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On a Certain Differential Equation of Non-Integer Order
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Some differential equation of non-integer order is considered. It plays an important role in .
polarography.
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1. Introduction. The equation -

y(1/2)(x) - uxBy(x) = x 12

(x > 0; -1/2 < B8 = 0),
iwhere y“/Z) is the derivative of order 1/2, plays an important role in the
polarography (for chemical background cf. [2,5-7]). K. WiENErR in his papers
[8-10] examines the above-said equation assuming that the derivative of
non-integer order appeéring in the equation is defined in the Hadamard

..sense. In further reasoning we denote
Yo(x) = y(x) and y (x) = Jx(x-t)a-ly(t)dt/r(a) for a,x > 0,
o

where the integral is understood in the Lebesgue sense.

~ The symbols y;_a and Sy in the séquel will be defined analogously. Let
a > 0 and set p = -[-a), [a] being the greatest .integer not exceeding «. We
will consider the equation

v ) - wPyx) = h(x), x> 0, (1)
} (o) (p)

with the initial conditions y;f;k)(o) = c (k=1,2,...,p), where y = Y e

is the Riemann-Liouville derivative of order a (cf.DzurBASHYAN [1, Ch.IX, 3
(p-1)
p-&

lutely continuous. The above problem for equation (1) is called the Cauchy

and 4)), provided that y is Lebesgue locally integrable and y is abso-
problem.

One can observe in this class of functions that the Hadamard and the
Riemann-Liouville derivatives coincide. It is known for 8 2 0 and 0O < x <
A, with arbitrary positive A and h € L(0,A), that the Cauchy problem is

well-posed (cf.[3]). It means that there exists exacily one solution and
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the solution depends continuously on initial data in the following sense:

if y' and y® are solutions of (1) with the initial data c: and ci (k=1,2, ..
.,p), respect;vely. then for every € > 0 there exists a 8 > 0 such that ||y1
- y2” < g, .provided that |c: - ci] < 8, where |- denotes the norm in

L(0,A).

2. The Cauchy problem for equation (1). In further part of the paper we
will examine equation (1) with negative 8. Introduce the Banach space

Lr(I) = {f:1 — R: f measurable and~"f"t < o },
where T 2 0, 1 ¢ R_ and "f"r = Il|f(t)|exp(-tt)dt. Since' |f(t)|exp(-TA) =
[f(t)|exp(-Tt) = |[f(t)| the norms ".IO and |'[t
bounded interval I = (0,A). Generally, for arbitrary I the relations LO(I)
c Lr(I) c L

are equivalent for the

loc(I) hold, where LO(I) and Lloc(l) are the spaces of the Le-
besgue integrable and the Lebesgue locally integrable functions, respecti-
vely.
: _ () P a-k . .
Denote s = y and w(x) = X;_lckx /F(1+a-k). The function s is a so-
lution of the equation

B

w(x) + h(x) + ux

B

s{x) = wvx Sa(X)' (2)
Hence, the function y = w + Sy is a solution of the Cauchy problem for
equation (1). Define the transformation T by the right-hand side of equa-
tion (2). Assume ;hat h e LY(R+)'and B, -« < B8 = 0 is such that xsw(x) be-
longs to Lr(R+) with 1 sufficigntly large to fulfil the relation

ur(a+B)t-(a*B)/F(a) sq<1. - ' (3)

One can observe that the inequalities
00

||TsI - Tsz||T = UJ xBexp(-rx)[Jx(x—t)a_1|sl(t) - sz(t)|dt]dx/r(a)
0 o

00 0
= UI |sl(t)—sz(t)|exp(—tt) J (x—t)“utxsexp(—r(x—t))dx dt /T («)
0 t

hold. Examine the integral with respect to x. Changing the variable of in-
tegration and bearing in mind the definition of Euler’s gamma function we
have ' 4

00 . (<]
j (x-t)* "xPexp (-t (x-t))dx = t“*ﬁj €571 (1+6)Bexp(-tt€)dg = T(asp)z (**F)
t (¢)

what implies
|Ts' - Ts®|, = vr(a+p)e Is' - %] /re).

Thus, for Tt satisfying relation (3), the transformation T is contractive,

-(a+B)

with the contraction constant equal q. Moreover, one can notice that T maps
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Lr(R+) into itself. Using the Banach fixed point theorem to the transforma-
tion T and the set Lt(R4) we can assert that there exists in LT(R+) exactly
one solution of equation (2). Hence, the function y = w + Sq is the only
(a)

€ LT(R+).

Following the method presented above the function

solution ofﬂihe Cauchy problem such that y

P . ® 1.
y{x) = % ckxa 1+ 1 [vxa*B/r(q)] n B[a,l-k+j(a+8)] ///r(lfa-k)
k=1 1=1 3=1 .
o -8
v T (wT)” J"Km(x.t)t h(t)dt/r(a), (a)
n=0 . [o]
where B is Euler’'s beta function and
(x-)% 1B ~ _forn=0
K 1(X.l’.).= x
ne J K_(x,£)K (£, t)0€ for n € N
t

is a solution of the Cauchy problem for equation (1).

It is seen that the solution of the Cauchy problem for equation (1) is a
sum of two functions, say Yy and Yy which are the solutions of homogeneous
equation (1) with given initial conditions and non-homogeneous equation (1)
with homogeneuos initial conditions, respectively. Moreover, every solution
depends on constants being arbitrarily up to p (the value of B determines
the number of independent constants - cf. Remark 1 in the sequel).

The aforegoing considerations imply

Theorem 1: If the above assumptions are fulfilled, then there exists
exactly one solution y of the Cauchy problem for the equation (1) such that
y(a) € Lr(R+) and y is given by formula (4).

Remark 1: The improper integral I:tnqexp(—rt)dt (r > 0) is convergent
if and only if x > 0. Hence, if ¢, = 0 for k € {1,2, ...,p} and such that

1+a+B-k = 0, then the function xB

w(x) belongs to LI(R‘).
Remark 2: We want to point at two special cases. For 8 = O the solution

of equation (1) denoted by yo has the form

P
0 _ a-k a a-1 « _
y (x) = kgl cx Ea'l’a_k(ux ) + I:t Ea,a(vt Jhi(x-t)dt,
where Ep “(z) = z;?o zn/r(np+u) with 2z € C, p,u > 0O is the Mittag-Leffler
function. In the case h(x) = yx<™' (kx > 0) the function '

© : 11
y(x) = ckx“'“ 1+ 7 [ux“*B/r(a)] m B[a,l-k+j(a+BY] ///r(1+a-k)
J=1

1 1=1

™Mo

k
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+ (g/T(a) )X ! ¥ [uxa#B/r(a)] n B[a,x+j(a+8)]
N . j=0

n=0
is a solution of the Cauchy problem for equation (1). Moreover,the function
ylx) = 7x“*K-'/(r(a+x)/r(x) - v) is a solution of equation (1) with B = -a

and v # T(a+x)}/T(k) (cf. also WIENER [10, pp. 165-166]).

Remark 3: The presented method allows to examine the more general
equation y(a)(x) - g(x)y(x) = h(x), x.> 0, with the function g being measu-
B

holds a.e. on R, .

rable and such‘that the estimate |gtx)| s ux .

The above-obtained theorem yields the following corollaries.

Corollary 1: Assume that c, z2 0 (k=1,2,...,p), v 0 and h 2 0 a.e. on
(0,8) < (0,1).If y and yO are two solutions of the Cauchy problem for equa-
tion (1) with B < 0 and B8 = 0, respectively, theny > y0 >0 a.e. on (0,8).

Moreover, if « ¢ N and cp > 0, then y(0+) = o.

Proof. By the method of mathematical induction one can assert that for
every n € N the relation xn(x,t)t‘B > (M) (x=t)"*V/T(na) holds. And if

x < 1. then

» 1
x“+BB[a;1-k+j(a*B)] = x**B J' £ (1) @B Ky
0

1 ' :

> x* I t* 1 (1-1)9% "t = x"B(a, 1-k+ja).
0 ) .

Hence, bearing in mind formula (4), we get our assertioni

: > = P
Corollary 2: If ¢ = 0 (k=1,2,...,p), L " |c | >0, v20and h2z0 a
e.onR_, theny >0 a.e. on R+ and y(wo) = w, provided that y is a solution

of the Cauchy problem for equation (1).

3. Continuous dependence of solution. If s = y(g) € Lt(R*), then y = w + S

e "s"r]’ what imply that

is measurable and, moreover, [y||_ = r-a[zk;ckrk

y € Lt(R+). Now, we can establish

Theorem 2: Let the assumptions of Section 2 be fulfilled, let y1 and y2
be the solutions of the Cauchy problem  for equation (1) with the initial
constants c: and cz (k=1,2,...,p), and the right-hand sides n' and_hz, res-
pectively. If for every € > O there is a 8 > Q with maxk |c: - ci| < & and

1 2 1 2 .
[h* - n ”r < 3, then |y y "r < e.
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Proof. Denote & = |c: - ci| and h(t) = |hl(t)'- hz(t)|. Using mathema-
x 8 < (x_t)n(bB-l

tical induction it be can proved that the estimate Kn(x.t)t—
xn:::B(a,jd+B) holds for integers n = 2. Hence, bearing in mind formula (4)
and the definition of, the norm "'"r' we have

© 1 1-1
Iy* - ¥, = 1|h||r[““ » P g @] rfasnes) e sew)
_ 1=21 : )=
© 1
T [UT'(a*B)/F(a)] F[l#a-k#l(a*B)]///r(l*“_k)
k=1 =

1

R .
-1+~

+ Loz - k)[1 +

= 1

1 .
X T B(a,l-k#J(a+B)]].
)=1 . ’
One can prove that for every finite value of t the infinite series appear-

ing on the right-hand side of the above inequality are finite. Thus, the
1 .2 ‘ _
relations |y’ -"y°|| = const:8 = ¢, with max 8 < & and [h[| < &, holdf

4. The multipoint problem for equation (1). Let r be the largest integer
such that 1+a+g-r > 0. We will consider equation (1) with the multipoint
conditions y(p_m)(x) =75 (m=1,2,...,r), where x € R, and n € R are
p-a ] m 'y + o

given (for more general multipoint problems cf.[4]).

Imposing the multipoint conditions on the general solution (4) of ‘equa-
tion (l)‘we'get the folldwing algebraic system with respect to <, (k=1,2, ..
., r; obviously c = O for r < k s p, cf. Remark 1):

r © 11
z’ckx"‘[vr(um-k) + ¥ vx:"B/r(a)] nB[a,‘l—k+j(a*B)] (5)
k=1 1=1 =1

_ _,,(a-m)
x r[1+a—k+l(a+8)]///[r[1+m k#l(a+B)]F(l+q k)] =Ny (xm).
where Yy is a solution of the non-homogeneous equation. (1) with homogeneous
initial conditions. Bearing in mind Section 2, the above considerations and

the theory of the algebraic systems, one can formulate

Theorem 3: If the assumptions of Section 2 are fulfilled and the alge-
braic system (5) has a solutioﬁ, then the multipoint problem for equation
(1) has a solution in tﬁe class of locally integrable functions such that
their derivatives of order a belongs to Lr(R*). Moreover, if the determi-

nant of the system (S) Is not equal 0, then the solution is unique.

Remark 4: Consider a solution y of the above-set multipoint problem.

We say that the solution y is stable at infinity if there -exists a > 0 such

/
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that for every € > O there is a 8 > 0 with maxk|nk - ﬁk| < & for every (ﬁk):

€ R", then |y(x) - y(x) | < € a. e. for x > a , where y is an arbitrary
solution of the multipoint problem for equation (1), with the multipoint
constants ﬁm (m=1,2,.-..,r).

In virtue of this definition and formula (4), one can immediately
notice that the solution y of the Cauchy problem for equation (1) is stable
at infinity if and only if y = 0O is stable at infinity solution of the
homogeneous Cauchy problem for the homogeneous equation (1) (i. e. h = O
and ck = 0 for k=1,2,...;p). Let us observe that if v > O the solution is

not stable at infinity.
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