On the Ranges of Realizations in Distribution Spaces

J. TERVO

The paper deals with the closedness of ranges and the surjectivity of realizations related to linear partial differential operators L(x,D). A characterization (with the help of a certain coercivity condition) of the surjectivity of the maximal realization $L_{p,k,G}^{\prime m}$ in $B_{p,k}(G) = \{u \in D'(G) \mid u = f_{u|G} \text{ for some } f_u \in B_{p,k}\}$ is established. Here $B_{p,k}$ ($p \in (0, 1)$, $k \in K$) is the Hörmander space. Furthermore, the closedness of the range $R(\Lambda_{p,k}^{\sim}(G))$ corresponding to the minimal realization $\Lambda_{p,k}^{\sim}(G)$ in local Hörmander spaces $B_{p,k}^{\text{loc}}(G) = \{u \in D'(G) \mid \forall u \in B_{p,k} \text{ for any } \forall \in C_0^{\infty}(G)\}$ is considered.

Key words: existence of distributional solutions, L(x,D)-convexity AMS subject classification: 35D05

1. Introduction

Let L(x, D) be a linear partial differential operator with $C^{\infty}(\mathbb{R}^n)$ -coefficients. Further more, let G be an open set in \mathbb{R}^n . Choose $p \in (1,\infty)$ and $k \in K$, where K is the Hörmander class of weight functions $k \colon \mathbb{R}^n \to \mathbb{R}$. We shall deal with the closedness of the range $R(\Lambda_{p,k}^{\sim}(G))$ of the minimal realization $\Lambda_{p,k}^{\sim}(G)$ in the local Hörmander space $B_{p,k}^{loc}(G)$. The closedness of $R(\Lambda_{p,k}^{\sim}(G))$ is closely related to the theory of L(x,D)-convex sets (cf. [3, pp. 41 - 59], [8, pp. 57 - 120], [5, pp. 358 - 371] and [6]). This can be seen, when we consider, for example, the operators L(D) with constant coefficients. In this case the closedness of $R(\Lambda_{p,k}^{\sim}(G))$ implies that $R(\Lambda_{p,k}^{\sim}(G)) = B_{p,k}^{loc}(G)$ and so also for the maximal realization in $B_{p,k}^{loc}(G)$, say $\Lambda_{p,k}^{m}(G)$, one has the equality $R(\Lambda_{p,k}^{m}(G)) = B_{p,k}^{loc}(G)$ (cf. [6] and note that $N(\Lambda_{p',1/k^{\vee}}^{m}(G)) \cap E'(G) = \{0\}$, that is, the distributional equation $L(D)u = 0, u \in E'(G) \cap B_{p',1/k^{\vee}}^{loc}(G)$ holds if and only if u = 0). The surjectivity of $\Lambda_{p,k}^{m}(G)$ implies that G is L(G)-convex (cf. [3, Theorem 10.6.6]) and on the contrary (cf. [3, Theorem 10.6.7]). Especially, one finds that, if $R(\Lambda_{p,k}^{\sim}(G))$ is closed in $B_{p,k}^{loc}(G)$ with a fixed pair $(p,k) \in (1,\infty) \times K$, then $R(\Lambda_{p,k}^{\sim}(G))$ is closed for any pair $(q,k') \in (1,\infty) \times K$.

The surjectivity of the maximal realization $L_{p,k,G}^{u}$ in $|B_{p,k}(G) := \{u \in D'(G) | u = f_{u|G}$ for some $f_{u} \in B_{p,k}$ can be characterized by means of the validity of the inequality

 $\|L'(x,D)\varphi\|_{p',1/k^{\vee}} \ge c \|\varphi\|_{p',1/k^{\vee}}, \quad \varphi \in C_{0}^{\infty}(G)$

(cf. Theorem 2.2). Also the closedness of $R(L_{p,k,G}^{,*})$ can be characterized in an easy way.

The surjectivity of the operator $\Lambda_{p,k}^{\sim}(G)$ (which in many cases is equal to $\Lambda_{p,k}^{\prime \prime \prime}(G)$) and the closedness of $R(\Lambda_{p,k}^{\sim}(G))$ is much more difficult to check. In Theorem 3.1 we show a necessary criterion that the range $R(\Lambda_{p,k}^{\sim}(G))$ is not closed. Furthermore, in Theorem 3.4 we establish a sufficient condition that $R(\Lambda_{p,k}^{\sim}(G))$ is not closed (under suitable circumstances). Theorem 3.6 shows that in some cases our theory will give a characterization for the closedness of $R(\Lambda_{p,k}^{\sim}(G))$. The basic idea is to study the existence of the distributional solutions v for the equation L'(x, D)v = g, where $v \in E'(\overline{G}), g \in E'(G)$ and supp $v \cap \partial G \neq \Phi$, where ∂G is the boundary of G, and Φ denotes the empty set.

2. Definitions and preliminaries

2.1. For the (unexplained) notations and definitions concerning the distribution theory and its related topics, we refer to the monographs [2, 3]. Let G be an open set in \mathbb{R}^n and let $p \in (1, \infty)$ and $k \in K$: We recall that $B_{p,k}$ is a Banach space and $B_{p,k}^{loc}(G)$ is a Frechet space. For $p < \infty$, the space C_0^{∞} is dense in $B_{p,k}$ and $C_0^{\infty}(G)$ is dense in $B_{p,k}^{loc}(G)$. The notation $B_{p,k}^c(G)$ means the intersection $B_{p,k} \cap E'(G)$. The completion of $C_0^{\infty}(G)$ in $B_{p,k}$ is denoted by $B_{p,k}(G)$. Then one sees that $B_{p,k}(G) \subset B_{p,k} \cap E'(\overline{G})$. Here E'(A) (where $A \subset \mathbb{R}^n$) is the set of distributions $u \in E'(\mathbb{R}^n)$ such that $\operatorname{supp} u \subset A$. The set $\{u \in B_{p,k} \mid \operatorname{supp} u \subset A\}$ is denoted by $B_{p,k}^o(A)$. Finally, we denote by $B_{p,k}(G)$ the set of distributions $u \in D'(G)$ such that $u = f_{u|G}$ for some distribution $f_u \in B_{p,k}$, where $f_{u|G}$ denotes the restriction of f_u to G. One sees that $B_{p,k}(G)$ is isomorphic with the factor space $B_{p,k}/B_{p,k}^o(\mathbb{R}^n \setminus G)$ and we transfer the topology of this factor space to $|B_{p,k}(G)$ in the canonical way (note that $B_{p,k}^o(\mathbb{R}^n \setminus G)$ is closed in $B_{p,k}$, since $\mathbb{R}^n \setminus G$ is closed in \mathbb{R}^n). Furthermore, one sees that for $p \in (1,\infty)$ the spaces $B_{p',1/k} \vee (G)$ and $|B_{p,k}(G)$ are in duality with respect to the extension of the bilinear form

 $\lambda: C_{(\mathbf{o})}^{\infty}(G) \times C_{\mathbf{o}}^{\infty}(G), \ \lambda(\varphi, \psi) = \int_{\mathbb{R}^n} \varphi(x) \psi(x) \, dx \, .$

Here $C_{(0)}^{\infty}(G)$ denotes the subspace of functions ψ in $C^{\infty}(G)$ such that there exists $f_{\psi} \in C_{0}^{\infty}$ with $\psi = f_{\psi|G}$. Note that $C_{(0)}^{\infty}(G)$ is dense in $|B_{p,k}(G), p < \infty$. We also write $|B^{\infty}(G) = \bigcap_{p,k} \{ u \in D'(G) | u = f_{u|G} \text{ with some } f_u \in B_{p,k}^{loc}(\mathbb{R}^n) \}.$

2.2. Let $L(x,D) = \sum_{|\sigma| \le r} a_{\sigma}(x) D^{\sigma}$ be a linear partial differential operator with $\mathbb{B}^{\infty}(G)$ coefficients. The formal transpose $\sum_{|\sigma| \le r} (-D)^{\sigma} (a_{\sigma}(x)(\cdot))$ is denoted by L'(x,D). Let $L_{p,k,G}$ $(p \in (1,\infty); k \in K)$ be a linear operator $B_{p,k}(G) \to B_{p,k}(G)$ such that

 $D(L_{p,k,G}) = C_0^{\infty}(G), \ L_{p,k,G} \varphi = L(x,D)\varphi.$

Then $L_{p,k,G}$ is closable in $B_{p,k}(G)$: Let $\{\varphi_n\} \in C_0^{\infty}(G)$ be a sequence and let $g \in B_{p,k}(G)$ be an element such that $\|\varphi_n\|_{p,k} \to 0$ and $\|L_{p,k,G}\varphi_n - g\|_{p,k} \to 0$ as $n \to \infty$.

Then one has for any $\Phi \in C_0^{\infty}$

$$g(\Phi) = \lim_{n \to \infty} (L_{p,k,G} \varphi)(\Phi) = \lim_{n \to \infty} \varphi_n(L(x,D)\Phi) = 0, \qquad (2.1)$$

where we utilized the fact that for $\varphi \in C_0^{\infty}(G)$ and $u \in |\mathbb{B}_{p', 1/k^{\vee}}(G)$ the inequality

$$\|u(\varphi)\| \le \|\|u\|\|_{p', 1/k^{\vee}} \|\varphi\|_{p, k}$$
(2.2)

holds. Here $\|\|\cdot\||_{p',1/k^{\vee}}$ denotes the $|\mathbb{B}_{p',1/k^{\vee}}(G)$ -norm. In the last step of (2.1) we observed that $L'(x,D)\Phi|_G \in |\mathbb{B}^{\infty}(G)$ for any $\Phi \in C_0^{\infty}$, since $a_{\sigma} \in |\mathbb{B}^{\infty}(G)$. Due to (2.1) one gets g = 0, and so $L_{p,k,G}$ is closable in $B_{p,k}(G)$. The smallest closed extension of $L_{p,k,G}$ is denoted by $L_{p,k,G}^{\infty}$.

Furthermore, we define a linear operator $|L_{p,k,G}'''$ by

$$D(|\mathcal{L}'_{p,k,G}^{\#}) = \left\{ u \in |\mathcal{B}_{p,k}(G) \middle| \begin{array}{l} \text{there exists } f \in |\mathcal{B}_{p,k}(G) \text{ such that} \\ u(L'(x,D)\varphi) = f(\varphi) \forall \varphi \in C_{0}^{\infty}(G) \end{array} \right\},$$
$$|\mathcal{L}'_{p,k,G}^{\#} u = f.$$

Due to (2.2) one sees that $|L_{p,k,G}^{a}$ is a closed operator. In the case when $G = \mathbb{R}^{n}$, one sees that $|B_{p,k}(G) = B_{p,k} = B_{p,k}(G)$, and we write $L_{p,k,\mathbb{R}^{n}} = L_{p,k}$ and so on.

As we mentioned above the spaces $\mathbb{B}_{p,k}(G)$ and $B_{p',1/k}(G)$ are in duality with respect to λ . Explicitly, this means that there exists an isometrical isomorphism

 $J_{p,\,k}\colon |\mathsf{B}_{p,\,k}(G)\to B^{\,\bullet}_{p',\,1/k^{\vee}}(G)\ ,\ \big(J_{p,\,k}\,U\big)(\varphi)=U(\varphi)\ \forall\ \varphi\in C^{\,\infty}_{\mathsf{o}}(G),$

and similarly there exists an isimetrical isomorphism

 $j_{p',1/k^{\vee}} \colon B_{p',1/k^{\vee}}(G) \to |\mathsf{B}_{p,k}^{\bullet}(G), \ \big(\ j_{p',1/k^{\vee}} \ v \big) \big(\varphi \big|_{G} \big) = v(\varphi) \ \forall \ \varphi \in C_{\mathsf{o}}^{\infty}.$

Here * refers to the dual space. In [7] we have explicitly shown the existence of $J_{p,k}$ and $J_{p',1/k^{\vee}}$.

Let $L_{p',1/k',G}^{\bullet}$ be the dual operator of the (densily defined) operator $L_{p',1/k',G}$. Then one easily sees

Lemma 2.1: Suppose that L(x,D) has $\mathbb{B}^{\infty}(G)$ -coefficients and that $p \in (1,\infty)$, $k \in K$. Then the relation

 $|L_{p,k,G}^{u} = J_{p,k}^{-1} \left(L_{p',1/k,G}^{\bullet} \right) J_{p,k}$ (2.3)

holds.

We verify the next existence result of solutions.

Theorem 2.2: Suppose that L(x,D) has $|\mathbb{B}^{\infty}(G)|$ - coefficients and that $p \in (1,\infty)$, $k \in K$. Then the range $R(L_{p,k,G}^{m})$ is the whole space $|\mathbb{B}_{p,k}(G)|$ if and only if there exists a

151

constant c > 0 such that

$$\|L'(x,D)\varphi\|_{p',1/k^{\vee}} \ge c \|\varphi\|_{p',k^{\vee}} \quad \text{for all } \varphi \in C_0^{\infty}(G).$$

$$(2.4)$$

Proof: Suppose first that (2.4) holds. Then the range $R(L_{p',1/k^{\vee},G}^{\sim})$ is closed in $B_{p',1/k^{\vee}}(G)$ and the kernel $N(\cdot)$ is trivial, i.e. $N(L_{p',1/k^{\vee},G}^{\sim}) = \{0\}$. Hence one has

$$R(L_{p',1/k^{\vee},G}^{\bullet}) = R(L_{p',1/k^{\vee},G}^{\bullet}) = B_{p',1/k^{\vee}}^{\bullet}(G).$$

Since, by (2.3), $\|L_{p,k,G}^{\#} = J_{p,k}^{-1} \circ (L_{p',1/k^{\vee},G}^{\bullet}) \circ J_{p,k}$, where $J_{p,k}$ is a bijection, one gets that $R(\|L_{p,k,G}^{\#}) = \|B_{p,k}(G)$.

Suppose that $R(|L_{p,k,G}^{*}) = |B_{p,k}(G)$. Then, by (2.3), $R(L_{p',1/k^{\vee},G}^{*}) = B_{p',1/k^{\vee}}^{*}(G)$. Hence the range $R(L_{p',1/k^{\vee},G}^{*}) = R(L_{p',1/k^{\vee},G}^{*})$ is closed and for the kernel we have the equality $N(L_{p',1/k^{\vee},G}^{*}) = N(L_{p',1/k^{\vee},G}^{*}) = \{0\}$ (cf. [4, p. 168 and 234]). Hence (by the Closed Graph Theorem) the inverse $L_{p',1/k^{\vee},G}^{*-1}$ is continuous, which implies the validity of (2.4)

Remark 2.3 : a) Theorem 2.2 says that, when (2.4) holds, then the distributional equation L(x,D)u = f, $u \in |B_{p,k}(G)$ is solvable for any $f \in |B_{p,k}(G)$. As well known, there are several kind of algebraic criteria under which (2.4) is valid. The criterions in question are often independent of the underlying open set G. b) The operator $|L_{p,k,G}^{\#}$ is called maximal realization of L(x,D) in $|B_{p,k}(G)$ and the operator $L_{p',1/k}^{'}v_{,G}$ is called the minimal realization of L(x,D) in $B_{p',1/k}v(G)$.

The closedness of $R(|L_{p,k,G}^{\#})$ can be characterized by

Theorem 2.4: The range $R(|L_{p,k,G}^{\#})$ is closed in $|B_{p,k}(G)$ if and only if the range $R(L_{p',1/k^{\vee},G}^{\sim})$ is closed in $B_{p',1/k^{\vee}}(G)$.

Proof: From Lemma 2.1 we obtain that $||L_{p,k,G}^{\mu}| = J_{p,k}^{-1} \circ (L_{p',1/k^{\vee},G}^{\bullet}) \circ J_{p,k}$. Thus the range $R(||L_{p,k,G}^{\mu}|)$ is closed if and only if $R(L_{p',1/k^{\vee},G}^{\bullet})$ is closed in $B_{p',1/k^{\vee},G}^{\bullet})$. Furthermore, the range $R(L_{p',1/k^{\vee},G}^{\bullet})$ is closed if and only if the range $R((|L_{p',1/k^{\vee},G}^{\bullet})^{\bullet})$ is closed in $(B_{p',1/k^{\vee}}^{\bullet}(G))^{\bullet}$ (cf. [4, p. 234]). Since $B_{p',1/k^{\vee},G}$ is a reflexive space for $p \in (1, \infty)$, one sees that $(L_{p',1/k^{\vee},G}^{\bullet})^{\bullet} = x \circ L_{p',1/k^{\vee},G}^{\sim} \circ x^{-1}$, where $x: B_{p',1/k^{\vee},G})^{\bullet}$ ($B_{p',1/k^{\vee},G}^{\bullet}$)^{\bullet} is the canonical isomorphism (cf. [4, p. 168]). Hence $R((|L_{p',1/k^{\vee},G}^{\circ})^{\bullet})$ is closed if and only if $R(L_{p',1/k^{\vee},G}^{\sim})$ is closed

With the same kind of conclusions as made in the proof of the previous theorem one gets: The range $R(|L_{p,k,G}^{\bullet})$ is closed in $|B_{p,k}(G)$ if and only if the range $R(L_{p',1/k^{\vee},G}^{\bullet})$ is closed in $B_{p',1/k^{\vee}}(G)$, where $|L_{p,k,G}^{\bullet}$ is the minimal realization of L(x,D) in $|B_{p,k}(G)$ and where $L_{p',1/k^{\vee},G}^{\bullet}$ is the maximal realization of L(x,D) in $B_{p',1/k^{\vee}}(G)$.

Let Q be the factor space $B_{p',1/k^{\vee}}(G)/N(L_{p',1/k^{\vee},G}^{\sim})$ (with the usual norm topology). Denote the norm in Q by $\|\cdot\|^{\sim}$. Then the range $R(L_{p',1/k^{\vee},G})$ is closed if and only if, with some c > 0,

$$\|L'(x,D)\varphi\|_{p',1/k^{\vee}} \ge c \|\varphi\|^{\sim} \text{ for all } \varphi \in C_{0}^{\infty}(G).$$

$$(2.7)$$

The estimate (2.4) implies that of (2.7).

2.3. Assume that L(x,D) has $C_0^{\infty}(G)$ -coefficients. Then the minimal realization $\Lambda_{p,k}^{\sim}(G)$ in $B_{p,k}^{\text{loc}}(G)$

and the

maximal realization $\Lambda_{p,k}^{\#}(G)$ in $B_{p,k}^{loc}(G)$

of L(x,D) can be defined (cf. [6]; the definitions go analogously to $L_{p,k,G}^{\sim}$ and $|L_{p,k,G}^{\prime}|$). Furthermore, the maximal realization $\Gamma_{p,k}^{\prime \prime \prime}(G)$ of L(x,D) in $B_{p,k}^{c}(G)$ is analogously defined. The operator $\Gamma_{p,k}^{\sim}(G)$ is defined by

$$D(\Gamma_{p,k}^{\sim}(G)) = \left\{ v \in B_{p,k}^{c}(G) \middle| \begin{array}{l} \exists \text{ a sequence } \{\varphi_n\} \in C_{o}^{\infty}(G) \text{ and } a \ g \in B_{p,k}^{c}(G) \} \\ \text{ such that } \varphi_n \to v \text{ and } L(x,D)\varphi_n \to g \text{ in } B_{p,k}^{c}(G) \right\} \\ \Gamma_{p,k}^{\sim}(G)v = g.$$

In the next chapter we shall consider the closedness of $R(L_{p,k}^{\sim}(G))$ (in $B_{p,k}^{loc}(G)$), which is much more complicated to check than the closedness of $R(|\mathbb{L}_{p,k,G}^{\sim})$ or $R(|\mathbb{L}_{p,k,G}^{\sim})$ (in $|\mathbb{B}_{p,k}(G)$). In the study one must take into account the geometry of G and the characteristic curves with respect to L'(x,D) (cf. Theorems 3.3, 3.4 and 3.6).

To preparate the investigations we present the following lemmas for $p \in (1, \infty)$ and $k \in K$ (cf. [6]).

Lemma 2.5: The range $R(\Lambda_{p,k}^{\smile}(G))$ is closed in $B_{p,k}^{1\circc}(G)$ if and only if the range $R(\Gamma_{p',1/k}^{u}(G))$ is closed in $B_{p',1/k}^{c}(G)$.

Lemma 2.6: The relation $R(\Lambda_{p,k}^{\sim}(G)) = B_{p,k}^{loc}(G)$ holds if and only if (i) $R(\Gamma_{p',1/k^{\vee}}^{\#}(G))$ is closed in $B_{p',1/k^{\vee}}^{c}(G)$ (ii) $N(\Gamma_{p',1/k^{\vee}}^{\#}(G)) = \{0\}$.

Remark 2.7: a) Similarly one has the following:

1° The range $R(\Lambda'_{p,k}^{\#}(G))$ is closed in $B_{p,k}^{loc}(G)$ if and only if the range $R(\Gamma'_{p',1/k^{\vee}}(G))$ is closed in $B_{p',1/k^{\vee}}(G)$.

2⁰ The relation $R(\Lambda_{p,k}^{\prime \prime}(G)) = B_{p,k}^{loc}(G)$ holds if and only if

(iii) $R(\Gamma_{p',1/k}^{\prime \sim}(G))$ is closed in $B_{p',1/k}^{c}(G)$. (iv) $N(\Gamma_{p',1/k}^{\prime \sim}(G)) = \{0\}$.

The proofs of 1 and 2 goes analogously to the considerations expressed in [6] (cf. also [8, pp. 49 - 51]).

b) We recall that the closedness of a subspace H in $B_{p',1/k}^{c}(G)$ means that $H \cap B_{p',1/k}^{0}(K)$ is closed in $B_{p',1/k}^{c}$ for any compact set $K \in G$. Furthermore, the closedness of $F := H \cap B_{p',1/k}^{0}(K)$ in (a normed space) $B_{p',1/k}^{c}$ means that F is sequentially closed.

11 Analysis, Bd. 10, Heft 2 (1991)

3. On the closedness of $R(\Lambda_{p,k}^{\sim}(G))$

3.1. We assume everywhere in this chapter that the operator L(x,D) has C^{∞} - coefficients. For the first instance we establish

Theorem 3.1: Suppose that G is bounded. Furthermore, assume that (with c > 0) the estimate (2.4) is true,

$$\Gamma_{p',1/k}^{\mu}(G) = \Gamma_{p',1/k}^{\prime}(G), \tag{3.1}$$

and that the range $R(\Lambda_{p,k}^{\sim}(G))$ is not closed in $B_{p,k}^{loc}(G)$. Then there exists elements $v \in B_{p',1/k^{\vee}}(G)$ and $g \in B_{p',1/k^{\vee}}^{\sim}(G)$ such that (recall that $L_{p',1/k^{\vee}}^{\#} = L_{p',1/k^{\vee},\mathbb{R}^n}$)

$$L_{p',1/k}^{n} v = g \text{ and } \operatorname{supp} v \cap \partial G \neq \Phi.$$
(3.2)

Proof: Since we assume that $R(\Lambda_{p,k}^{\sim}(G))$ is not closed, we obtain from Lemma 2.5 that $R(\Gamma_{p',1/k}^{\#}(G))$ is not closed in $B_{p',1/k}^{\circ}(G)$. Due to Remark 2.7/b) we see that there exists a compact set $K \in G$ such that $F := R(\Gamma_{p',1/k}^{\#}(G)) \cap B_{p',1/k}^{\circ}(K)$ is not closed in $B_{p',1/k}^{\circ}$. Hence one finds an element $g \in \overline{F} \setminus F$. Choose a sequence $\{g_n\} \in F$ such that $\|g_n - g\|_{p',1/k} \to 0$ as $n \to \infty$. Since $g_n \in B_{p',1/k}^{\circ}(K)$ and since $B_{p',1/k}^{\circ}(K)$ is closed in $B_{p',1/k}^{\circ}$, one sees that $g \in B_{p',1/k}^{\circ}(K)$. Thus g does not belong to $R(\Gamma_{p',1/k}^{\#}(G))$.

The assumptions (2.4), (3.1) imply that

$$\left\| \Gamma_{p',1/k^{\vee}}^{\#}(G)v \right\|_{p',1/k^{\vee}} \ge c \|v\|_{p',1/k^{\vee}} \text{ for all } v \in D(\Gamma_{p',1/k^{\vee}}^{\#}(G)).$$

Choose $v_n \in D(\Gamma_{p',1/k}^{\#}(G))$ such that $\Gamma_{p',1/k}^{\#}(G)v_n = g_n$. Then $\{v_n\}$ is a Cauchy sequence in $B_{p',1/k}$. Choose $v \in B_{p',1/k}$ with $||v_n - v||_{p',1/k} \to 0$. Then $v \in B_{p',1/k} \lor (G)$ (since $B_{p',1/k} \lor (G)$ is closed in $B_{p',1/k} \lor$). Furthermore, one sees that, for all $\Phi \in C_o(G)$,

 $g(\Phi) = \lim_{n \to \infty} \left(\Gamma_{p',1/k}^{\#}(G) v_n \right)(\Phi) = \lim_{n \to \infty} v_n(L(x,D)\Phi) = v(L(x,D)\Phi)$

and so $L_{p',1/k}^{\#}$, v = g. In addition,

$$v \in B_{p',1/k^{\vee}}(G) \subset E'(\overline{G}) \text{ and } g \in B_{p',1/k^{\vee}}^{\circ}(K) \subset B_{p',1/k^{\vee}}^{\circ}(G).$$

Suppose that supp $v \cap \partial G = \Phi$. Then one has

 $\operatorname{supp} v \subset \overline{G} \cap (\mathbb{R}^n \setminus \partial G) = (G \cup \partial G) \cap (\mathbb{R}^n \setminus \partial G) = G.$

Hence in this case $v \in D(\Gamma_{p',1/k}^{\#}(G))$ and $\Gamma_{p',1/k}^{\#}(G)v = g$. This contradicts the fact that $g \in R(\Gamma_{p',1/k}^{\#}(G))$. Thus $\sup v \cap \partial G \neq \Phi$, which finishes the proof \blacksquare

Remark 3.2: a) Suppose that $L(D) = \sum_{|\sigma| \le r} a_{\sigma} D^{\sigma}$ has constant coefficients and that G is bounded. Then (2.4) and (3.1) are valid. b) Suppose that $\Lambda_{p',1/k}^{\varphi'}(G) = \Lambda_{p',1/k}^{\#} \vee (G)$ (this relation holds for any first order operator $L(x,D) = \sum_{|\sigma| \le 1} a_{\sigma}(x) D^{\sigma}$ in the case when p = 2 and k = 1 (cf. [1]). Then one easily sees that (2.4) is valid. c) The assumption (2.4) can be replaced by the weaker estimate $\|L'(x,D)\varphi\|_{p',1/k} \vee \geq c \|\varphi\|^{\sim}$ for all $\varphi \in C_0^{\infty}(G)$ (recall that $\|\varphi\|^{\sim} := \inf \{\|\varphi - u\|_{p',1/k} \vee | u \in N(L_{p',k}^{\sim} \vee, G)\}$.

3.2. In the sequel our aim is to seek criteria under which the existence of elements $v \in B_{p',1/k} \lor (G)$ and $g \in B_{p',1/k}^{c} \lor (G)$ satisfying (3.2) implies that $R(\Lambda_{p,k}^{\sim}(G))$ is not closed in $B_{p,k}^{\text{loc}}(G)$.

Assume that h is a real-valued function in $C^{1}(\mathbb{R}^{n})$. Furthermore, assume that there exist points x_{1} and x_{2} with

$$h(x_1) < 0 \text{ and } h(x_2) > 0$$
 (3.3)

and

 $(\nabla h)(x) \neq 0$ for any $x \in h^{-1}(0)$. (3.4)

We suppose that $G = h^{-1}(-\infty,0)$. Then $\mathbb{R}^n \setminus \overline{G} = h^{-1}(0,\infty)$ and $\partial G = h^{-1}(0)$. In addition, by (3.3) one has $G \neq \Phi$ and $\partial G = \Phi$. The boundary $\partial G = h^{-1}(0)$ is by (3.4) a regular hypersurface in \mathbb{R}^n .

The next theorem yields information about the points, where ∂G can touch supp v (cf. (3.2)).

Theorem 3.3: Let $G = h^{-1}(-\infty, 0)$ as above and let L(x, D) be a partial differential operator with $(in \mathbb{R}^n)$ real-analytic coefficients a_o . Suppose that there exists elements $v \in B_{p',1/k} \vee (G)$ and $g \in B_{p',1/k}^{\circ} \vee (G)$ such that (3.2) holds. Then one has

 $L_r(x, (\nabla h)(x)) = 0 \quad \forall x \in \operatorname{supp} v \cap \partial G, \text{ where } L_r(x, \xi) = \sum_{|\sigma|=r} a_{\sigma}(x) \xi^{\sigma}.$

Proof: a) Suppose that $x \in \operatorname{supp} v \cap \partial G$. Since $\operatorname{supp} g$ is a compact subset of G, there exists a constant d > 0 such that dist $(\operatorname{supp} g, \{x\}) \ge d$ and then $L_{p', 1/k^{\vee}}^{n} v = 0$ in B(x, d):= $\{y \in \mathbb{R}^{n} | |x - y| \le d\}$, where dist(A, B) is the distance between A and B.

b) Suppose that $L_r(x, (\nabla h)(x)) \neq 0$. Then there exists a number $\varepsilon \in (0, d)$ such that $L_r(x, (\nabla h)(x)) \neq 0$ on that patch $U_x \coloneqq B(x, \varepsilon) \cap \partial G$. Then the patch U_x is a regular C^1 -surface and U_x is non-characteristic with respect to L'(x, D) (note that $L'_r(x, \xi) = (-1)^{-r} \times L_r(x, \xi)$). In addition, since $\mathbb{R}^n \setminus \overline{G} = h^{-1}(0, \infty)$, one sees that $L'_{p', 1/k} \vee v = 0$ in $\{y \in \mathbb{R}^n \mid h(y) > 0\}$. Thus v = 0 in some neighbourhood of x (cf. [2, Theorem 8.6.5]), which is a contradiction, because $x \in \text{supp } v \blacksquare$

A partial converse of Theorem 3.1 is obtained by

Theorem 3.4: Suppose that $G = h^{-1}(-\infty,0)$, where h obeys (3.3) - (3.4), and that L(x, D) has (in \mathbb{R}^n) real-analytic coefficients. Furthermore, assume that

$$N(L_{p',1/k^{\vee}k_{r}}^{H}) \cap E'(\mathbb{R}^{n}) = \{0\}$$
(3.5)

and that for any $x \in \partial G$ there exists a constant $\varepsilon_x > 0$ such that

$$L_r(y,(\nabla h)(y)) \neq 0 \quad on \ (B(x,\varepsilon_x) \setminus \{x\}) \cap \partial G, \tag{3.6}$$

where we denote $k_s(\xi) = (1 + |\xi|^2)^{s/2}$. Then the existence of elements $v \in B_{p', 1/k^*}(G)$ 11* and $g \in B_{p',1/k}^{c}(G)$ satisfying (3.2) implies that the range $R(\Lambda_{p,kk_r}^{c}(G))$ is not closed in $B_{p,kk_r}^{loc}(G)$.

Proof: Due to Lemma 2.5 it suffices to verify that the range $R(\Gamma_{p',1/k} \vee_{k_r}(G))$ is not closed in $B_{p',1/k}^{c} \vee_{k_r}(G)$, that is, $R(\Gamma_{p',1/k}^{a} \vee_{k_r}(G)) \cap B_{p',1/k}^{o} \vee_{k_r}(K)$ is not closed with some compact $K \subset G$.

Suppose that $v \in B_{p',1/k} \vee (G)$ and $g \in B_{p',1/k}^{c} \vee (G)$ are such that $L_{p',1/k}^{m} \vee f = g$ and supp $v \cap \partial G \neq \Phi$. Choose $x \in$ supp $v \cap \partial G$. Due to the assumption there exists $\varepsilon_x > 0$ such that $L_r(y, (\nabla h)(y)) \neq 0$ on $(B(x, \varepsilon_x) \setminus \{x\}) \cap \partial G$. Hence, similarly to the proof/part b) of Theorem 3.3, one obtains that v = 0 in some neighbourhood U_x of $(B(x, \varepsilon_x) \setminus \{x\}) \cap \partial G$. Choose $\vartheta \in C_0^{\infty}(B(x, \delta))$ such that $\vartheta(x) \equiv 1$ in $B(x, \delta/2)$, where $\delta \coloneqq \{\varepsilon_x/2, \operatorname{dist}(\operatorname{supp} g, \partial G)\} > 0$. Define distributions w_n by $w_n(\varphi) = (\vartheta v)(\varphi(\cdot) + \frac{1}{n}(\nabla h)(x))$ (we translate ϑv in the direction of the vector $-\frac{1}{n}(\nabla h)(x)$; note that $-(\nabla h)(x)$ is pointing to G and that $(\nabla h)(x)$ is the normal of ∂G at x). Then one sees that, for n large enough, the inclusions

$$w_n \in B_{p',1/k^{\vee}k_r}^{c}(G)$$
 and $g_n \coloneqq \Gamma_{p',1/k^{\vee}k_r}^{n}(G)w_n \in B_{p',1/k^{\vee}k_r}^{c}(G)$

hold. Note that $g_n = (L_{p',1/k}^{a} \vee_{k_r} w)_n$, where $w = \vartheta v$ and where $(L_{p',1/k}^{a} \vee_{k_r} w)_n$ is similarly defined (via translation) as w_n . Furthermore, one finds that $g_n \rightarrow g = L_{p',1/k}^{a} \vee_{k_r}(\vartheta v)$ in $B_{p',1/k}^{c} \vee_{k_r}(G)$. Since $N(L_{p',1/k}^{a} \vee_{k_r}) \cap E'(\mathbb{R}^n) = \{0\}$ and since $\vartheta v \notin B_{p',1/k}^{c} \vee_{k_r}(G)$, one sees that $R(\Gamma_{p',1/k}^{a} \vee_{k_r}(G))$ is not closed in $B_{p',1/k}^{c} \vee_{k_r}(G)$.

Remark 3.5: a) Suppose that L(D) has constant coefficients. Then the relation (3.5) is valid. **b)** The condition (3.6) is in many particular cases superflous, as we shall make explicit below (Theorem 3.6). **c)** Also the Theorem 2.5 in [5, p. 367] can be applied (as above) to the study of the closedness of $R(\Lambda_{p,kk_{p}}^{\sim}(G))$. **d)** In the case of constant coefficients, the assertion in Theorem 3.4 can be replaced by the following: The range $R(\Lambda_{p,k}^{\sim}(G))$ is not closed for any $(p,k) \in (1,\infty) \times K$ (cf. the Introduction). **e)** Suppose that G and L(x,D) are as in Theorem 3.3 and that $L_{r}(x,(\nabla h)(x)) \neq 0$ for all $x \in \partial G$. Then there do not essist elements $v \in B_{p',1/k} \vee (G)$ and $g \in B_{p',1/k}^{\sim} \vee (G)$ such that (3.2) is valid (cf. Theorem 3.3). **f)** We also remark that (under the assumptions of Theorem 3.4) the points where supp v can touch ∂G are isolated points of ∂G (cf. the proof of Theorem 3.4)

3.3. We consider some examples.

A. Let $L(x,D) = -i(x_1D_1 + x_2D_2)$ and $h(x_1,x_2) = 1 - x_1^2 - x_2^2$. Then one sees that G = $B(0,1), (\nabla h)(x) = (-2x_1, -2x_2) \neq 0$ for any $x \in h^{-1}(0)$ and h(0,0) < 0, h(2,0) > 0. In addition, one gets

$$L_r(x, (\nabla h)(x)) = L_r(x, (-2x_1, -2x_2)) = -2i(x_1^2 + x_2^2) = -2i$$

for $x \in h^{-1}(0)$ and

$$\operatorname{Re}\left(L(x,D)\varphi,\varphi\right)_{0} = \frac{1}{2}\left(\left(-\operatorname{i}(x_{1}D_{1}+x_{2}D_{2})\varphi,\varphi\right)_{0}+\operatorname{i}(\overline{\phi,D_{1}(x_{1}\varphi)+D_{2}(x_{2}\varphi)})_{0}\right) = \|\varphi\|_{0}^{2}$$

for all $\varphi \in C_0$ (here $(\varphi, \psi)_0 = \int_{\mathbb{R}^n} \varphi(x) \overline{\psi(x)} dx$). In virtue of Theorem 3.1, Remark 3.2/b and Remark 3.5/e one sees that the range $R(\Lambda_{2,1}^2(G))$ is closed in $L_2^{loc}(G)$.

B. Suppose that L(x,D) is as in Example A and that $G = \mathbb{R}^2 \setminus B(0,1)$. Then due to Remark 3.5/e one sees that there do not exist elements $v \in B_{p',1/k} \vee (G)$ and $g \in B_{p',1/k} \vee (G)$ such that (3.3) is valid. It is remarkable to note that, when L(D) has constant coefficients, when L(D) is non-elliptic and when $G = \mathbb{R}^2 \setminus \overline{B}(0,1)$, there exist elements $v \in C_0^{\infty}(\mathbb{R}^n)$, $g \in C_0^{\infty}(\mathbb{R}^n)$ such that L'(D)v = g (in \mathbb{R}^2), supp $v \in \overline{G}$ and supp $v \cap \partial G \neq \Phi$ (cf. [2: Theorem 8.6.7] and Figure 1). Hence by Theorem 3.4 one gets that the range $R(\Lambda_{p,k}^{\infty}(G))$ is

not closed in $B_{p,k}^{1\circ c}(G)$. Here one must note that any $v \in C_0^{\infty}$ with $\operatorname{supp} v \subset \overline{G}$ belongs to $B_{p',1/k} \vee (G)$ (since in this case $B_{p',1/k} \vee (G) = B_{p',1/k}^{\circ} \vee (G)$). In addition, one sees that (3.5) - (3.6) are valid.

3.4. We finally consider the operator L(D) with constant coefficients. Suppose (as above) that $h \in C^1(\mathbb{R}^n)$ is such that (3.3) - (3.4) hold and that $G = h^{-1}(-\infty, 0)$. Denote $S(0,1) = \{x \in \mathbb{R}^n | |x| = 1\}$. We show the following

Theorem 3.6: Let $G = h^{-1}(-\infty, 0)$ be a bounded set and let L(D) be an operator with constant coefficients such that the set $C = \{N \in S(0,1) | L_r(N) = 0\}$ is finite. Then the range $R(\Lambda_{p,k}^{\sim}(G))$ is closed if and only if there do not exist elements $v \in B_{p',1/k} \vee (G)$ and $g \in B_{p',1/k}^{\circ} \vee (G)$ such that $L_{p',1/k}^{m} \vee v = g$ and $\operatorname{supp} v \cap \partial G \neq \Phi$ (see (3.2)).

Proof : A. Suppose that $R(\Lambda_{p,k}^{\sim}(G))$ is not closed. Then, due to Theorem 3.1, the required elements v and g exist (cf. Remark 3.2/a). Hence it suffices to show that, if the range $R(\Lambda_{p,k}^{\sim}(G))$ is closed, then the elements v and g satisfying (3.2) do not exist.

B. Suppose that the range $R(\Lambda_{p,k}^{\sim}(G))$ is closed. Then $R(\Lambda_{p,kk}^{\sim}(G))$ is also closed and so $R(\Gamma_{p',1/k}^{\sigma}(G))$ is closed in $B_{p',1/k}^{\circ}(G)$ (cf. Introduction and Lemma 2.5). As-

sume that v and g owning (3.2) exist. This leads to a contradiction as follows: Due to Theorem 3.3

$$L_r(x, (\nabla h)(x)) = 0 \quad \text{for all } x \in \text{supp } v \cap \partial G. \tag{3.7}$$

Choose $x_0 \in \text{supp } v \cap \partial G$ and define $F_{x_0} = \{x \in \partial G \mid (\nabla h)(x) = (\nabla h)(x_0)\}$. Let C_{x_0} be the connected component of F_{x_0} containing x_0 . Since C is finite there exists (by (3.8)) a constant $\varepsilon > 0$ such that v = 0 in $G_{\varepsilon} = \{x \in \partial G \setminus C_{x_0} \mid \text{dist}(x, C_{x_0}) < \varepsilon\}$. Define numbers d and δ by $d = \text{dist}(\text{supp } f, \partial G) > 0$ and $\delta = \min\{d, \varepsilon\}$. The set $U_{\delta} = \{x \in \mathbb{R}^n \mid \text{dist}(x, C_{x_0}) < \varepsilon\}$ is open and $F_{\delta} = \{x \in \mathbb{R}^n \mid \text{dist}(x, C_{x_0}) \leq \delta/2\}$ is a compact set of U_{δ} . Choose a function $\vartheta \in C_0^{\infty}(U_{\delta})$ such that $\vartheta(x) = 1$ in F_{δ} and define $w_n(\psi) = (\vartheta v)(\psi((\cdot) + v_n N_0))$, where $N_0 = (\nabla h)(x_0)$. Then one sees that, for *n* large enough, one has $w_n \in E'(G)$ and

$$\Gamma_{p',1/k^{\vee}k_{r}}^{"}(G)w_{n} \to L_{p',1/k^{\vee}k_{r}}^{"}(\vartheta v) = \sum_{\alpha} \left((-1)^{|\alpha|} / \alpha! \right) D^{\alpha} \vartheta L^{(\alpha)}(D) v$$

in $B_{p',1/k^{\vee}k_{r}}(G)$. Hence $R(\Gamma_{p',1/k^{\vee}k_{r}}^{\#}(G))$ is not closed (recall: $N(L_{p',1/k^{\vee}k_{r}}^{\#}) \cap E'(\mathbb{R}^{n}) = \{0\}$), which is a contradiction \blacksquare

Remark 3.7: a) The boundedness of G in theorem 3.6 is not essential (which fact we shall not deal with in detail). **b)** One sees that the *heat operator* $L(D) = -iD_n - \sum_{j=1}^{n-1} D_j^2$ and the wave operator $D_1^2 - D_2^2$ satisfy, for example, the assumptions of Theorem 3.6.

REFERENCES

- [1] FRIEDRICHS, K.: On the identity of weak and strong extensions of differential operators. Trans. Amer. Math. Soc. 55 (1944), 132 - 151.
- [2] HÖRMANDER, L.: The Analysis of Linear Partial Differential Operators I. Berlin -Heidelberg - New York: Springer - Verlag 1983.
- [3] HÖRMANDER, L.: The Analysis of Linear Partial Differential Operators II. Berlin -Heidelberg - New York: Springer - Verlag 1983.
- [4] KATO,T.: Perturbation Theory for Linear Operators. Berlin Heidelberg New York : Springer - Verlag 1966.
- [5] TAYLOR, M.: Pseudodifferential Operators. Princeton, N.J.: Princeton Univ. Press 1981.
- [6] TERVO, J.: On Solvability of Linear PartialDifferential Equations in Local Spaces B₀c_k(G). Z. Anal. Anw. 7 (1988), 99 - 112.
- [7] TERVO, J.: On the existence and regularity of solutions of linear equations in spaces $H_k(G)$. Ann. Pol. Math. (to appear).
- [8] TREVES, F.: Locally Convex Spaces and Linear Partial Differential Equations. Berlin - Heidelberg - New York : Springer - Verlag 1967.

Received 16.06.1989

Author's address :

Dr. Jouko Tervo University of Kuopio, Department of Applied Mathematics PL 6 SF - 70211 Kuopio