On the Ranges of Realizations in Distribution Spaces

J. TERVO

The paper deals with the closedness of ranges and the surjectivity of realizations related to linear partial differential operators $L(\mathbf{x},D)$. A characterization (with the help of a certain coercivity condition) of the surjectivity of the maximal realization $L_{D,K,G}^{\prime\prime\prime}$ in *BP, k(G) deals with the closedness of ranges and the surjectivity of realizations related*
 Diatrial differential operators $L(x, D)$. A characterization (with the help of a cer-
 civity condition) of the surjectivity of the ma $k \in K$) is the Hörmander space. Furthermore, the closedness of the range $R(\Lambda_{p,k}^{\sim}(G))$ The paper deals with the closedness of ranges and the surjectivity of realizations related
to linear partial differential operators $L(x, D)$. A characterization (with the help of a cer-
tain coercivity condition) of the su $u \in D^{\times}(G)$! $\Psi u \in B_{\boldsymbol{p},\boldsymbol{k}}$ for any $\Psi \in C^{\,\infty}_0(\,G\,)$ is considered.

Key words *existence of distributional solutions, L.(x,D)-convexity* AMS subject classification: 35 DOS

1. Introduction

Let $L(x, D)$ be a linear partial differential operator with $C^{\infty}(\mathbb{R}^n)$ -coefficients. Further more, let G be an open set in \mathbb{R}^n . Choose $p \in (1,\infty)$ and $k \in K$, where K is the Hörmander class of weight functions $k: \mathbb{R}^n \to \mathbb{R}$. We shall deal with the closedness of the range $R(\Lambda_{\bm{p},\,\bm{k}}^{\sim}(G))$ of the minimal realization $\Lambda_{\bm{p},\,\bm{k}}^{\sim}(G)$ in the local Hörmander space $B_{\bm{p},\,\bm{k}}^{\bm{\log}}(G)$. The closedness of $R(\Lambda_{\mathbf{p},k}^{\sim}(G))$ is closely related to the theory, of $L(x,D)$ -convex sets $(cf. [3, pp. 41 - 59], [8, pp. 57 - 120], [5, pp. 358 - 371]$ and $[6]$). This can be seen, when we consider, for example, the operators $L(D)$ with constant coefficients. In this case the closedness of $R(\Lambda_{p,k}^{\sim}(G))$ implies that $R(\Lambda_{p,k}^{\sim}(G)) = B_{p,k}^{\text{loc}}(G)$ and so also for the maxi-
mal realization in $B_{p,k}^{\text{loc}}(G)$, say $\Lambda_{p,k}^{\bullet}(G)$, one has the equality $R(\Lambda_{p,k}^{\bullet}(G)) = B_{p,k}^{\text{loc}}(G)$ **Let** $L(x, D)$ be a linear partial differential operator with $C^{\infty}(R^n)$ -coefficients. Further
more, let G be an open set in R^n . Choose $\rho \in (1, \infty)$ and $k \in K$, where K is the Hörmander
class of weight functions k: R^n (cf. [6] and note that $N(\Lambda_{p',1\neq v}^{\prime\prime}(G)) \cap E^{\prime}(G) = \{0\}$, that is, the distributional equation $L(D)u = 0$, $u \in E'(G)$ *n* $B_{p',1/k}^{loc}(G)$ holds if and only if $u = 0$). The surjectivity of $\Lambda_{p,k}^{r^{\prime\prime}}(G)$ implies that G is $L(G)$ -convex (cf. [3, Theorem 10.6.6]) and on the contrary (cf.[3,Theorem 10.6.7]). Especially, one finds that, if $R(\Lambda_{p,k}^{\sim}(G))$ is closed in $B_{p,k}^{\text{loc}}(G)$ with a fixed pair $(p, k) \in (1, \infty) \times K$, then $R(\Lambda_{q, k'}^{\infty}(G))$ is closed for any pair $(q, k') \in (1, \infty) \times K$.

The surjectivity of the maximal realization $L_{p,k,G}^{\prime\prime}$ in $IB_{p,k}(G) = \{u \in D'(G) | u =$ $f_{\mu |G}$ for some $f_{\mu} \in B_{\mu,k}$ can be characterized by means of the validity of the inequality

 $\Vert L'(x,D)\varphi \Vert_{\mathbf{p}'\mathbf{1}/k^{\vee}} \geq c \Vert \varphi \Vert_{\mathbf{p}'\mathbf{1}/k^{\vee}} , \quad \varphi \in C^{\infty}_{0}(G)$

(cf. Theorem 2.2). Also the closedness of $R(L_{p,k,G}^{p})$ can be characterized in an easy way.

The surjectivity of the operator $\Lambda_{p,k}(G)$ (which in many cases is equal to $\Lambda_{p,k}(G)$) and the closedness of $R(\Lambda_{p,k}^{\sim}(G))$ is much more difficult to check. In Theorem 3.1 we show a necessary criterion that the range $R(\Lambda_{p,k}^{\sim}(G))$ is not closed. Furthermore, in Theorem 3.4 we establish a sufficient condition that $R(\Lambda_{p,\kappa}^{\sim}(G))$ is not closed (under suitable circumstances). Theorem 3.6 shows that in some cases our theory will give a characterization for the closedness of $R(\Lambda_{\rho,k}^{\sim}(G))$. The basic idea is to study the existence of the distributional solutions *v* for the equation $L'(x, D)v = g$, where $v \in E'(\overline{G})$, $g \in E'(G)$ and supp *v n 6 G ** CD, where 6 G is the boundary of G, and CD denotes the empty set.

2. **Definitions and preliminaries**

2.1. For the (unexplained) notations and definitions concerning the distribution theory and its related topics, we refer to the monographs $[2, 3]$. Let G be an open set in \mathbb{R}^n and let $p \in (1, \infty)$ and $k \in K$. We recall that $B_{p,k}$ is a Banach space and $B_{p,k}^{\text{loc}}(G)$ is a Frechet space. For $p \le \infty$, the space C_0^{∞} is dense in $B_{p,k}$ and $C_0^{\infty}(G)$ is dense in $B_{p,k}$ (G) . The notation $B_{p,k}^{\infty}(G)$ means the intersection $B_{p,k} \cap E'$ (G). The completion of $C_0^{\infty}(G)$ ir $B_{p,k}$ is den notation $B_{p,k}^{\mathbf{c}}(G)$ means the intersection $B_{p,k} \cap E^{\prime}(G)$. The completion of $C_0^{\infty}(G)$ in $B_{p,k}$ is denoted by $B_{p,k}(G)$. Then one sees that $B_{p,k}(G) \subset B_{p,k} \cap E'(\overline{G})$. Here $E'(A)$ (where $A \subseteq \mathbb{R}^n$) is the set of distributions $u \in E'(\mathbb{R}^n)$ such that supp $u \in A$. The set $\{u \in A\}$ $B_{p,k}$ supp $u \in A$ is denoted by $B_{p,k}^{\circ}(A)$. Finally, we denote by $iB_{p,k}(G)$ the set of distributions $u \in D'(G)$ such that $u = f_{u|G}$ for some distribution $f_u \in B_{p,k}$, where $f_{u|G}$ denotes the restriction of f_u to G . One sees that $|B_{p,k}(G)|$ is isomorphic with the factor space $B_{p,k}/B_{p,k}^{\circ}(\mathbb{R}^n\setminus G)$ and we transfer the topology of this factor space to $B_{p,k}(G)$ in the canonical way (note that $B_{p,k}^0(\mathbb{R}^n\setminus G)$ is closed in $B_{p,k}$, since $\mathbb{R}^n\setminus G$ is closed in \mathbb{R}^n). Furthermore, one sees that for $p \in (1, \infty)$ the spaces $B_{p', 1/k^{\vee}}(G)$ and $\mathbb{B}_{p, k}(G)$ are in duality with respect to the extension of the bilinear form

 $\lambda: C^{\infty}_{(0)}(G) \times C^{\infty}_{0}(G)$, $\lambda(\varphi,\psi) = \int_{\mathbb{R}^n} \varphi(x) \psi(x) dx$.

Here $C_{(0)}^{\infty}(G)$ denotes the subspace of functions ψ in $C^{\infty}(G)$ such that there exists f_{ψ} ϵ C_0^{∞} with $\psi = f_{\psi|G}$. Note that $C_{(0)}^{\infty}(G)$ is dense in $IB_{p,k}(G)$, $p < \infty$. We also write $IB^{\infty}(G)$ $f \cap_{p,k} \left\{ u \in D'(G) \middle| u = f_{u \mid G} \text{ with some } f_u \in B_{p,k}^{\text{loc}}(\mathbb{R}^n) \right\}.$

2.2. Let $L(x, D)$ = $\sum_{|\sigma| \leq r} a_{\sigma}(x) D^{\sigma}$ be a linear partial differential operator with IB^{oo}(G) **2.2.** Let $L(x, D) = \sum_{|G| \le r} a_G(x) D^G$ be a linear partial differential operator with coefficients. The formal transpose $\sum_{|G| \le r} (-D)^G (a_G(x) (\cdot))$ is denoted by $L'(L_{p,k,G} (p \in (1,\infty); k \in K))$ be a linear operator $B_{p,k}(G) \to B_{p,k}(G$ coefficients. The formal transpose $\sum_{|\sigma| \le r} (-D)^{\sigma} (a_{\sigma}(x)(\cdot))$ is denoted by $L'(x, D)$. Let $L_{p, k, G}$ ($p \in (1, \infty)$; $k \in K$) be a linear operator $B_{p, k}(G) \Rightarrow B_{p, k}(G)$ such that *B*_{*B*, *k*} $\{u \in L^p(G) : |u| \leq f_{u|G} \text{ with some } f_u \in B_{p,k}^{loc}(\mathbb{R}^n)\}.$
 B_{*B*, *k*} $\{u \in D'(G) \mid u \in f_{u|G} \text{ with some } f_u \in B_{p,k}^{loc}(\mathbb{R}^n)\}.$
 2.2. Let $L(x, D) = \sum_{|G| \leq r} a_G(x) D^G$ be a linear partial diffeortificients. The forma

 $D(L_{p,k,G}) = C_0^{\infty}(G)$, $L_{p,k,G} \varphi = L(x,D)\varphi$.

Then $L_{p,k,G}$ is closable in $B_{p,k}(G)$: Let $\{\varphi_n\} \subset C_0^{\infty}(G)$ be a sequence and let $g \in$ $B_{p,k}(G)$ be an element such that $\|\varphi_n\|_{p,k} \to 0$ and $\|L_{p,k,G} \varphi_n - g\|_{p,k} \to 0$ as $n \to \infty$. Then one has for any $\Phi \in C_0^\infty$

Realizations in Distribution Spaces 151
\nno one has for any
$$
\Phi \in C_0^{\infty}
$$

\n $g(\Phi) = \lim_{n} (L_{p,k,G} \varphi)(\Phi) = \lim_{n} \varphi_n(L'(x,D)\Phi) = 0,$ (2.1)
\nre we utilized the fact that for $\varphi \in C_0^{\infty}(G)$ and $u \in B_{p',1/k} \vee(G)$ the inequality

where we utilized the fact that for
$$
\varphi \in C_0^{\infty}(G)
$$
 and $u \in \mathbb{B}_{p',1/k^{\vee}}(G)$ the inequality
\n
$$
|u(\varphi)| \le ||u||_{p',1/k^{\vee}} ||\varphi||_{p,k}
$$
\n(2.2)

holds. Here $|||\cdot|||_{p'_1,1/k}$ denotes the $|B_{p'_1,1/k} \vee (G)$ -norm. In the last step of (2.1) we observed that $L'(x,D)\Phi|_G \in \mathsf{IB}^{\infty}(G)$ for any $\Phi \in C_0^{\infty}$, since $a_{\sigma} \in \mathsf{IB}^{\infty}(G)$. Due to (2.1) one gets $g = 0$, and so $L_{p,k,G}$ is closable in $B_{p,k}(G)$. The smallest closed extension of $L_{p,k,G}$ is denoted by $L_{p,k,G}^{\infty}$. $u = \lim_{n} (L_{1})$
 $u = \lim_{n} (L_{1})$
 $v = \lim_{n} (L_{1})$
 $u = \lim_{n} (L_{1})$
 $L'(x, D) \Phi|_{0}$
 $d \text{ so } L_{p,k,G}$
 $v = L_{p,k,G}$
 $v = L_{p,k,G}$
 $v = F$.

Furthermore, we define a linear operator $L_{p,k,G}''$ by

$$
D(\mathbb{L}_{p,k,G}^{\prime\prime}) = \left\{ u \in \mathbb{B}_{p,k}(G) \middle| \begin{array}{l} \text{there exists } f \in \mathbb{B}_{p,k}(G) \text{ such that} \\ u(L(x,D)\varphi) = f(\varphi) \ \forall \ \varphi \in C_{0}^{\infty}(G) \end{array} \right\},
$$

$$
\mathbb{L}_{p,k,G}^{\prime\prime\prime} u = f.
$$

Due to (2.2) one sees that $\mathbb{L}_{p,k,G}^{\prime\prime}$ is a closed operator. In the case when $G = \mathbb{R}^n$, one sees that $IB_{p,k}(G) = B_{p,k} = B_{p,k}(G)$, and we write $L_{p,k,R}n = L_{p,k}$ and so on.

As we mentioned above the spaces ${}^1B_{p,k}(G)$ and $B_{p',1/k}$ (G) are in duality with respect to λ . Explicitly, this means that there exists an isometrical isomorphism

 $J_{p,k} : \mathbb{B}_{p,k}(G) \to B_{p,1/k}^{\bullet} (G)$, $(J_{p,k}U)(\varphi) = U(\varphi) \ \forall \varphi \in C_{0}^{\infty}(G),$

and similarly there exists an isimetrical isomorphism

 $j_{p',1\neq k'} : B_{p',1\neq k'}(G) \to \mathbb{B}_{p,k}^{\bullet}(G)$, $(j_{p',1\neq k'} v)(\varphi|_G) = v(\varphi) \ \forall \varphi \in C_0^{\infty}$.

Here *x* refers to the dual space. In [7] we have explicitly shown the existence of $J_{p,k}$ and $j_{p',1/k}$ ^v · Similarly there exists an isimetrical isomorphism
 $j_{p',1\neq k'} : B_{p',1\neq k'}(G) \to \mathbb{B}_{p,k}^*(G)$, $(j_{p',1\neq k'} v)(\varphi|_G) = v(\varphi) \ \forall \varphi \in C_0^{\infty}$.
 \vdots refers to the dual space. In [7] we have explicitly shown the existence of

Then one easily sees

Lemma 2.1: Suppose that $L(x, D)$ has $IB^{\infty}(G)$ -coefficients and that $p \in (1, \infty)$, $k \in K$. *Then the relation* there exists an
 $B_{p',1/k} \vee (G) \rightarrow$

to the dual space
 $\vee k^{\vee}, G$ be the d

ly sees

.1: Suppose tha

tion

= $J_{p,k}^{-1}$ ($L_{p',1}^*$ isomorphism
 , $(j_{p',1\neq} \vee \vee j)$
 y have explicition of the (dentity of the (dentity of the summer
 p, *k*

(2.3)

holds.

We verify the next existence result of solutions.

Theorem 2.2: Suppose that $L(x, D)$ has $IB^{\infty}(G)$ -coefficients and that $p \in (1, \infty)$, $k \in$ *K. Then the range R(* $L_{p,K,G}$) is the whole space $IB_{p,K}(G)$ if and only if there exists a

constant c> 0 *such that*

$$
\|L'(x,D)\varphi\|_{p',1/k^{\vee}} \ge c \|\varphi\|_{p',k^{\vee}} \quad \text{for all } \varphi \in C^{\infty}_{0}(G).
$$
 (2.4)

VL(x,D) φ $\Vert_{p',1/k}$, $\ge c \Vert \varphi \Vert_{p',k}$, for all $\varphi \in C_0^{\infty}(G)$. (2.4)
 Proof: Suppose first that (2.4) holds. Then the range $R(L_{p',1/k}^{\infty}, G)$ is closed in **Proof:** Suppose first that (2.4) holds. Then the range $R(L_{p,1/k}, G)$ is closed in $B_{p',1/k^{\vee}}(G)$ and the kernel $N(\cdot)$ is trivial, i.e. $N(L_{p',1/k^{\vee}, G}^{\sim})$ = {0}. Hence one has

$$
R(L_{p',1/k^{\vee},G}^{\bullet}) = R(L_{p',1/k^{\vee},G}^{\bullet}) = B_{p',1/k^{\vee}}^{\bullet}(G).
$$

Since, by (2.3), $\mathbb{L}_{p,k,G}^{\prime\prime} = J_{p,k}^{-1} \circ (L_{p',1'/k},G) \circ J_{p,k}$, where $J_{p,k}$ is a bijection, one gets that $R(\mathsf{IL}_{p,\,k,G}') = \mathsf{IB}_{p,\,k}(G)$.

Suppose that $R(\mathbb{L}_{p, k, G}^{\bullet}) = \mathbb{B}_{p, k}(G)$. Then, by (2.3), $R(\mathbb{L}_{p', 1/k^{\vee}, G}^{\bullet}) = B_{p', 1/k^{\vee}}^{\bullet}(G)$. Hence the range $R(L_{p',1/k^{\vee},G}^{\bullet}) = R(L_{p',1/k^{\vee},G}^{\sim})$ is closed and for the kernel we have the equality $N(L_{p',1/k}, G) = N(L_{p',1/k}, G) = \{0\}$ (cf. [4, p. 168 and 234]). Hence (by the Closed Graph Theorem) the inverse $L_{p',1/k}^{\sim -1}$ is continuous, which implies the validity of (2.4) **■**

Remark 2.3 : a) Theorem 2.2 says that, when (2.4) **holds,** then the distributional equa tion $L(X,D)u = f$, $u \in B_{p,k}(G)$ is solvable for any $f \in B_{p,k}(G)$. As well known, there are **several kind of algebraic criteria under which (2.4) is valid. The criterions** in **question are** often independent of the underlying open set *G*. **b**) The operator $\mathbb{L}_{p,k,G}^{n}$ is called *maximal realization of* $L(x, D)$ *in* $|B_{p,\, k}(G)|$ *and the operator* $L_{p', 1/k}^{\sim}$ */_{<i>p*}^{*x*}, *c* is called the *minimal realization of* $L'(x, D)$ *in* $B_{p', 1/k} \vee (G)$ *.*

The closedness of $R(\mathsf{IL'}_{p,k,G}^{\mathsf{H}})$ can be characterized by

Theorem 2.4: *The range* $R(\mathbb{L}_{p,k,G}^{\prime\bullet})$ *is closed in* $\mathbb{B}_{p,k}(G)$ *if and only if the range* $R(L_{\mathbf{p}',1\neq k^{\vee},G}^{\sim})$ is closed in $B_{\mathbf{p}',1\neq k^{\vee}}(G)$.

Proof: From Lemma 2.1 we obtain that $\mathbb{L}_{p,k,G}^n = J_{p,k}^{-1} \circ (L_{p',1/k}^{\bullet}) \circ J_{p,k}$. Thus the range $R(\mathbb{L}_{p,k,G}^{n})$ is closed if and only if $R(L_{p',1/k^{\vee},G}^{n})$ is closed in $B_{p',1/k^{\vee}}^{*}(G)$. Furthermore, the range $R(L_{p',1/k}, G)$ is closed if and only if the range $R((L_{p',1/k}, G)^*)$ is closed in $(B_{p',1/k^{\vee}}^{\bullet}(G))^*$ (cf. [4, p. 234]). Since $B_{p',1/k^{\vee}}(G)$ is a reflexive space for $p \in (1, \infty)$, one sees that $(L_{p',1/k^{\vee},G}^{\bullet})^* = x \circ L_{p',1/k^{\vee},G}^{\sim} \circ x^{-1}$, where $x: B_{p',1/k^{\vee}}(G) \rightarrow$ $(B_{p,1/k}^{\bullet,\bullet}(G))^*$ is the canonical isomorphism (cf. [4, p. 168]). Hence $R((L_{p,1/k}^{\bullet,\bullet},G)^*)$ is closed if and only if $R(L_{p',1/k^{\vee},G}^{\sim})$ is closed **I**

With the same kind of conclusions as made in the proof of the previous theorem one gets: The range $R(\L_{p,\,k,G}^{\sim})$ is closed in $IB_{p,\,k}(G)$ if and only if the range $R(L_{p',1\neq k}^{w},G)$ is closed in $B_{p',1\neq k}$ of G), where $|L_{p,\,k,G}^{\sim}$ is the minimal realization of $L(x,D)$ in $|B_{p,\,k}(G)|$ and where $L_{p',1/k^{\vee},G}^{\pi}$ is the maximal realization of $L'(x,D)$ in $B_{p',1/k^{\vee}}(G)$.

Let Q be the factor space $B_{p,1/k} \vee (G)/N(L_{p,1/k}^{\sim})$ (with the usual norm topology). Denote the norm in Q by $\|\cdot\|$ $\tilde{\ }$. Then the range $R(L_{\boldsymbol{p'},1\neq k}^{\sim},G)$ is closed if and only if, with some *c>* 0, *Realizations in Distribution Spaces* 153
 e factor space $B_{p,1/k} \vee (G)/N(L_{p,1/k} \vee G)$ (with the usual norm topolo-

norm in Q by $\|\cdot\|$ ^o. Then the range $R(L_{p,1/k} \vee G)$ is closed if and only if,
 $\|P_{p,1/k} \vee \ge c \|\$

$$
||L'(x,D)\varphi||_{\mathfrak{D}'_{\alpha}1/k^{\vee}} \ge c||\varphi||^{\sim} \text{ for all } \varphi \in C_{\alpha}^{\infty}(G).
$$
 (2.7)

The estimate (2.4) implies that of (2.7).

2.3. Assume that $L(x, D)$ has $C_0^{\infty}(G)$ -coefficients. Then the *minimal realization* $\Lambda_{p,k}^{\sim}(G)$ *in* $B_{p,k}^{\text{loc}}(G)$

and the

 $maximal \ relation \ \Lambda_{\bm{p},\, \bm{k}}^{\bm{\cdot} \bm{\alpha}}(G) \ \textit{in} \ B_{\bm{p},\, \bm{k}}^{\texttt{loc}}(G)$

gy). Denote the norm in Q by $\|\cdot\|$. Then the range $K(L_{p',1/K^{\vee},G})$ is closed it and only it
with some $c > 0$,
 $\|L'(x,D)\varphi\|_{p',1/K^{\vee}} \ge c \|\varphi\|^{\infty}$ for all $\varphi \in C_{0}^{\infty}(G)$. (2.7)
The estimate (2.4) implies that of (or $L(x, D)$ can be defined (cf. [b]; the definitions go analogously to $L_{p, k, G}$ and $L'_{p, k, G}$)
Furthermore, the maximal realization $\Gamma_{p, k}^{*}(G)$ of $L(x, D)$ in $B_{p, k}^{c}(G)$ is analogously defined. The operator $\Gamma_{p,$ fined. The operator $\Gamma_{\rho, k}^{\sim}(G)$ is defined by

minimal realization
$$
\Lambda_{p,k}^{\infty}(G)
$$
 in $B_{p,k}^{\text{loc}}(G)$

\nthe

\nmaximal realization $\Lambda_{p,k}^{\infty}(G)$ in $B_{p,k}^{\text{loc}}(G)$

\n (x, D) can be defined (cf. [6]; the definitions go analogously to $L_{p,k,G}^{\infty}$ and $L'_{p,k}$ hence, the maximal realization $\Gamma_{p,k}^{\infty}(G)$ of $L(x, D)$ in $B_{p,k}^{\infty}(G)$ is analogously.

\nd. The operator $\Gamma_{p,k}^{\infty}(G)$ is defined by

\n
$$
D(\Gamma_{p,k}^{\infty}(G)) = \left\{ v \in B_{p,k}^{\infty}(G) \middle| \begin{array}{c} \exists \text{ a sequence } \{\varphi_n\} \subset C_{0}^{\infty}(G) \text{ and a } g \in B_{p,k}^{\infty}(G) \end{array} \right\}
$$

\n
$$
\Gamma_{p,k}^{\infty}(G) v = g.
$$

\nIn the next chapter we shall consider the closedness of $R(L_{p,k}^{\infty}(G))$ (in $B_{p,k}^{\text{loc}}(G)$), in the study one must take into account the geometry of G and the condition G is a specific result.

In the next chapter we shall consider the closedness of $R(L_{\bm{p},\,\bm{k}}^{\sim}(G))$ (in $B^{\texttt{loc}}_{\bm{p},\,\bm{k}}(G))$, which is much more complicated to check than the closedness of $R(\mathbb{L}_{p,\,k,G}^{\sim\, \mu})$ or $R(\mathbb{L}_{p,\,k,G}^{\sim\, \mu})$ (in $IB_{D,K}(G)$). In the study one must take into account the geometry of G and the characteristic curves with respect to $L'(x,D)$ (cf. Theorems 3.3, 3.4 and 3.6).

To preparate the investigations we present the following lemmas for $p \in (1, \infty)$ and $k \in$ K (cf. [6]).

Lemma 2.5: The range $R(\widehat{\Lambda_{p,k}}(G))$ is closed in $B_{p,k}^{\text{loc}}(G)$ if and only if the range $R(\Gamma^{\mathbf{a}}_{p',1\vee k^{\vee}}(G))$ *is closed in* $B^{\mathbf{c}}_{p',1\vee k^{\vee}}(G)$ *.*

Lemma 2.6: The relation $R(\Lambda_{\boldsymbol{p},\boldsymbol{k}}^{\boldsymbol{\cdot}}(G))$ = $B_{\boldsymbol{p},\boldsymbol{k}}^{\text{loc}}(G)$ holds if and only if (i) $R(\Gamma_{D',1\neq k^{\vee}}^{n}(G))$ is closed in $B_{D',1\neq k^{\vee}}^{c}(G)$ (ii) $N(\Gamma_{D',1\neq k^{\vee}}^{n}(G)) = \{0\}.$ *li*) *is closed in* $B_{p',1/k}^c \vee (G)$ *.
 6: The relation* $R(\Lambda_{p,k}^c(G)) = B_{p,k}^{\text{loc}}(G)$ *holds if and only if* $\Lambda_{1/k}^c \vee (G)$ *is closed in* $B_{p',1/k}^c \vee (G)$ *(ii)* $N(\Gamma_{p',1/k}^{\#} \vee (G)) = \{0\}.$

Remark 2.7: a) Similarly one has the following:

 $1^{\mathbf{0}}$ The range $R\big(\Lambda_{\boldsymbol{\rho},\,k}^{\boldsymbol{\cdot}\,a}(G)\big)$ is closed in $B_{\boldsymbol{\rho},\,k}^{\text{loc}}(G)$ if and only if the range $R\big(\Gamma_{\boldsymbol{\rho}^{\,\cdot},1/k^{\vee}}^{\boldsymbol{\cdot}\,a}(G)\big)$ is closed in $B_{p', 1/k} \vee (G)$.

2⁰ The relation $R(\Lambda_{p,k}^{n}(G)) = B_{p,k}^{\text{loc}}(G)$ holds if and only if

(iii) $R(\Gamma_{p,1/k}^{P,\gamma}(G))$ is closed in $B_{p,1/k}^{C} \vee (G)$. (iv) $N(\Gamma_{p,1/k}^{P,\gamma}(G)) = \{0\}.$

The proofs of I **and 2 goes analogously to the considerations expressed in [61 (cf. also [8, pp. 49 - Si]).**

b) We recall that the closedness of a subspace *H* in $B_{p',1/k}^c \vee (G)$ means that *H* α $B_{p',1\neq k}^{\mathsf{O}}(\mathit{K})$ is closed in $B_{p',1\neq k}$ for any compact set $K\in G$. Furthermore, the closedness $B_{p',1/k}^{V}(K)$ is closed in $B_{p',1/k}^{V}$ for any compact set $K \subset G$. Furthermore, the closedness of $F \coloneqq H \cap B_{p,1/k}^{0} V(K)$ in (a normed space) $B_{p',1/k}^{V}$ means that F is sequentially closed.

11 Analysis. Bd. 10, Hef

3. On the closedness of $R(A_{p,k}^{\sim}(G))$

3.1. We assume everywhere in this chapter that the operator $L(x,D)$ has C^{∞} - coefficients.For the first instance we establish

Theorem 3.1: *Suppose that G is bounded. Furthermore, assume that (with c* >0) *the estimate (2.4)* is true,

$$
\Gamma_{p',1/k}^{B} \vee (G) = \Gamma_{p',1/k}^{S} \vee (G),
$$
\n(3.1)

 $\widetilde{p}_{i,k}(G)$
this chapter that the
establish
G is bounded. Furthe
*is not closed in B*_{p,k}
 \widetilde{p}_{i}) *such that* (*recall t* and that the range $R(\tilde{\Lambda_{\bm p,k}^{\sim}}(G))$ is not closed in $B_{\bm p,k}^{\texttt{loc}}(G).$ Then there exists elements ${\tt v}$ ϵ $\Gamma_{p',1/k}^{\mathbf{B}} \vee (G) = \Gamma_{p',1/k} \vee (G),$
and that the range $R(\Lambda_{p,k}^{\sim}(G))$ is not closed in $B_{p,k}^{\text{loc}}(G)$. Then there exists elements $B_{p',1/k} \vee (G)$ and $g \in B_{p',1/k}^{\mathbf{C}} \vee (G)$ such that (recall that $L_{p',1/k}^{\mathbf{B}} \$ **1 the closedness of** $R(\Lambda_{p,k}(G))$

We assume everywhere in this chapter that the operator $L(x,D)$ has C^{∞} -coeffi-

s. For the first instance we establish
 Chooter 3.1: Suppose that G is bounded. Furthermore, assume

$$
L_{n+1/k}^{\pi} \vee v = g \quad \text{and} \quad \text{supp } v \cap \partial G + \Phi. \tag{3.2}
$$

Proof: Since we assume that $R(\Lambda_{p,k}^{\sim}(G))$ is not closed, we obtain from Lemma 2.5 that $R(\Gamma_{p',1/k}^{\pi} \vee (G))$ is not closed in $B_{p',1/k}^{\mathcal{C}} \vee (G)$. Due to Remark 2.7/b) we see that there exists a compact set $K \subset G$ such that $F = R(\Gamma_{p',1/k}^m \vee G)) \cap B_{p',1/k}^{\mathfrak{0}} \vee (K)$ is not closed in $B_{\bm\rho',1\neq k}$. Hence one finds an element $g\in \bar{F}\setminus F.$ Choose a sequence $\{\hat{g_{\bm n}}\}\subset F$ such $\,$ that $||g_n - g||_{p', 1/k}$ \rightarrow 0 as $n \rightarrow \infty$. Since $g_n \in B_{p', 1/k}^{\circ}$ \vee (K) and since $B_{p', 1/k}^{\circ}$ \vee (K) is clothe range $K(\Lambda_{p,k}(G))$ is not closed in $B_{p,k}(G)$. Then there exists elements $V \in G$ and $g \in B_{p',1/k} \vee (G)$ such that (recall that $L_{p',1/k}^* \vee \cong L_{p',1/k} \vee \cap R^n$)
 $\vee_{k \vee v} = g$ and supp $v \cap \partial G \neq \emptyset$.

(3.2)

(2. Since sed in $B_{\rho,1\neq k}$, one sees that $g \in B_{\rho,1\neq k}^{\circ}$ (K). Thus g does not belong to $R(\Gamma_{\rho,1\neq k}^{\pi}$ v(G)).

The assumptions (2.4), (3.1) imply that

$$
\left\|\Gamma_{p',1/k^{\vee}}^{\pi}(G)v\right\|_{p',1/k^{\vee}} \geq c\left\|v\right\|_{p',1/k^{\vee}} \text{ for all } v \in D\big(\Gamma_{p',1/k^{\vee}}^{\pi}(G)\big).
$$

Choose $v_n \in D(\Gamma_{p',1/k^{\vee}}^{\mathbf{m}}(G))$ such that $\Gamma_{p',1/k^{\vee}}^{\mathbf{m}}(G)v_n = g_n$. Then $\{v_n\}$ is a Cauchy sequence in $B_{p'_1,1/k}$. Choose $v \in B_{p'_1,1/k}$ with $||v_n - v||_{p'_1,1/k}$ $\rightarrow 0$. Then $v \in B_{p'_1,1/k}$ \vee (G) (since $B_{p,1/k} \vee (G)$ is closed in $B_{p,1/k} \vee$). Furthermore, one sees that, for all $\Phi \in C_0$ (G),

 $g(\Phi) = \lim_{n} \left(\Gamma_{p',1/k}^{\pi} \vee (G) v_n \right) (\Phi) = \lim_{n} v_n(L(x,D) \Phi) = v(L(x,D) \Phi)$

and so $L_{\nu/1/k}^{\pi} \vee v = g$. In addition,

$$
v \in B_{p',1/k^{\vee}}(G) \subset E'(\overline{G}) \text{ and } g \in B_{p',1/k^{\vee}}^{\circ}(K) \subset B_{p',1/k^{\vee}}^{\circ}(G).
$$

Suppose that supp $v \cap \partial G = \Phi$. Then one has

supp $v \subset \overline{G}$ n($\mathbb{R}^n \setminus \partial G$) = $(G \cup \partial G)$ n($\mathbb{R}^n \setminus \partial G$) = G.

Hence in this case $v \in D(\Gamma_{p',1/k}^m \vee G)$ and $\Gamma_{p',1/k}^m \vee G$ $v = g$. This contradicts the fact that $g \in R(\Gamma_{n'1/k^{\vee}}^{\mathbf{a}}(G))$. Thus supp $v \cap \partial G \neq \emptyset$, which finishes the proof

Remark 3.2: a) Suppose that $L(D) = \sum_{|\sigma| \le r} a_{\sigma} D^{\sigma}$ has constant coefficients and that supp $v \in G \cap (\mathbb{R}^n \setminus \partial G) = (G \cup \partial G) \cap (\mathbb{R}^n \setminus \partial G) = G$.

Hence in this case $v \in D(\Gamma_{p',1/k}^{\mathbf{a}} \vee (G))$ and $\Gamma_{p',1/k}^{\mathbf{a}} \vee (G)v = g$. This contractively that $g \in R(\Gamma_{p',1/k}^{\mathbf{a}} \vee (G))$. Thus supp $v \cap \partial G \neq \emptyset$, which $= \Lambda_{p,1/k}^{n} \vee (G)$ (this relation holds for any first -order operator $L(x,D) = \sum_{|\sigma| \leq 1} a_{\sigma}(x)D^{\sigma}$ *in the case* when $p = 2$ and $k = 1$ (cf. [1]). Then one easily sees that (2.4) is valid. c) The assumption (2.4) can be replaced by the weaker estimate $\|L'(x,D)\varphi\|_{p',1/k}$ \vee $\geq c \|\varphi\|^\infty$ for all $\varphi \in C_0^\infty(G)$ *C* is bounded. Then (2.4) and (3.1) are valid. **a)** suppose in (this relation holds for any first - order operator $L(x, D)$ when $p = 2$ and $k = 1$ (cf. [1]). Then one easily sees that (2(2.4) can be replaced by the weaker

3.2. In the sequel our aim is to seek criteria under which the existence of elements $v \in$ $B_{p',1\neq k}$ *v* (G) and $g \in B_{p',1\neq k}^{\mathbf{C}}$ \cup *(G)* satisfying (3.2) implies that $R(\Lambda_{p,k}^{\infty}(G))$ is not closed in $B_{\boldsymbol{\rho},k}^{\text{loc}}(G)$. $\begin{aligned} \text{or} \ \text{to} \ \text{seck} \ \text{or} \ \text{(} G \text{)} \text{satisfy} \ \text{or} \ \text{valued} \ \text{fun} \ \text{for} \ \text{h}^{-1}(0). \end{aligned}$ In the sequel our aim is to seek criteria u
 $\chi_{k,v}(G)$ and $g \in B_{p,1}^c \times (G)$ satisfying (3.2
 \vdots (*G*).

Assume that *h* is a real-valued function in

t points x_1 and x_2 with
 $h(x_1) < 0$ and $h(x_2) > 0$
 $(\nabla h)($

Assume that *h* is a real-valued function in $C^{1}(\mathbb{R}^{n})$. Furthermore, assume that there exist points x_1 and x_2 with

$$
h(x_1) < 0 \quad \text{and} \quad h(x_2) > 0 \tag{3.3}
$$

and

(3.4)

We suppose that $G = h^{-1}(-\infty, 0)$. Then $\mathbb{R}^n \setminus \overline{G} = h^{-1}(0, \infty)$ and $\partial G = h^{-1}(0)$. In addition, by (3.3) one has $G \neq \emptyset$ and $\partial G = \emptyset$. The boundary $\partial G = h^{-1}(0)$ is by (3.4) a regular hypersurface in \mathbb{R}^n .

The next theorem yields information about the points, where ∂G can touch supp v (cf. (3.2) .

Theorem 3.3: Let $G = h^{-1}(-\infty, 0)$ as above and let $L(x, D)$ be a partial differential *operator with (in R") real-analytic coefficients a 0 . Suppose that there exists elements v* $E \in B_{\rho,1} \times (G)$ and $g \in B_{\rho,1}^{\mathbb{C}} \times (G)$ such that (3.2) holds. Then one has

 $L_r(x, (\nabla h)(x)) = 0$ *V x* ϵ supp *v* $\alpha \partial G$, where $L_r(x, \xi) = \sum_{h|f| \leq r} a_n(x) \xi^{\alpha}$.

Proof: a) Suppose that $x \in \text{supp } v \cap \partial G$. Since supp g is a compact subset of G, there exists a constant $d > 0$ such that dist (supp g , $\{x\}$) a *d* and then $L_{p',1/k}^p$ $v = 0$ in $B(x,d)$ $E = \{ y \in \mathbb{R}^n \mid |x - y| < d \}$, where $dist(A, B)$ is the distance between *A* and *B*.

b) Suppose that $L_r(x, (\nabla h)(x)) \neq 0$. Then there exists a number $\varepsilon \in (0, d)$ such that $L_r(x, (\nabla h)(x)) \neq 0$ on that patch $U_x \equiv B(x, \varepsilon) \cap \partial G$. Then the patch U_x is a regular C^1 surface and U_x is non-characteristic with respect to $L'(x,D)$ (note that $L'_f(x,\xi) = (-1)^{-r}$ $L_r(x,\xi)$). In addition, since $\mathbb{R}^n \setminus \overline{G} = h^{-1}(0,\infty)$, one sees that $L_{p',1\neq k}^m v = 0$ in $\{y \in \mathbb{R}^n |$ $h(y) > 0$. Thus $v = 0$ in some neighbourhood of x (cf. [2, Theorem 8.6.5]), which is a contradiction, because $x \in \text{supp } v$ (a) (3) + 0. Then
 $x = B(x, \epsilon)$

tic with resp
 $\overline{G} = h^{-1}(0, \epsilon)$

(b) is obtain
 $= h^{-1}(-\infty, 0, \epsilon)$

ficients. Furnally *Let* (X, ξ)). In addition, since $\mathbb{R}^n \setminus G = h^{-1}(0, \infty)$, one sees that $0 > 0$. Thus $v = 0$ in some neighbourhood of x (cf. [2, T radiction, because $x \in \text{supp } v \blacksquare$

A partial converse of Theorem 3.1 is obtained

A partial converse of Theorem 3.1 is obtained by

Theorem 3.4: *Suppose that* $G = h^{-1}(-\infty,0)$, *where h obeys* (3.3) - (3.4), and that $L(x,$ *D) has (in R") real-analytic coefficients. Furthermore, assume that*

$$
N(L_{p',1/k^{\vee}k_{r}}^{a}) \cap E'(\mathbb{R}^{n}) = \{0\}
$$
 (3.5)

and that for any x $\epsilon \, \partial G$ there exists a constant $\epsilon_x > 0$ such that

$$
L_r(y,(\nabla h)(y)) \neq 0 \quad \text{on} \quad (B(x,\varepsilon_x) \setminus \{x\}) \cap \partial G,\tag{3.6}
$$

where we denote $k_s(\xi) = (1 + |\xi|^2)^{s/2}$ *. Then the existence of elements v* $\in B_{p,1/k} \setminus (G)$ 11*

and $g \in B_{\mathbf{p}',1/\mathbf{k}}^{\mathbf{c}} \vee (G)$ *satisfying* (3.2) *implies that the range* $R(\Lambda_{\mathbf{p},\mathbf{k}\mathbf{k}}^{\infty}(G))$ *is not closed in* $B_{p,\,k\,k}^{\text{loc}}(G)$.

Proof: Due to Lemma 2.5 it suffices to verify that the range $R(\Gamma_{p',1/k} \vee_K(G))$ is not closed in $B_{p,1/k^{\vee}k_r}(G)$, that is, $R(\Gamma_{p,1/k^{\vee}k_r}(G)) \cap B_{p,1/k^{\vee}k_r}(K)$ is not closed with some compact $K \subset G$.

Suppose that $v \in B_{p',1/k} \vee (G)$ and $g \in B_{p',1/k}^{\mathbf{c}} \vee (G)$ are such that $L_{p',1/k}^{\mathbf{w}} \vee v = g$ and supp v \cap ∂G $*$ Φ . Choose $x \in \text{supp } v \cap \partial G$. Due to the assumption there exists $\varepsilon_x > 0$ such that $L_r(y, (\nabla h)(y)) \neq 0$ on $(B(x, \varepsilon_x) \setminus \{x\})$ o dG. Hence, similarly to the proof/part b) of Theorem 3.3, one obtains that $v = 0$ in some neighbourhood U_x of $(B(x, \varepsilon_x) \setminus \{x\})$ $\cap \partial G$. Choose $\vartheta \in C_0^{\infty}(B(x,\delta))$ such that $\vartheta(x) = 1$ in $B(x,\delta/2)$, where $\delta = {\epsilon_x/2}$, dist(suppg, ∂G } > 0. Define distributions w_n by $w_n(\varphi) = (\vartheta v)(\varphi(\cdot) + \nu_n(\nabla h)(x))$ (we translate ϑv in the direction of the vector $-\frac{1}{n}(\nabla h)(x)$; note that $-(\nabla h)(x)$ is pointing to G and that $(\nabla h)(x)$ is the normal of ∂G at x). Then one sees that, for *n* large enough, the inclusions *w_n* (φ) = (ϑ *v*)(φ (·)
direction of the vector $-\nu_n(\nabla h)(x)$; note that $-\nu_n(\nabla h)(x)$; is the normal of ∂G at *x*). Then one sees that,
 $w_n \in B_{p,1/k}^c v_{k,r}(G)$ and $g_n = \Gamma_{p',1/k}^{\pi} v_{k,r}(G) w_n \in$ Theorem 3.3, one obtains that $v = 0$ in some neighbourhood
Choose $\vartheta \in C_0^{\infty}(B(x,\delta))$ such that $\vartheta(x) = 1$ in $B(x,\delta/2)$, wl
 ∂G } > 0. Define distributions w_n by $w_n(\varphi) = (\vartheta v)(\varphi(\cdot) + \nu_n$
the direction of the vector $-\$

$$
w_n \in B_{p',1/k^{\vee}k_r}^c(G) \text{ and } g_n = \Gamma_{p',1/k^{\vee}k_r}^{\prime\prime}(G)w_n \in B_{p',1/k^{\vee}k_r}^c(G)
$$

hold. Note that $g_n = (L_{p',1/k}^{\pi^+} w)_{n}$, where $w = \vartheta v$ and where $(L_{p',1/k}^{\pi^-} w)_{n}$ is similarly $w_n \in B_{p,1/k}^c \times_{k_f} G$ and $g_n := \Gamma_{p,1/k}^{\pi} \times_{k_f} G w_n \in B_{p,1/k}^c \times_{k_f} G$
hold. Note that $g_n = (L_{p,1/k}^{\pi} \times_{k_f} w)_n$, where $w = \vartheta v$ and where $(L_{p,1/k}^c \times_{k_f} w)_n$ is similarly
defined (via translation) as w_n . Furthermore defined (via translation) as w_n . Furthermore, one finds that $g_n \to g = L_{p',1/k^{\vee}k_r}^{\sigma}(\vartheta v)$ in $B_{p',1/k^{\vee}k_r}^{\mathbb{C}}(G)$. Since $N(L_{p',1/k^{\vee}k_r}^{\sigma}) \cap E'(\mathbb{R}^n) = \{0\}$ and since $\vartheta v \in B_{p',1/k^{\vee}k_r}^{\mathbb{C}}(G)$, one

Remark 3.5: a) Suppose that *L(D)* **has constant coefficients. Then the relation (3.5)** is valid. **b)** The condition (3.6) is in many particular cases superflous, as we shall make **explicit below (Theorem 3.6). c) Also** the **Theorem 2.5** in [5,p. **367] can be applied (as** above) to the study of the closedness of $R(\Lambda_{p, kk}(G))$. **d)** In the case of constant coeffi cients, the assertion in Theorem 3.4 can be replaced by the following: The range $R(\Lambda_{\mathbf{p},\mathbf{k}}^{\sim}(G))$ is not closed for any (p,k) $\in (1,\infty) \times K$ (cf. the Introduction). **a)** Suppose that C and $L(x,D)$ are as in Theorem 3.3 and that $L_r(x,(\nabla h)(x))$ \neq 0 for all x c ∂G . Then there do not esxist **elements** $v \in B_{p',1/k} \vee (G)$ and $g \in B_{p',1/k} \vee (G)$ such that (3.2) is valid (cf. Theorem 3.3). **f**) **We also remark that (under the assumptions of Theorem 3.4) the points where supp** *v* **can** t ouch ∂G are isolated points of ∂G (cf. the proof of Theorem 3.4)

3.3. We consider some examples.

A. Let $L(x, D) = -i(x_1D_1 + x_2D_2)$ and $h(x_1, x_2) = 1 - x_1^2 - x_2^2$. Then one sees that G = $B(0,1), (\nabla h)(x) = (-2x_1, -2x_2) \neq 0$ for any $x \in h^{-1}(0)$ and $h(0,0) < 0$, $h(2,0) > 0$. In addition, one gets *ne* examples.
 $-i(x_1D_1 + x_2D_2)$ and $h(x_1, x_2) = 1 - x_1^2 - x_2^2$. Then one sees that
 $(-2x_1, -2x_2) \ne 0$ for any $x \in h^{-1}(0)$ and $h(0, 0) < 0$, $h(2, 0) > 0$
 \vdots $L_r(x, (-2x_1, -2x_2)) = -2i(x_1^2 + x_2^2) = -2i$
 \vdots $L_2((-i(x_1D_$

 $L_r(x, (\nabla h)(x)) = L_r(x, (-2x_1, -2x_2)) = -2i(x_1^2 + x_2^2) = -2i$

for $x \in h^{-1}(0)$ and

$$
\operatorname{Re}\left(L(x,D)\varphi,\varphi\right)_0 = \frac{1}{2}\left(\left(-\operatorname{i}\left(x_1D_1 + x_2D_2\right)\varphi,\varphi\right)_0 + \frac{\operatorname{i}\left(\varphi, D_1(x_1\varphi) + D_2(x_2\varphi)\right)_0}{\operatorname{i}\left(x_1\varphi\right) + D_2(x_2\varphi)\right)_0}\right) = \|\varphi\|_0^2
$$

for all $\varphi \in C_0$ (here $(\varphi, \psi)_0 = \int_{\mathbb{R}^n} \varphi(x) \overline{\psi(x)} dx$). In virtue of Theorem 3.1, Remark 3.2/b and Remark 3.5/e one sees that the range $R(\Lambda_{2.1}^{\infty}(G))$ is closed in $L_2^{\text{loc}}(G)$.

B. Suppose that $L(x, D)$ is as in Example A and that $G = \mathbb{R}^2 \setminus B(0, 1)$. Then due to Remark 3.5/e one sees that there do not exist elements $v \in B_{p'1/k} \times (G)$ and $g \in B_{p'1/k} \times (G)$ such that (3.3) is valid. It is remarkable to note that, when *L(D)* has constant coefficients, when $L(D)$ is non-elliptic and when $G = \mathbb{R}^2 \setminus \overline{B}(0,1)$, there exist elements $v \in C_0^{\infty}(\mathbb{R}^n)$, $g \in C_0^{\infty}(\mathbb{R}^n)$ such that $L'(D)v = g$ (in \mathbb{R}^2), supp $v \subset \overline{G}$ and supp $v \cap \partial G$ $\neq \emptyset$ (cf. [2: Theorem 8.6.7] and Figure 1). Hence by Theorem 3.4 one gets that the range $R(\Lambda_{\mathbf{D},\mathbf{k}}^{\sim}(G))$ is

not closed in $B_{p,k}^{loc}(G)$. Here one must note that any $v \in C_0^{\infty}$ with supp $v \in \overline{G}$ belongs to $B_{p',1/k} \vee (G)$ (since in this case $B_{p',1/k} \vee (G) = B_{p',1/k}^{\circ} \vee (G)$). In addition, one sees that (3.5) - (3.6) are valid.

3.4. We finally consider the operator *L(D)with* constant coefficients. Suppose (as above) that $h \in C^1(\mathbb{R}^n)$ is such that (3.3) - (3.4) hold and that $G = h^{-1}(-\infty, 0)$. Denote $S(0,1)$

Theorem 3.6: Let $G = h^{-1}(-\infty, 0)$ be a bounded set and let $L(D)$ be an operator with *constant coefficients such that the set C = {N* ϵ *S(0,1)| L_r(N) = 0} is finite. Then the range* $R(\Lambda_{p, k}^{\infty}(G))$ *is closed if and only if there do not exist elements* $v \in B_{p, 1/k} \setminus (G)$ and $g \in B_{p',1/k^{\vee}}^{\mathbb{C}}(G)$ such that $L_{p',1/k^{\vee}}^{\mathbb{Z}} v = g$ and suppv $\cap \partial G \neq \emptyset$ (see (3.2)). **Theorem 3.6:** Let $G = h^{-1}(-\infty, 0)$ be a bounded set and let $L(D)$ be an operator with
constant coefficients such that the set $C = \{N \in S(0,1) | L_r(N) = 0\}$ is finite. Then the
range $R(\Lambda_{p,K}^{\sim}(G))$ is closed if and only if t

Proof: A. Suppose that $R(\Lambda_{\mathbf{Q},\mathbf{k}}^{\sim}(G))$ is not closed. Then, due to Theorem 3.1, the required elements *v* and *g* exist (cf. Remark 3.2/a). Hence it suffices to show that, if the range $R(\Lambda_{p,k}^{\sim}(G))$ is closed, then the elements *v* and *g* satisfying (3.2) do not exist.

B. Suppose that the range $R(\Lambda_{p,k}(G))$ is closed. Then $R(\Lambda_{p,k,k}(G))$ is also closed

sume that *v* and g owning (3.2) exist. This leads to a contradiction as follows: Due to Theorem *3.3 L_r*(x ,(∇h)(x)) = 0 \hat{b} for all $x \in \text{supp } v \cap \partial G$. (3.7)

$$
L_r(x, (\nabla h)(x)) = 0 \quad \text{for all } x \in \text{supp } v \cap \partial G. \tag{3.7}
$$

Choose $x_0 \in \text{supp } v \cap \partial G$ and define $F_{x_0} = \{x \in \partial G \mid (\nabla h)(x) = (\nabla h)(x_0)\}$. Let C_{x_0} be the connected component of $F_{\mathbf{x}_0}$ containing x_0 . Since C is finite there exists (by (3.8)) a constant $\epsilon > 0$ such that $v = 0$ in $G_{\epsilon} = \{x \in \partial G \setminus C_{x_0} \mid \text{dist}(x, C_{x_0}) \leq \epsilon\}.$ Define numbers *d* and δ by $d = \text{dist}(\text{supp } f, \partial G) > 0$ and $\delta = \min \{d, \epsilon\}$. The set $U_{\delta} = \{x \in \mathbb{R}^n | \text{dist}(x, C_{x_0})\}$ $\{8\}$ is open and $F_8 = \{x \in \mathbb{R}^n | \text{dist}(x, C_{\mathbf{x}_0}) \leq \delta/2\}$ is a compact set of U_8 . Choose a function $\vartheta \in C_0^{\infty}(U_{\delta})$ such that $\vartheta(x) = 1$ in F_{δ} and define $w_n(\psi) = (\vartheta v)(\psi((\cdot) + 1_n N_0))$, where N_0 = $(\nabla h)(x_0)$. Then one sees that, for, *n* large enough, one has $w_n \in E(G)$ and is open and $F_8 = \{ x \in \mathbb{R}^n | \text{ dist}(x, C_{x_0}) \le \delta/2 \}$ is a compact se
 $\vartheta \in C_0^{\infty}(U_8)$ such that $\vartheta(x) = 1$ in F_8 and define $w_n(\psi) = (\vartheta v \cdot (\nabla h)(x_0)$. Then one sees that, for *n* large enough, one has w_n
 $\Gamma_{p',1$

$$
\Gamma''_{p',1/k^\vee k_r}(G) w_n \to L_{p',1/k^\vee k_r}^{\varpi}(\vartheta v) = \sum_\alpha \big((-1)^{|\alpha|}/\alpha!\big) D^\alpha \vartheta L^{(\alpha)}(D) v
$$

in $B_{p'_1,1/k} \vee_{k_r}(G)$. Hence $R(\Gamma_{p'_1,1/k}^* \vee_{k_r}(G))$ is not closed (recall: $N(L_{p'_1,1/k}^* \vee_{k_r}) \cap E'(R^n)$) *= {o}),* which *is* a contradiction *^U*

Remark3.7: a) The boundedness of G in theorem 3.6 is not essential (which fact we shall not deal with in detail). b) One sees that the *heat operator* $L(D) = -iD_n - \sum_{j=1}^{n-1} D_j^2$ and the wave operator $D_1^2 - D_2^2$ satisfy, for example, the assumptions of Theorem 3.6.

REFERENCES

- [1] FRIEDRICHS, K.: On the identity of weak and strong extensions of differential operators. Trans. Amer. Math. Soc. 55 (1944), 132 - 151.
- [2] HöRMANDER, L.: *The Analysis of Linear Partial Differential Operators* I. Berlin Heidelberg - New York: Springer - Verlag 1983.
- [3] HöRMANDER, L.: *The Analysis of Linear Partial Differential Operators* II. Berlin Heidelberg - New York: Springer - Verlag 1983.
- *[4] KATO,T.: Perturbation Theory for Linear Operators.* Berlin Heidelberg New York: Springer - Verlag 1966.
- 1.51 TAYLOR, M.: *Pseudodifferential Operators.* Princeton, N.J.: Princeton Univ. Press 1981.
- *[6] TERVO, J.: On Solvability of Linear Partial Differentia l Equations in Local Spaces* $B_{\rho,\,k}^{\text{loc}}(G)$. Z. Anal. Anw. 7 (1988), 99 - 112.
- *[7] TERVO, J.: On the existence and regularity of solutions of linear equations in spaces* $H_k(G)$. Ann. Pol. Math. (to appear).
- [8] TREVES, F.: *Locally Convex Spaces and Linear Partial Differential Equations.* Berlin - Heidelberg -New York: Springer -Verlag 1967.

Received 16.06.1989

Author's address:

Dr. Jouko Tervo University of Kuopio, Department of Applied Mathematics PL 6 SF - 70211 Kuopio