On a Certain Differential Equation of Non-Integer Order

M. W. MICHALSKI

Some differential equation of non-integer order is considered. It plays an important role in , polarography.

Key words: Derivatives of non-integer order, differential equations of non-integer order, polarographic equation

AMS subject classification: 26A33, 34A99

1. Introduction. The equation

 $y^{(1/2)}(x) - vx^{\beta}y(x) = x^{-1/2}$ $(x > 0; -1/2 < \beta \le 0),$

where $y^{(1/2)}$ is the derivative of order 1/2, plays an important role in the polarography (for chemical background cf. [2,5-7]). K. WIENER in his papers [8-10] examines the above-said equation assuming that the derivative of non-integer order appearing in the equation is defined in the Hadamard sense. In further reasoning we denote

$$y_0(x) = y(x)$$
 and $y_{\alpha}(x) = \int_0^x (x-t)^{\alpha-1} y(t) dt / \Gamma(\alpha)$ for $\alpha, x > 0$,

where the integral is understood in the Lebesgue sense.

The symbols $y_{p-\alpha}$ and s_{α} in the sequel will be defined analogously. Let $\alpha > 0$ and set $p = -[-\alpha]$, $[\alpha]$ being the greatest integer not exceeding α . We will consider the equation

 $y^{(\alpha)}(x) - \upsilon x^{\beta} y(x) = h(x), x > 0,$ (1) with the initial conditions $y_{p-\alpha}^{(p-k)}(0) = c_k (k=1,2,\ldots,p)$, where $y^{(\alpha)} = y_{p-\alpha}^{(p)}$ is the Riemann-Liouville derivative of order α (cf.DzhRBASHYAN [1, Ch.IX, 3 and 4]), provided that y is Lebesgue locally integrable and $y_{p-\alpha}^{(p-1)}$ is absolutely continuous. The above problem for equation (1) is called the *Cauchy* problem.

One can observe in this class of functions that the Hadamard and the Riemann-Liouville derivatives coincide. It is known for $\beta \ge 0$ and 0 < x < A, with arbitrary positive A and $h \in L(0,A)$, that the Cauchy problem is well-posed (cf.[3]). It means that there exists exactly one solution and

the solution depends continuously on initial data in the following sense: if y^1 and y^2 are solutions of (1) with the initial data c_k^1 and c_k^2 (k=1,2,...,p), respectively, then for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $||y^1 - y^2|| < \varepsilon$, provided that $|c_k^1 - c_k^2| < \delta$, where $||\cdot||$ denotes the norm in L(0,A).

2. The Cauchy problem for equation (1). In further part of the paper we will examine equation (1) with negative β . Introduce the Banach space

 $L_{\tau}(I) = \left\{ f: I \longrightarrow \mathbb{R}: f \text{ measurable and } \|f\|_{\tau} < \infty \right\},$

where $\tau \ge 0$, $I \in \mathbb{R}_{+}$ and $||f||_{\tau} = \int_{I} |f(t)| \exp(-\tau t) dt$. Since $|f(t)| \exp(-\tau A) \le |f(t)| \exp(-\tau t) \le |f(t)|$ the norms $||\cdot||_{0}$ and $||\cdot||_{\tau}$ are equivalent for the bounded interval I = (0, A). Generally, for arbitrary I the relations $L_{0}(I) \subset L_{\tau}(I) \subset L_{10C}(I)$ hold, where $L_{0}(I)$ and $L_{10C}(I)$ are the spaces of the Lebesgue integrable and the Lebesgue locally integrable functions, respectively.

Denote s = $y^{(\alpha)}$ and $w(x) = \sum_{k=1}^{p} c_k x^{\alpha-k} / \Gamma(1+\alpha-k)$. The function s is a solution of the equation

 $s(x) = \upsilon x^{\beta} w(x) + h(x) + \upsilon x^{\beta} s_{\alpha}(x).$ Hence, the function $y = w + s_{\alpha}$ is a solution of the Cauchy problem for

equation (1). Define the transformation T by the right-hand side of equation (2). Assume that $h \in L_{\tau}(\mathbb{R}_{+})$ and β , $-\alpha < \beta \leq 0$ is such that $x^{\beta}w(x)$ belongs to $L_{\tau}(\mathbb{R}_{+})$ with τ sufficiently large to fulfil the relation

$$\upsilon \Gamma(\alpha + \beta) \tau^{-(\alpha + \beta)} / \Gamma(\alpha) \leq q < 1.$$
(3)

One can observe that the inequalities

$$\|Ts^{1} - Ts^{2}\|_{\tau} \leq \upsilon \int_{0}^{\infty} x^{\beta} \exp(-\tau x) \left(\int_{0}^{x} (x-t)^{\alpha-1} |s^{1}(t) - s^{2}(t)| dt \right) dx / \Gamma(\alpha)$$
$$\leq \upsilon \int_{0}^{\infty} |s^{1}(t) - s^{2}(t)| \exp(-\tau t) \left(\int_{t}^{\infty} (x-t)^{\alpha-1} x^{\beta} \exp(-\tau (x-t)) dx \right) dt / \Gamma(\alpha)$$

hold. Examine the integral with respect to x. Changing the variable of integration and bearing in mind the definition of Euler's gamma function we have

$$\int_{t}^{\infty} (x-t)^{\alpha-1} x^{\beta} \exp(-\tau(x-t)) dx \leq t^{\alpha+\beta} \int_{0}^{\infty} \xi^{\alpha-1} (1+\xi)^{\beta} \exp(-\tau t\xi) d\xi \leq \Gamma(\alpha+\beta) \tau^{-(\alpha+\beta)}$$

what implies

$$\|\mathrm{Ts}^{1} - \mathrm{Ts}^{2}\|_{\tau} \leq \upsilon \Gamma(\alpha + \beta) \tau^{-(\alpha + \beta)} \|\mathrm{s}^{1} - \mathrm{s}^{2}\|_{\tau} / \Gamma(\alpha).$$

Thus, for τ satisfying relation (3), the transformation T is contractive, with the contraction constant equal q. Moreover, one can notice that T maps

 $L_{\tau}(\mathbb{R}_{+})$ into itself. Using the Banach fixed point theorem to the transformation T and the set $L_{\tau}(\mathbb{R}_{+})$ we can assert that there exists in $L_{\tau}(\mathbb{R}_{+})$ exactly one solution of equation (2). Hence, the function $y = w + s_{\alpha}$ is the only solution of the Cauchy problem such that $y^{(\alpha)} \in L_{\tau}(\mathbb{R}_{+})$.

Following the method presented above the function

$$y(x) = \sum_{k=1}^{p} c_{k} x^{\alpha-k} \left[1 + \sum_{l=1}^{\infty} \left(\upsilon x^{\alpha+\beta} / \Gamma(\alpha) \right)^{l} \prod_{j=1}^{l} B\left(\alpha, 1-k+j(\alpha+\beta)\right) \right] / \Gamma(1+\alpha-k)$$
$$+ \sum_{n=0}^{\infty} \left(\upsilon / \Gamma(\alpha) \right)^{n} \int_{0}^{x} c_{n+1}(x, t) t^{-\beta} h(t) dt / \Gamma(\alpha), \qquad (4)$$

where B is Euler's beta function and

$$K_{n+1}(x,t) = \begin{cases} (x-t)^{\alpha-1} t^{\beta} & \text{for } n = 0 \\ \int_{t}^{x} K_{n}(x,\xi) K_{1}(\xi,t) d\xi & \text{for } n \in \mathbb{N} \end{cases}$$

is a solution of the Cauchy problem for equation (1).

It is seen that the solution of the Cauchy problem for equation (1) is a sum of two functions, say $y_{\rm H}$ and $y_{\rm N}$, which are the solutions of homogeneous equation (1) with given initial conditions and non-homogeneous equation (1) with homogeneous initial conditions, respectively. Moreover, every solution depends on constants being arbitrarily up to p (the value of β determines the number of independent constants - cf. Remark 1 in the sequel).

The aforegoing considerations imply

Theorem 1: If the above assumptions are fulfilled, then there exists exactly one solution y of the Cauchy problem for the equation (1) such that $y^{(\alpha)} \in L_{+}(\mathbb{R}_{+})$ and y is given by formula (4).

Remark 1: The improper integral $\int_0^{\infty} t^{\kappa-1} \exp(-\tau t) dt$ ($\tau > 0$) is convergent if and only if $\kappa > 0$. Hence, if c = 0 for $k \in \{1, 2, ..., p\}$ and such that $1+\alpha+\beta-k \leq 0$, then the function $x^{\beta}w(x)$ belongs to $L_{\tau}(\mathbb{R}_{+})$.

Remark 2: We want to point at two special cases. For $\beta = 0$ the solution of equation (1) denoted by y^0 has the form

$$y^{0}(x) = \sum_{k=1}^{p} c_{k} x^{\alpha-k} E_{\alpha,1+\alpha-k}(\upsilon x^{\alpha}) + \int_{0}^{x} t^{\alpha-1} E_{\alpha,\alpha}(\upsilon t^{\alpha})h(x-t)dt,$$

where $E_{\rho,\mu}(z) = \sum_{n=0}^{\infty} z^n / \Gamma(n\rho+\mu)$ with $z \in C$, $\rho,\mu > 0$ is the Mittag-Leffler function. In the case $h(x) = \gamma x^{\kappa-1}$ ($\kappa > 0$) the function

$$y(x) = \sum_{k=1}^{p} c_{k} x^{\alpha-k} \left[1 + \sum_{l=1}^{\infty} \left(\upsilon x^{\alpha+\beta} / \Gamma(\alpha) \right)^{l} \prod_{j=1}^{l} B\left(\alpha, 1-k+j(\alpha+\beta)\right) \right] / \Gamma(1+\alpha-k)$$

+
$$(\gamma/\Gamma(\alpha))x^{\alpha+\kappa-1} \sum_{n=0}^{\infty} \left(\upsilon x^{\alpha+\beta}/\Gamma(\alpha) \right)^n \prod_{j=0}^n B\left(\alpha, \kappa+j(\alpha+\beta) \right)$$

is a solution of the Cauchy problem for equation (1). Moreover, the function $y(x) = \gamma x^{\alpha+\kappa-1}/(\Gamma(\alpha+\kappa)/\Gamma(\kappa) - \upsilon)$ is a solution of equation (1) with $\beta = -\alpha$ and $\upsilon \neq \Gamma(\alpha+\kappa)/\Gamma(\kappa)$ (cf. also WIENER [10, pp. 165-166]).

Remark 3: The presented method allows to examine the more general equation $y^{(\alpha)}(x) - g(x)y(x) = h(x), x > 0$, with the function g being measurable and such that the estimate $|g(x)| \le vx^{\beta}$ holds a.e. on \mathbb{R}_{+} .

The above-obtained theorem yields the following corollaries.

Corollary 1: Assume that $c_k \ge 0$ (k=1,2,...,p), $\upsilon \ge 0$ and $h \ge 0$ a.e. on $(0,\delta) < (0,1)$. If y and y^0 are two solutions of the Cauchy problem for equation (1) with $\beta < 0$ and $\beta = 0$, respectively, then $y > y^0 > 0$ a.e. on $(0,\delta)$. Moreover, if $\alpha \notin \mathbb{N}$ and $c_p > 0$, then $y(0+) = \infty$.

Proof. By the method of mathematical induction one can assert that for every $n \in \mathbb{N}$ the relation $K_n(x,t)t^{-\beta} > (\Gamma(\alpha))^n (x-t)^{n\alpha-1} / \Gamma(n\alpha)$ holds. And if x < 1 then

$$x^{\alpha+\beta}B\left(\alpha,1-k+j(\alpha+\beta)\right) = x^{\alpha+\beta} \int_{0}^{1} t^{\alpha-1}(1-t)^{j(\alpha+\beta)-k} dt$$
$$> x^{\alpha} \int_{0}^{1} t^{\alpha-1}(1-t)^{j\alpha-k} dt = x^{\alpha}B(\alpha,1-k+j\alpha).$$

Hence, bearing in mind formula (4), we get our assertion

Corollary 2: If $c_k \ge 0$ $(k=1,2,\ldots,p)$, $\sum_{k=1}^{p} |c_k| > 0$, $\upsilon \ge 0$ and $h \ge 0$ a. e. on \mathbb{R}_+ , then y > 0 a.e. on \mathbb{R}_+ and $y(\omega) = \omega$, provided that y is a solution of the Cauchy problem for equation (1).

3. Continuous dependence of solution. If $s = y^{(\alpha)} \in L_{\tau}(\mathbb{R}_{+})$, then $y = w + s_{\alpha}$ is measurable and, moreover, $\|y\|_{\tau} \le \tau^{-\alpha} \left(\sum_{k=1}^{p} c_{k} \tau^{k-1} + \|s\|_{\tau} \right)$, what imply that $y \in L_{\tau}(\mathbb{R}_{+})$. Now, we can establish

Theorem 2: Let the assumptions of Section 2 be fulfilled, let y^1 and y^2 be the solutions of the Cauchy problem for equation (1) with the initial constants c_k^1 and c_k^2 (k=1,2,...,p), and the right-hand sides h^1 and h^2 , respectively. If for every $\varepsilon > 0$ there is a $\delta > 0$ with $\max_k |c_k^1 - c_k^2| < \delta$ and $||h^1 - h^2||_T < \delta$, then $||y^1 - y^2||_T < \varepsilon$.

Proof. Denote $\delta_{\mathbf{k}} = |c_{\mathbf{k}}^{1} - c_{\mathbf{k}}^{2}|$ and $h(t) = |h^{1}(t) - h^{2}(t)|$. Using mathematical induction it be can proved that the estimate $K_{n}(x,t)t^{-\beta} \leq (x-t)^{n\alpha+\beta-1} \times \prod_{j=1}^{n-1} B(\alpha, j\alpha+\beta)$ holds for integers $n \geq 2$. Hence, bearing in mind formula (4) and the definition of the norm $\|\cdot\|_{\tau}$, we have

$$\begin{aligned} \left\|y^{1} - y^{2}\right\|_{\tau} &\leq \left\|h\right\|_{\tau} \left(\tau^{-\alpha} + (\tau^{-\beta}/\nu) \sum_{l=2}^{\infty} \left(\nu\tau^{-\alpha}/\Gamma(\alpha)\right)^{l} \Gamma\left((1+1)\alpha+\beta\right) - \prod_{j=1}^{l-1} B(\alpha, j\alpha+\beta)\right) \\ &+ \sum_{k=1}^{p} \delta_{k} \tau^{-(1+\alpha-k)} \left(1 + \sum_{l=1}^{\infty} \left(\nu\tau^{-(\alpha+\beta)}/\Gamma(\alpha)\right)^{l} \Gamma\left(1+\alpha-k+1(\alpha+\beta)\right) \right) \Gamma(1+\alpha-k) \\ &\times \prod_{l=1}^{l} B\left(\alpha, 1-k+j(\alpha+\beta)\right)\right). \end{aligned}$$

One can prove that for every finite value of τ the infinite series appearing on the right-hand side of the above inequality are finite. Thus, the relations $\|y^1 - y^2\|_{\tau} \le \text{const} \cdot \delta = \varepsilon$, with max $\delta_k < \delta$ and $\|h\|_{\tau} < \delta$, hold

4. The multipoint problem for equation (1). Let r be the largest integer such that $1+\alpha+\beta-r > 0$. We will consider equation (1) with the multipoint conditions $y_{p-\alpha}^{(p-m)}(x_m) = \eta_m$ (m=1,2,...,r), where $x_m \in \mathbb{R}_+$ and $\eta_m \in \mathbb{R}$ are given (for more general multipoint problems cf.[4]).

Imposing the multipoint conditions on the general solution (4) of equation (1) we get the following algebraic system with respect to c_k (k=1,2,...,r; obviously $c_k = 0$ for $r < k \le p$, cf. Remark 1):

$$\sum_{k=1}^{\Gamma} c_{k} x_{m}^{m-k} \left\{ 1/\Gamma(1+m-k) + \sum_{l=1}^{\infty} \left(\upsilon x_{m}^{\alpha+\beta}/\Gamma(\alpha) \right)^{l} \prod_{j=1}^{l} B\left(\alpha, 1-k+j(\alpha+\beta)\right) \right\}$$
(5)

$$\times \Gamma\left(1+\alpha-k+1(\alpha+\beta)\right) / \left(\Gamma\left(1+m-k+1(\alpha+\beta)\right)\Gamma(1+\alpha-k)\right) = \eta_{m} - y_{N}^{(\alpha-m)}(x_{m}),$$

where y_N is a solution of the non-homogeneous equation (1) with homogeneous initial conditions. Bearing in mind Section 2, the above considerations and the theory of the algebraic systems, one can formulate

Theorem 3: If the assumptions of Section 2 are fulfilled and the algebraic system (5) has a solution, then the multipoint problem for equation (1) has a solution in the class of locally integrable functions such that their derivatives of order α belongs to $L_{\tau}(\mathbb{R}_{+})$. Moreover, if the determinant of the system (5) is not equal 0, then the solution is unique.

Remark 4: Consider a solution y of the above-set multipoint problem. We say that the solution y is stable at infinity if there exists a > 0 such that for every $\varepsilon > 0$ there is a $\delta > 0$ with $\max_{\mathbf{k}} |\eta_{\mathbf{k}} - \tilde{\eta}_{\mathbf{k}}| < \delta$ for every $(\tilde{\eta}_{\mathbf{k}})_{1}^{r} \in \mathbb{R}^{r}$, then $|y(\mathbf{x}) - \tilde{y}(\mathbf{x})| < \varepsilon$ a. e. for $\mathbf{x} > \mathbf{a}$, where \tilde{y} is an arbitrary solution of the multipoint problem for equation (1), with the multipoint constants $\tilde{\eta}_{-}$ (m=1,2,...,r).

In virtue of this definition and formula (4), one can immediately notice that the solution y of the Cauchy problem for equation (1) is stable at infinity if and only if y = 0 is stable at infinity solution of the homogeneous Cauchy problem for the homogeneous equation (1) (i. e. h = 0 and $c_k = 0$ for k=1,2,...,p). Let us observe that if v > 0 the solution is not stable at infinity.

· REFERENCES

- Dzhrbashyan, M.M.: Integral transformations and reprezentations of functions in complex domain (in Russian). Moscow: Nauka 1966.
- [2] Grennes, M., and K.B.Oldham: Semiintegral electroanalysis: theory and verification. Anal. Chem. 44(1972), 1124-1129.
- [3] Michalski, M.W.: The Cauchy problem for a differential equation of noninteger order (to appear).
- [4] Michalski, M.W.: Multipoint problem for a differential equation of noninteger order. Z. Anal. Anw. 8(1989), 479-483.
- [5] Oldham,K.B.: Unified treatment of electrolysis at an expanding mercury electrode. Anal. Chem. 41(1969), 936-945.
- [6] Oldham, K.B.: A new approach to the solution of electrochemical problems involving diffusion. Anal. Chem. 41(1969), 1904-1905.
- [7] Oldham,K.B., and J.Spanier: The replacement of Fick's laws by a formulation involving semidifferentiation. J. Electroanal. Chem. 26(1970), 331-341.
- [8] Wiener,K.: Uber Losungen einer in der Theorie der Polarographie auftretenden Differentialgleichung von nichtganzzahliger Ordnung. Wiss.
 Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Natur. Reihe 32(1983)1, 41-46.
- [9] Wiener,K.: Uber das asymptotische Verhalten der Lösungen einer Differentialgleichung von nichtganzzahliger Ordnung aus der Polarographie.
 Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Natur. Reihe 32 (1983)5, 75-86.
- [10] Wiener,K.: Losungen einer Differentialgleichung von nichtganzzahliger Ordnung aus der Polarographie. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Natur. Reihe 35(1986)4, 162-167.

Received: 14.06.1989, in revised form 26.03.1990

Author's address: Dr. Marek W. Michalski, Instituite of Mathematics of Warsaw University of Technology Plac Politechniki 1 P-00-661 Warszawa