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Some new results concerning the accelerating convergence of univariate and bivariate
Fourier expansions are presented. The rate of convergence is estimated with respect to
the uniform norm.This acceleration method is a combination of algebraic and trigonometric
approximation. Note that the abstract Taylor formula is an essential tool of this approach.
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1. Introduction

If a complex-valued function f defined on P = [0, 2n] is sufficiently smooth, then the-

asymptotic behaviour of its Fourier coefficients

ap(f)=3%fp flu)e  (u)du (k=0,21,..),
where e, (x) = exp(ikx), and the rate of convergence of its Fourier series 2 a,(f )e, de-~
pend only on the boundary values of f, more explicitly on the largest positive integer r with

FUX0) = £4U2m)  (j=0, .., 1) (1.1)
It is known that a smooth function f with fulfilled property (1.1) possesses a rapidly con-
vergent Fourier expansion. But there are also smooth functions, whose Fourier series con-
verge extreme slowly. Therefore, if f is smooth but (1.1) fails to be satisfied, it has been
proposed by A. N. KRYLOV and later by C. LANCczos [11] to determine an algebraic po-
lynomial h such that g =f - h satisfies (1.1). This Krylov-Lanczos method of accelerating
convergence of Fourier expansions and its natural generalizations were studied in several
papers [1-3, 13, 14]). Using the abstract Taylor formula [12] and parametric extensions
(4], we will present a simple approach to the Krylov-Lanczos method for univariate and
bivariate Fourier expansions. Further we will prove some new C-estimates for the rate of
convergence of the Krylov-Lanczos method.

In the following we use stan@ard notations. Let Z, N,, N and R be the set of all inte-

gers, non-negative integers, natural and real numbers, respectively. For r ¢ N, we define
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CT(P) as the set of all complex-valued functions f defined on P with continuous deriva-
tives £ ) (j=0,..,r fO = F) By Czr,( we denote the set of all f¢ C(P) such that
every £G4 (7 =0, ..., r) has a continuous and 2w-periodic extension to R, i.e. every f sa-
tisfies the boundary conditions (1.1). We write C(P) and C,, instead of C°(P) and
Cr respectively. The uniform norm with respect to P is denoted l;y Il - Il. Further, let
L'(P) be the usual Lebesgue space normed by |{ I, = o Jp |f(u)l du.

Introducing the r-th Bernoulli polynomial B, (r ¢ Ny) on P by

B/=B,,,By=~1 with B,(0)=n,B5,,4(0)=B5,,4(2n)=0 (reN)
and its 2m-periodic extension b, by

b (x)=B.x) (r22,xeP), b,(x)=B,(x) (xe(0,2n)),

5,(0)=b5,(2n) =0, b, (x+2rn)=b.(x) (reN,xeR),
we get
b= > (ik)7e, (reN). . (1.2)
|kI>0

The function b, is called r- th Bernoulli function. Note that for r 2 2 the Fourier series
(1.2) is uniformly convergent on R. If r = 1, then (1.2) converges with uniformly bounded
partial sums and (1.2} is uniformly convergent on every compact subset of R\ 2nZ.

For any two functions f ¢ C(P) and g € L'( P) the convolution f * g is explained by
1

x . 271
(Feg)Xx) = ﬁ({f(x-U)g(u)du + ff(2'n:+x—u)g(u)du) .

Then we have f « ge C(P)and |If » gll s [If lligll,. Since C(P) C L*( P), the convolution
is defined on C(P) and it is 2 commutative, associative and distributive operation. If
ay(f) (ke Z)denotes the k-th Fourier coefficient of f¢ C(P), then it follows that f s e,
=a,(fleganda,(feg)=a,(fla(g)forall keZand f, ge C(P). Especially, for
any k,m ¢ Z we obtain ey * e,,; =3, e, where § ; ,, dénotes the Kronecker symbol.
Introducing the linear operators
D: CP)-> C(P) and T: C(P)~>C*P)n Cyp
(see [2, 4]) by
Df =f"+a,(f-f") (FeC'(P)),
Tf=(feB)+a,(f)=f+(B,+1) (feC(P)).
we see that T is a bounded right inverse of D, since DTf= f and |Tfll s (IIBlIIl + l)llf Il
for all £ € C(P). Further, it follows that
DB, =0,DB,,, =B,

T1=1,7B,=B,, N ad a(Tf)=a(f) (rectp).
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The kernel of D coincides with span{B,}. The so-called initial operator F, of D corres-
ponding to T (see [12]) is explained by

F.f =f - TDf (feCYP)).
Then we find that F\f = 3, (£(0)- f(2r))B,, so that F, can be extended to C(P). Hence,
F, is a projector of C(P) onto kerD = span{B,},i.e. F2 = F,, F,(C(P)) = ker D and F,T
= 0.Further, I - F, is a projector of C(P) onto C,,,where I denotes the identity operator.

By inductjon it follows for r ¢ N that

DT = £+ 2 (F - £(7) (FeCT(P)), ' (1.3)

Tf=(f*B,)+ay(f)=f=x(B, +1) (FeC(P)). (1.4)
Then T” is a bounded right inverse of D', since D"T"f= fand | T*f Il s (1B, |, + DIFI
hold for all fe C(P). Note that ||B,ll, = =/2 and ||B, |, s 1Bl s 2/(1-2"7) (r22).The
kernel of D7 coincides with the set P, o = span{B,.....B,} of all algebraic polynomials p

with degree p s rand a,(p) = 0. The initial operator F, of DT corresponding to T 7 is -
defined for f € C*(P) by

r-i . ) r-1 . )
Ff=f-TD'f = 35 TIFDIf = 3= > (F9%0) - £ )2n))B;., (1.5)
i=o j=o

(see [12]), so that F, can be extended to C”~)(P). Consequently, F, is a projector of
C™ Y(P) onto ker D" = P_,. Further, I - F, is a projector of C*~1(P) onto il For
fe CT(P)we get the estimate

M - a(f) - Fof I =NTTD7f - ag(f ) = £« B, |l < IB,Il, I£ <7
Then the abstract Taylor formula [12]
r-1 . )
f=F.f+T'D'f = Z T/FiD/f + T™D'f for fe C*(P) (1.6)
j=o

yields the following

Theorem 1.1 (see[2]): For every f ¢ C™(P) (r ¢ N) we have
F=Ff +a(f)+feB, . (1.7)

Further, F, is a projector of C{*~Y(P )onto ker D = P.o and I - F, is a projector of
C™"Y(P)onto C5;'.

Proof : Formula (1.7) follows immediately from the abstract Taylor formula (1.6)'and
from the representations (1.3) - (1.4). By (1.5) we see that F.fe¢ ker D for fe C* Y P).
Since F.g=(I-T"D")gfor ge C"(P), we obtain, for arbitrary fe C"(P), F,fe C™(P)
and hence F,2f= (I - T"D")F,f+ F.f- T'D'F f= F_f . Further, if p is an arbitrary
algebraic polynomial of degree p < r with a,(p) = 0, then T"D"p = 0 and p = F. p. Thus
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F_is a projector of C* Y(P) onto ker D”. Hence I - F, is a projector, too. Setting h =
(I- F,)f forgiven f ¢ C" ! P), we obtain

hGX0) = hU)(2m) = 1(£G0) - F2n)) + 8 ao(F)  (j =0,y r- 1),

i.e.heCyr ' Obviously, if fe Cpy ', then F,f=0and f = (I - F,)f. Consequently, / - F,
is a projector of CTYP)onto C3' B

Note that the representation (1.7) of f is valid on the whole of P unlike a correspon-

ding result of [2].

Corollary 1.2 : Any function fe¢ CT(P) n C3.! can be represented in the form f=
T™DTf = a)(f)+ f(D <« B,. ~

This follows directly from (1.7). By Corollary 1.2 we obtain the interesting estimate

IF - ag(F ) s BB IFCO N s 2(1 - 20 7) IFOY for £ e CT(P) n C51 (r 22).

2. The Krylov - Lanczos decomposition

It is known that for a function fe Cy,. (r e N) the corresponding Fourier series converges
rapidly (see Corollary 2.3). Unfortunately, there are smooth functions fe C7(P) - for
example algebraic polynomials - whose Fourier series converge extreme slowly. Since
very often a given function f¢ C"( P )does not fulfil the boundary conditions (1.1), it has
been proposed by A.N.KRYLOV and by C.LANCzos [11] to use an algebraic pre-approxi-
mation h to f(constructed by two-point interpolation), such that the remainder g = f- h
belongs to C*(P) n Czr;l and has a rapidly convergent Fourier expansion. Choosing h =F,.f,

the Krylov - Lanczos method is an immediate consequence of the Taylor formula 1.7).

Theorem 2.1[2]): If fe C7(P) (r2 1), then we have the Krylov - Lanczos decompo-
sition '

F=F f +ag(f) + = o (ik) TagFM)ey,

where F, f is the algebraic polynomial (1.5).
Proof : From (1.2) and from Lebesgue’s bounded convergence theorem it follows that
£ B =D = S0 GR) T aF ey

Then, by (1.7), we obtain immediately the assertion. In the case r 2 2 we get the estimate
If - ag(f) = F £l s B, ifFH s 201 - 207 HIFDY for Fe CT(P).

This completes the proof 8
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Remark : A similar method can be applied for accelerating the convergence of eigen-

function expansions associated with self-adjoint boundary-value problems (13, 14].

For ne N and f ¢ C(P) let us denote by S,,f the n-th Fourier partial sum

nf = i ap(fey.

k=-n

N

It is known [7] that the norm of S,,: C(P)—> C(P) can be estimated by

ISalls 3+ 25inn. (2.1)

Then we obtain the following error estimate with respect to the uniform norm.

Theorem 2.2: /f fe C*(P) (r21)andg =f - F, f, then

lg-S,ell S%(% +%lnn)(n+l)"’||f(’)ll forall neN.

Proof: Let T, be the set of all trigonometric polynomials p of degree p s n. By Theo-
rem 1.1 we have ge C5 . Let p * ¢ T, be the best approximation to g with respect to the
uniform norm. Hence for E, (g), the n-th degree of approximation of g by trigonometric
polynomials, it follows that E,(g) = inf {I]g -pll:peT,} =1llg- p*ll. Note that p*= S, p*.

Thgn we obtain
lg-S,ellslg-p*ll+IS,(p*-g)l <1 . 1S,Mllp* -gll=(1+IS,DE,(g).
Using Jackson's theorem for ge C5, (see [10]) we get the estimate
E{g)s F(n+1)"ligl")]  (neN)
with
g = £ - a (£40) - (2m) 1 (£¢ (o) - £¢r(2m))B, .
By 2"l s 3 IF{7) || we obtain the stated error estimate

Remark : Analogously, we can prove error estimates with respect to an LP - norm (1 =

p < ©). A corresponding asymptotic error estimate in the uniform norm can be found in [2].
In the case fe C;,. (reN), Theorem 2.2 yields the following known result.

Corollary 2.3: If fe Cy,. (reN), then we have the estimate

if-s,fF1 S%(% +% lnn)(n*1)"l|f(’)|| forall n e N .

Now we formulate an analogous result for accelerating convergence of trigonometric

interpolation. For this end we consider the trigonometric interpolation operator L,,: C(P)
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— “T,, defined by

n 2n 3
Lof = =2 af™(er. afF) =g = flmh) etk
N=-n

m=0

(ak(") - discrete Fourier coefficients )with h = 2n/(2n + 1). By [S], it follows that for n =z 4
the norm of L,,: C(P)— C(P) can be estimated by [L,|l s 372+ (2/7)Inn.

Theorem2.4: If fe C"(P) (reN)and g = f - F,,1fe C3,, then we have the estimate

lg-L,gls %(% + 2 1n n)(n+ D TNFON foralinz4.

The proof is similar to that of Theorem 2.2 and is omitted here @

The same procedure can be also applied to an efficient computation of the Fourier

coefficients and of the discrete Fourier coefficients for a given smooth function.

Theorem 2.5: /If f ¢ C"(P)(reN)and g = f - F,.f, then we have

1- 8ok ~ y-J
2ok %:(f(n(o)_ FUI(2m))(ik) 1 (keZ)

a(g)= ap(f)-

afm(g) = af () - L 2> (£000) - £DEm) a7 B;) (kI s n).
=

Further, if b{™(f)=a{™(g)+ a,(F..if), then
r
bEME) = afm(F) + 5 ?—-O:(N)(O) - £ (k)91 - adm(B;.,))
is a better approximation of the Fourier coefficient a,(f) than a{™(f):
|ax(£) = bEP(E)| s 3nln+ 1) IIF L
Proof: The representations a,(g), a,{")(g)and b,{"Xf) follow directly from (1.2)
and (1.5). By Theorem 1.1 we have g ¢ C3,.. Let p=¢ T, be the best approximation to g

with respect to the uniform norm. By Jackson’s theorem [10] we get for n € N the estimate
lg-p*l s (n+ 1) g ls 3E(n+ 1) rir .

Note that a,(p*) =a{"(p*) (1k| s n). Hence we obtain
|a(£) - b)) = |a(e) - al™(@)] s |awlg-p=)| + |af™(p" - )]

s2llg-p*lls 3n(n+ D= F .

This completes the proof B
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3. Parametric extensions

The above one - dimensional approach to the Krylov - Lanczos method can be extented
to the bivariate case by Gordon’s blending function method [2, 4, 6]). Let Q = Px P.For r
€ Ny, let C™7(Q) denote the set of all functions f: Q - € with continuous partial deri-
vatives £ %) (j k=0,..,r). Further, Cyilar is the set of all £ ¢ CT7(Q) with

FUR0,y) = FUR2R, ), FUR(x,0) = FUR(x,2n)

for all x,y ¢ Pand j,k = 0,...,r. We write C(Q) and Cyy 5. instead of C©%(Q) and
Czo,;?zn , respectively. The uniform norm on Q is denoted by | - |l.

The parametric extensions of D are d;efined on Q by
Df =30+ a5(f - r10)  (rectO(Q)),
D F=fOVsar(r-rO)  (recOQ)),

where
ag(F)y) = 2xfp Fluy)du | ag(F)x)=2=[pfx,v)dv.

Further, the parametric extensions of T are explained-on Q by

(T F)xy) = 2 [p (by(x - u) + 1) F(u,y)du
(feC(Q)).

(TF)x,p) = 3% p (by(y - v) + DF(x,v)av
Finally, the parametric extensions of F, are introduced on Q by

(R F)Xxp)= 3=(£(0,y) - £(2r,y))By(x)
(fec()).
(R )x,3) = 3= (F(x,0) - £(x,27))By(y)

Note that D'T" = D”T” = |, Fy is the initial operator of D" éorresponding to T" and F{" is
the initial operator of D" corresponding to T”. Further, we see that parametric extensions
commute, i.e. D'D” =D"D", T'T” = T"T', {Fy"= F{'K, D'T" = T"D", D'Fy’ = F{'D",

... . For example, for f ¢ C( Q) we have

an2(FyFf)(x,y) = (£(0,0) - £(0,2m) - £(2r,0) + £(2r,2m)) By(x)B,(y).

Now we consider the operators _

D=DD": CPHQ)>C(Q) ., T=TT": C(Q)->C"(Q)n Cor 2
and the Boolean sum operator

Fo=Fi& F = F + F{" - F{F{.

Then these operators are given for related functions f by
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Df = (LD 4,36(1:(0.1)_ f(l.l)) + ac;'(f(l,o) - f(l‘”)*aoo(f - 0 (1,0 +f(1,1)),
where

4n2ay,(f) = U f(u,v) dudv,
and

4m2(Tf Xx,y) = ﬂo(bl(.v -u)+ 1)(b,(y -~v)+ l)f(u,v)dudv,
2n(Fy f )x,) = (F(0,y) - £F(2m,5))By(x) +(£(x,0) - F(x,21))By(y)
- 2e(£(0,0) - £(0,2m) - £(2r,0) + £(2m,2m) By(x)B,y(y).

Since DTf=D(D"T”)T'f= D'T'f= fholds for all fe C(Q ), the operator T is a linear
bounded right inverse of D. For fe C}( Q) we get the Taylor formula TDf = f - F,f by

TDf = T(T"D")D'f = T(I-F{)D'f = T'D'f - (T'D")F{'f
=f - Ff-F'f+FFf=f-Ff.

Thus, F) is the initial operator of D corresponding to T. Further, I - F; = (I - Fy )(I - F{")
is a projector of C(Q) onto Cp 5r.For fe C'1(Q) we obtain the Taylor formula f = Fy f
+ TDf with

(TDf )(x,y) = ago(f) + 4—17;; ffo by(x - u) FO(u,v) dudv

* 4+t2 ffo by(y - v) O uv) dudv

+ ‘—1—11‘—2 HO by(x - u) by -v)F I (y,v)dudv.

In the case fe C1(Q)n Cyp.5x We have Fif =0 and hence (8]
F(x,y) =(TDF)(x,¥) = —a,o(f) +ag (F)(x)+ag(f ) y)
+ 4+,;2HO bix-u)b(y-v YF Dy, v) du dv for (x,y)eO.

Considering the operators D7: C*"(Q) > C(Q), T*: C(Q )= C"™(Q) n C5 1571
for re N, it follows that T " is a linear bounded right inverse of D". The initial operator F,
of D' corresponding to T " is given by

r-1
F,=1-T™D"= 3 TIRDJ on C 7 (Q).
j=o

From D=D'D”, T=T'T" and F, = F{ & F|" it follows that
F,=F;%F/ and I-F,=(I-F)XI-F)
with

Fi= 1-(T) (D)= S(TYFRADY on CTO(Q)
=0
and
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Fr.. = ]- ( T")r(D")" - rz"l( T”')jFl"(D")j on Co_r(o) .
j=0
This yields, by (1.5),
r-1 ’
2r(Ff)(x,y) = 2 (FUOA0,5) - £YUO2m, 3))B; . y(x)

r-1
+ > (f<°:k>(.\-,o) - f(o"‘)(x,Zn))Bk.i(y)

(3.1)

r-1 r-1
e z Z (f(j'k)(0,0) - f(j'k)(0,27t)
j=0 k=0

- £UR(2m,0) + £U )21, 21)) Bjay(x) By ay(y)
for f € C*7(Q), so that F, and / - F, can be extended to C™"17"1(Q). Thus, F, is a projec-

torof C*"1:771(Q) onto kerD”. Further, I - F, is a projector of C*"1:7"}(Q) onto C 5,7 4%~ 3

An application of the abstract Taylor formula (1.6) yields the following

Theorem 3.1(see [2]): For every f ¢ C™*(Q) (reN) we have
f=F.f+TD'f - (3.2)
with

(T™DTF)x,¥) = agolf) *—‘nzﬂo b(x - u) F"O(uv) dudv

{Jo by -v) O Nuv) dudv (3.3)

41:2

* ultzﬂo b(x - u) by -v)Fruv)dudy.

Note that this representation is valid on the whole of Q unlike a corresponding result
of [2]. In the case f ¢ C™7(Q) n Ca 55! (reN) we have F,f =0 and

F(x,y)=(T'DF)x,y) = =apo(f) +ag (£ )x) +as(f Ny)

szJb (x-u)b(y - -V (uv) dudv for(x,y)e Q
(see [8]) and hence for r 2 2 we get the estimate

IF + ago(£) - ag(f) - ag (s UBNZ I s a(1-21-7) 2| fn0)|.

4. Bivariate Fourier approximation

It is known [9] that for a given function f¢ C2,"5 (r e N) the corresponding Fourier co-

efficients

a(f)= ‘—:tz—Hof(u,v)e_k__l(u,v)dudv (k,teZ)
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converge rapidly to 0 for | k| + | /| = . Here we use the notation e, (x,y) = e ,(x)e;(y ).
The asymptotic behaviour of the Fourier coefficients depends on the order of partial deri-
vatives of f having a continuous periodic extension to R2. To obtain an acceleration
method of the Fourier expansion for a given function f.e C™7(Q ), we have to specify
a function h ¢ C™7(Q) such that f - h has this extension property. By Section 3, we can
choose h = F,f or h = F,,f. This yields f - F,f ¢ C3,. 5% " and f - F,,,f ¢ Com 2mes
respectively. Then the Krylov - Lanczos method for bivariate Fourier expansions follows

immediately from the Taylor formula (3.2).

Theorem 4.1: If fe C™7(Q) (r2 1), then we have the Krylov - Lanczos decompo-
sition
flx,y) = (Ff)x,y)+ ag(Ff)

+ 0 (k) Tage (FO)e(x) + T (i) Tag (O )ey)
| kl>o0 ’ 111>0 '

(-7 O (kD) T ag(F ) e g (xy),

tkl>o |11>0

where F,_f is the blending interpolation function (3.1).

Proof : From (1.2), it follows for re N that

b (x)b (y)= IIZ: IIZ: (-7 (k1) "ey(x,y) forall (x,y)eR2
kl>o | 1l>0

Hence we obtain

J‘]‘b,(.\'- WFEO(uv)dudy = 4n2 > (ik)"ako(f("o))ek(,\'),
[o) | kl>o

ffb,-(y'v)f(o")(u,v)dudv =4n2 0 (i1) Tag(F O ely),
[o) I11>0

Jfb,(x- u) b(y -v)FrNuv) dudy
Q
= (-1)74n2 | IZ: IIZ: (k)7 ag, (£ e y(x,y)
kl>o |1]>0

for f ¢ C™7(Q). Using (3.2) and (3.3), we get the assertion B

Romark : The same method was applied in [1, 3] for accelerating the convergence of

a bivariate sine series expansion.

For ne N, and f ¢ C(Q) we introduce the Fourier partial sum

Snnf = i Z akl(f)ekl'
k

=-n I=-n



Accelerating Convergence 248

If.we denote by S, : C(Q) » C(Q) and S,;: C(Q) = C(Q) the parametric extensions
of the univariate Fourier partial sum operator S,,: C(P) = C(P), then we conclude by
(2.1) that S, .= S; S,/ IS, 1= IS I = IS, Nl (see [4]) and

1Spnll s US, IS N < (3 + 25 1nn)"

Finally we obtain the following error estimate with respect to the uniform norm.

“Theorem 4.2: If f¢ C"7(Q) (reN) and-g = f - F,,, f, then
lg-S,nellsc,(n+1)""M.(g) foralineN,
with .

c,,=(1t +£3)(£ A2 0, 162 (lnn)2)

4 T2 big

and

Mi(g) = max (1607, ¢ =0 g -],

Proof : By Section 3 we know that g C5i .. Let T, denote the set of all bivariate

trigonometric polynomials of the form

n n
pP= Z Za“e“ (akledf).

k=-n Il=-n
The infimum of lig - p |l for all p.e °T,,,, is the degree of approximation E,, (g). Bivariate
Jackson estimates can be obtained by treating the variables successively. This tensor pro-

duct approach leads to rather sharp constants :
) Cr 2 .
Epn(g)s S(n+)Tgm Ol + Z(n +1) 7"l O « Z2(p +1)-2r | g (n 1))
s(m+n2/8)(n+1)""M.(g) (neN).

Let p*e“T,, be the best approximation to & with respect to the uniform norm.Then

E,.(g)=lg-p"l. Since p* =S, p*, we obtain

lg-Snngllsllg-p*l+ IS, (p*-gMs(1+IS,,INE n(g) s c, (n+ 1) "M (g)
for all n ¢ N. By (3.1) and the proof of Theorem 2.1 we conclude that

My(g) s 4llf SV + max (IF @], j£O0))),

M. (g)s 4(1-21"7) 10|+ max (llf(o")” ) ||f("°)||) (rz22).

This completes the proof il

Note that an analogous procedure as in Section 2 can be applied to an efficient com-
putation of the bivariate Fourier coefficients and of the discrete .bivariate Fourier coeffi- .

cients for a given smooth function.

17 Analysis. Bd. 10, Heft 2 (1991)
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