x I = 1). We show the following	

I 

Theorem3.6: Let G = h -1(-,O) be a bounded set and let L(D)be an operator with 
constant coefficients such that the set C = {N £ S(0,1)1 Lr(N) = 0) is finite. Then the 
range R(A k( G)) is closed if and only if there do not exist elements v E B1,k( G) and 

geB 1 ,v(G)suchthat L". ,1,Vvg and suppvnao*cD (see (3.2)). 

Proof: A. Suppose that R(A k(G)) is not closed. Then, due to Theorem 3.1, the re-p, 
quired elements v and g exist (cf. Remark 3.2/a). Hence it suffices to show that, if the 
range R(A k(G))is closed, then the elements v and gsatisfying(3.2) do not exist. 

B. Suppose that the range R(A, k(G)) is closed. Then R(A k,(G)) is also closed 
and so R(r . 1,kv k.( G)) is closed in	0) (cf. Introduction and Lemma 2.5). As-
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sume that v and g owning (3.2) exist. This leads to a contradiction as follows: Due to 

Theorem 3.3 

Lr(X,(Vh)(X)) 0 for all x € suppv n c)G. (3.7) 

Choose x0 € supp v n G and define F = {x E C'G I (Vh)(x) ( 17h)(x 0 )) Let C,, be the 

connected component of F containing x0 . Since C is finite there exists (by (3.8)) a con-

stant s > 0 such that v = 0 in G = {x taG \ C, I dist(x, C) <s}. Define numbers d 

and 6 by d = dist(suppf, aG)>0 and 8 = min {d,t}. The set U8 = {x E Rn I dist(x, c0) 
<8) is open and Fg = fx € R, I dist(x, C) :5 8/2] is a compact set of Us. Choose a func-

tion € C°( U6 ) such that (x) = I in F8 and define w,2() = (v)((() + 1, N0 )), where 

No = (Vh)(x0 ). Then one sees that, forn large enough, one has W. e E,(G) and 

UP.1,kk(G)Wfl-LP.l,kvk(v)-	((_l)IaI/a!)D&L()(D)v
ce 

in Bp,1/k vk r( G). Hence R(r . 111vkr( G)) is not closed (recall: N(L3,1/kvkr) n E'(R') 
= {o}), which is a contradiction U 

R.maik3.7: a) The boundedness of G in theorem 3.6 is not essential (which fact we 
shall not deal with in detail). b) One sees that the heat operator L(D) = - iDn - 
and the wave operator D 12 - D satisfy, for example, theassumptions of Theorem 3.6. 
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