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1. Introduction. The equation 
(1/2)	 -1/2 

y	(x) - ux y(x) = x	(x > 0; -1/2 <	0), 

where y 
(12) 

is the derivative of order 1/2, plays an important role in the 

polarography (for chemical background Cf. [2.5-71). K. WIENER in his papers 

[8-10) examines the above-said equation assuming that the derivative of 

non-integer order appearing in the equation is defined in the Hadamard 

sense. In further reasoning we denote 

Yo (x)
= y(x) and y(x) = 

r-
0

 (x-t) 
Ct- 1 

y(t)dt/r(a) for a,x > b, 

where the integral is understood in the Lebesgue sense. 

The symbols y and s in the sequel will be defined analogously. Let 

a > 0 and set p = -[-a), [a] being the greatest integer not exceeding a. We 
will consider the equation 

y(a)(x) - uxy(x) = h(x), x > 0,	 (1) 

with the In 	conditions y(0) = c (k=1,2 .....p), where y= yPl 
p-a	k p-a 

is the Riemann-Liouville derivative of order a (cf.DzlmAsHYAN [1, Ch.IX, 3 

and 4)), provided that y is Lebesgue locally integrable and y is abso-

lutely continuous. The above problem for equation (1) is called the Cauchy 

problem. 
One can observe in this class of functions that the Hadamard and the 

Riemarin-Liouvilie derivatives coincide. It is known for J3 a 0 and 0 < x < 

A, with arbitrary positive A and h E L(0,A), that the Cauchy problem is 

well-posed (cf.[3]). It means that there exists exactly one solution and
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the solution depends continuously on initial data in the following sense: 

if y 1 and y2 are solutions of (1) with the initial data c 1 and C2 (k=1,2,.. 

• ,p), respectively, then for every c >0 there exists a cS > 0 such that 11y1 
- y2 11 < c, provided that Ic 

I
- c2 1 < a, where 1 . 0 denotes the norm in 

L(0,A). 

2. The Cauchy problem for equation (1). In further part of the paper we 

will examine equation (1) with negative. Introduce the Banach space 

L (I) = If:I —* : f measurable and IIfl < 
where 	a 0,1 C	and IIII 1 = f1 I f ( t ) I exp (-tt ) dt	Since If(t)Iexp(-TA) 

I f(t) I exp(-rt)	I()I the norms	and	are equivalent for the

bounded interval I = (0,A). Generally, for arbitrary I the relations L0(I) 

c L (I) c L 
bc o bc 

(I) hold, where L (I) and L ( I ) are the spaces of the Le- 

besgue lñtegrable and the Lebesgue locally integrable functions, respecti-

vely. 

Denote s = y	and w(x) =	lckxak/r(l+a_k). The function s is a so-



lution of the equation 

s(x) = uxw(x) + h(x) + vxs W. (2) 

Hence, the function y = w + s is a solution of the Cauchy problem for 

equation (1). Define the transformation I by the right-hand side of equa-

tion (2). Assume that h E L() and 0, -a <	a 0 is such that xw(x) be-



longs to L(+) with t sufficiently large to fulfil the relation 

ur(a+)r-(a+)ma) a q < 1.	 (3)

One can observe that the inequalities 
OD 

II Ts - Ts2 11	U	xexP (_rx)[f(x_t)ah Is 1 (t) -2(t)Idtjd/r() 

a of Is1(t)_s2(t)IexP(_tt)[J(x_t)a_1xexP(T(xt))dx]dt/r(a) 
hold. Examine the Integral with respect to x. Changing the variable of in-

tegration and bearing in mind the definition of Euler's gamma function we 

have 

ft 

x_ t 1 exp Tt x a ta+J	1(l+)exp(_Tt)d a 

what implies 
1	2	-(a+) 1	2 

ITs - Ts	a u1(a+)v	Is - s II/1(a). 
Thus, for t satisfying relation (3), the transformation T is contractive, 

with the contraction constant equal q. Moreover, one can notice that T maps
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L(+) into Itself. Using the Banach fixed point theorem to the transforma-

tion T and the set L ( p. ) we can assert that there exists in L 
t + 
OR ) exactly 

t +  

one solution of equation (2). Hence, the function y = w + s is the only 

solution of the Cauchy problem such that y	E L(R+). 

Following the method presented above the function 

Y(x) 
= 
k1 cx[l +	[ox/ra)' flB(ai_k+i(a+))],/'r(i+a_k) 

+ nO 

(u/r(a)) fK(xt)th(t)dt/r(a)	 (4) 

where B is Euler's beta function and 

(X_t)a1t	 for n = 0 
K(x,t) =	

for n E 

is a solution of the Cauchy problem for equation (1). 

It is seen that the solution of the Cauchy problem for equation (1) is a 

sum of two functions, say y and y 
H' 

which are the solutions of homogeneous 

equation (1) with given initial conditions and non-homogeneous equation (1) 

with homogeneuos initial conditions, respectively. Moreover, every solution 

depends on constants being arbitrarily up to p (the value of 13 determines 

the number of independent constants - cf. Remark I in the sequel). 

The aforegoing considerations imply 

Theorem 1: If the above assumptions are fulfilled, then there exists 

exactly one solution y of the Cauchy problem for the equation (1) such that 

y	e L(R+) and y is given by formula (4). 

Remark 1: The improper integral J't' 1exp(-tt)dt (r > 0) is convergent 

If and only if K > 0. Hence, If c  = 0 for k E {l,2 .....p} and such that 
1+a+f3-k	0, then the function xw(x) belongs to L(R). 

Remark 2: We want to point at two special cases. For j3 = 0 the-solution 
of equation (1) denoted by y° has the form 

y°(x) = E c kxak Eal+_k(uxa) + 1ta1Ea(ut)h(x_t)dt, 

where E	(z)	°'0 z T'/r(np+i) with Z  C. p,i > 0 is the Mittag-Leffler
PIP

 function. In the case h(x) = Ix K -1 (K > 0) the function 

	

P	
OC-k^l	 0"	 1 

y(x) 
= k1	

+	(vx/r(a))' r1B(al_k+i(a+))]/"r(l+x_k)
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+ (/r(a))x'1	(vxa/r(a))	flB(aK+J(a+(3)) 

is a solution of the Cauchy problem for equation (1). Moreover,the function 

Y(X) = xa+K-1 /(1((X+K)/r(c) - v) is a solution of equation (1) with 13 = -a 
and u	r((X+K)/r(K) (cf. also WIENER [10, pp. 165-166]). 

Remark 3: The presented method allows to examine the more general 

equation y 
(a)

(x) - g(x)y(x) = h(x), x.> 0, with the function g being measu-

rable and such that the estimate Igix)l N ux holds a.e. on O. 

The above-obtained theorem yields the following corollaries. 

Corollary 1: Assume that c a 0 (k=1,2,.., p), o a 0 and h a 0 a. e. on 

(0,ó) c (0,1). If y and y0 are two solutions of the Cauchy problem for equa- 

tion (1) with 13 < 0 and (3 = 0, respectively, then y > y° > 0 a.e. on (0,.3). 

Moreover, if a 9 Ol and c > 0, then y(0+) = 
P 

Proof. By the method of mathematical induction one can assert that for 

every n E N the relation K(x,t)t	> (r(a))(xt)1/r(na) holds. And if 

x < 1. then 

x ' B(a 1_k+J(a+) = a+13 Lta_l1_t)1_t 

> xa Lt
1
( t)"dt = xaB(a,1_k+ja). 

Hence, bearing in mind formula (4), we get our assertionj 

Corollary 2: If c a 0 (k=1,2 ,...,p), E 1 1 c 1 > 0, v a 0 and h a 0 a. 

e.. on R , then y > 0 a.e. on R and y(e) = m, provided that y is a solution 
of the Cauchy problem for equation (1). 

3. Continuous dependence of solution. If s = y(a) E L(+), then y = w + 

is measurable and, moreover, l y ll	Ta(Elckt1 + I s II) what imply that 

y E L(+). Now, we can establish 

Theorem 2: Let the assumptions of Section 2 be fulfilled, let y 1 and y2 

be the solutions of the Cauchy problem for equation (1) with the initial 

constants c 1 and c 2 (k=1,2 .....p), and the right-hand sides h 1 and h2, res-

pectively. If for every c > 0 there is a 6 > 0 with maxc1 - c 1 < 6 and 

1 h1 - h2	< 6, then 11 y1 - y2 11 1 < c.
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Proof. Denote 6 = Ic 1 - c I and h(t) = 1h 1 (t) - h2 (t)I. Using mathema- 

tical Induction it be can proved that the estimate K(x,t)t (x-t)°' 

xfl' 1B(a,ja+) holds for integers n a 2. Hence, bearing in mind formula (4) 

and the definition of the norm	we have 

00	 1 

11 y1 - Y2 II	IIhII{t a + (T/u)(uta/r(a))r((l+l)a+) 

+	
+	( /r(a))'r(1+a_k+1(a+))/r(1+a_k) 

k=1	

VT 

X flB(al_k+J(a+))). 

One can prove that for every finite value of r the infinite series appear-

ing on the right-hand side of the above inequality are finite. Thus, the 

relations 11y1 
_,Y2
	const6 = c, with max a < 6 and 11 h il < 6, holl 

4. The multipoint problem for equation (1). Let r be the largest integer 

such that 1+a+-r > 0. We will consider equation (1) with the muitipoint 

conditions Y(Pm)(X ) = i	( m=l,2,... ,r), where x E R and	E R are 
p-a m	m	 m	+	 m 

given (for more general multipoint problems cf.[41). 

Imposing the multipoint conditions on the general solution (4) of equa-

tion (1) we get the following algebraic system with respect to c (k=1,2,.. 

,r; obviously c
k
 = 0 for r < k s p. cf. Remark 1): 

k:{	
+ Z(uxa /r(a))flB(a;l_k+J(a+))	(5) 

k=l  

r[l+a_k+l(a+))/(r(l+m_k+l(a+))r(l+a_k))) = 

where y is a solution of the non-homogeneous equation (1) with homogeneous 

initial conditions. Bearing in mind Section 2, the above considerations and 

the theory of the algebraic systems, one can formulate 

Theorem 3: If the assumptions of Section 2 are fulfilled and the alge-

braic system (5) has a solution, then the multipoint problem for equation 

(1) has a solution in the class of locally Integrable functions such that 

their derivatives of order a belongs to L(R). Moreover, if the determi-

nant of the system (5) is not equal 0, then the solution is unique. 

Remark 4: Consider a solution y of the above-set multipoint problem. 

We say that the solution y is stable at infinity if there exists a > 0 such
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that for every c > 0 there is a 6 > 0 with maxk I	-	< .5 for every 
E 

, 
then y(x) - (x) I < c a. e. for x > a , where	is an arbitrary

solution of the multipoint problem for equation (1), with the multipoint 

constants Ti (m=1,2.....r). 
m 

In virtue of this definition and formula (4), one can immediately 

notice that the solution y of the Cauchy problem for equation (1) is stable 

at infinity if and only if y = 0 Is stable at Infinity solution of the 

homogeneous Cauchy problem for the homogeneous equation (1) (i. e. h 0 

and c = 0 for k=1,2.....p). Let us observe that if v > 0 the solution is 

not stable at infinity. 

REFERENCES 

[11 Dzhrbashyan,M.M.: Integral transformations and reprezentations of fun-
ctions in complpex domain (in Russian). Moscow: Nauka 1966. 

[2) Grennes,M., and K.B.Oldham: Semiintegral electroanalysis: theory and 
verification. Anal. Chem. 44(1972), 1124-1129. 

[31 Michalski,M.W.: The Cauchy problem for a differential equation of non-
integer order ( to appear). 

[4] Michaiski,M.W.: Multipoint problem for a differential equation of non-
integer order. Z. Anal. Anw. 8(1989). 479-483. 

[5] Oldham,K.B.: Unified treatment of electrolysis at an expanding mercury 
electrode. Anal. Chem. 41(1969), 936-945. 

[6] Oldham,K.B.: A new approach to the solution of electrochemical pro- 
blems involving diffusion. Anal. Chem. 41(1969), 1904-1905. 

[7] Oldham,K.B., and J.Spanier: The replacement of Fick's laws by a formu-
lation involving semidifferentiation. J. Electroanal. Chem. 26(1970), 
331-341. 

[8) Wiener,K.: Uber Losungen eirier in der Theorie der Po'larographie auf-



tretenden Different ialgleichung von nichtganzzahliger Ordnung. Wiss. 
Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Natur. Reihe 32(1983)1, 
41-46. 

19] Wiener,K.: Uber das asymptotische Verhalten der Losungen einer Diffe-
rent iaigleichurzg von nichtganzzahliger Ordnung aus der Polarographie. 
Wiss. 2. Martin-Luther-Univ. Halle-Wittenberg, Math.-Natur. Relhe 32 
(1983)5, 75-86. 

[10] Wiener,K.: Losungen einer Differentialgleichung von nichtgarizzahliger 
Ordnung aus der Polarographie. Wiss. Z. Martin-Luther-UnIv. Halle-
Wittenberg, Math.-Natur. Reihe 35(1986)4, 162-167. 

Received: 14.06.1989, in revised form 26.03.1990 

Author's address: 
Dr. Merck W. Michalski, 
Instituite of Mathematics of Warsaw University of Technology 
Plac Politechnlki 1 

P-00-661 Warszawa


