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Some new results concerning the accelerating convergence of univarlate and bivariate 
Fourier expansions are presented. The rate of convergence is estimated with respect to 
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approximation. Note that the abstract Taylor formula is an essential tool of this approach. 
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1. Introduction 

If a complex-valued function f defined on P = [0, 2t] is sufficiently smooth, then the 
asymptotic behaviour of its Fourier coefficients 

ak( f )	f(u)ek(u) du	(k = 0, ±1,...), 

where Ck(X ) = exp( i kx), and the rate of convergence of its Fourier series E ak( f ) ek de-
pend only on the boundary values off, more explicitly on the largest positive integer rwith 

f J (0) = f J (2it) ( J r 0.... . r ). (1.1) 

It is known that a smooth function f with fulfilled property (1.1) possesses a rapidly con-
vergent Fourier expansion. But there are also smooth functions, whose Fourier series con-
verge extreme slowly. Therefore, if F is smooth but (1.1) fails to be satisfied, it has been 
proposed by A. N. KRYLOV and later by C. LANCZOS [11] to determine an algebraic po-
lynomial h such that g =f - h satisfies (1.1). This Krylov-Lanczos method of accelerating 
convergence of Fourier expansions and its natural generalizations were studied in several 
papers [1-3, 13, 14]. Using the abstract Taylor formula [12] and parametric extensions 
[ 4 ], we will present a simple approach to the Krylov-Lanczos method for univariate and 
bivariate Fourier expansions. Further we will prove some new C- estimatesfor the rate of 
convergence of the Krylov-Lanczos method. 

In the following we use standard notations. Let Z, f'4 0 , N and R be the set of all inte-
gers, non-negative integers, natural and real numbers, respectively. For r E No we define
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C r(P) as the set of all complex-valued functions f defined on P with continuous deriva-
tives f(i) (j = 0.... . r; = F). By Cr we denote the set of all ft Cr(P) such that 
every f(1) (j = 0.... . r) has a continuous and 2it-periodic extension to R, i.e. every! sa-
tisfies the boundary conditions (1.1). We write C(P) and C2, instead of C°(P) and 
C 207 , respectively. The uniform norm with respect to P is denoted by Ii . II. Further, let 
L 1 ( P) be the usual Lebesgue space normed by II! 11 1 = 1/2 fp If( u)l du. 

Introducing the r-th Bernoulli polynomial B r (r E N0 ) on P by 

B; = B r-1 , B	-1 with B 1 (0) = it , B,.... 1(0) = B2r+ 1 (21t) = 0 (r eN) 

and its 27t-periodic extension br by 

b r( X ) = Br(x) (ra2,x€P), b 1 (x) = B 1 (x)	(x€(O,2it)), 

b 1 (0) = b 1 (2n) = 0, br(X + 27t) = br(X)	 (r E N,x € 

we get 

br =	(ik)_rek	(r € N).	 (1.2) 
IkI)O 

The function b r is called r- th Bernoulli function. Note that for r z 2 the Fourier series 
(1.2) is uniformly convergent on R. If r 1, then (1.2) converges with uniformly bounded 
partial sums and (1.2) is uniformly convergent on every compact subset of R\ 2,tZ. 

For any two functions f € C( P) and g € L 1 ( P) the convolution f • g is explained by 
x	 2r 

(F • g)(x) 
=	

(If(x - u)g(u)du + ff(2it + x- u)(u)du) 

Then we have F , g € C(P) and Ilf • g il :^ II! hugh 1 . Since CC P) C L 1 (P), the convolution 
is defined on C( P) and it is a commutative, associative and distributive operation. If 
a k( f) (k € Z) denotes the k-th Fourier coefficient of Fe C(P), then it follows that F , ek 
= a k( f ) e k and a k( f ) = a k(f )a(g) for all k E Z and f, g E C(P). Especially, for 
any k, m € Z we obtain ek , e, = 8 k,,i e k, where 8 k,zi denotes the Kronecker symbol. 

Introducing the linear operators 

D:C 5 (P)-.*C(P)and T:C(P)-C1(P)rC2 

(see [2, 41) by 

Dff'+a 0 (f-f')	 (f€C'(P)), 

Tf rr (f*B 1 )+a 0 (f)f*(B 1 +I)	(f€C(P)), 

we see that Tis a bounded right inverse of D, since DTf F and 11 T II 15 (JIB, 11, + 1)11! hI 

for all F E C(P). Further, it follows that 

DB 1 = 0, DBr+ i = Br 
TI = 1, TB,.	

(r€N)	and a0 (Tf)a0 (F) (f€C(P)).
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The kernel of D coincides with span (B,). The so-called initial operator F1 of D corres-
ponding to T(see [12]) is explained by 

F1 ! =f - TDf (f€C1(P)). 

Then we find that F1 ! = 1/2,t ( 1(0)- f(2t))B,, so that F; can be extended to C(P). Hence, 

F; is a projector of C(P) onto kerD = span( B 1 ), i.e. F12 = F1 , F1 (C(P)) kerD and F1T 
= 0. Further, I - F is a projector of C( P) onto C2 , where 1 denotes the identity operator. 

By induction it follows for r E N that 

D'f = f(r) 
+ 

a0(f - f(r))	 (ft Cr(p)),	 (1.3) 
T'f = (1 , Br) - a 0(f) = f (B,. + 1)	(1€ C(P)).	 (1.4) 

Then T' is a bounded right inverse of D ', since Dr T Tf = land II T'f II -- (IIB,. 1 1 + 1)11! 1 1 

hold for all fE C(P). Note that 11B 1 11 1 = 7t/2 and J IB,11, :^ liB r il :5 2/(1 _21-r) (r a 2). The 
kernel of D' coincides with the set 7,0 = span (B1.....Br) of all algebraic polynomials p 
with degree p 15 r and a 0( p) = 0. The initial operator Fr of D' corresponding to T' is 
defined for ft C(P) by 

F,.! = I - T'Df 
=

T3F1 D JF = -	 (o) - 0 )2 ))B+	(1.5) 

(see [121), so that F, can be extended to c r - 1 (P). Consequently, Fr is a projector of 
C' (P) onto ker Dr Pr,O Further, I - F, is a projector of C r1(p) onto C 1 . For 
f € C ( p ) we get the estimate 

If - a0(f) - Frf II = Ii T'D tf - a0(f ) II = IIf'	B,.II :^ IIB r II i lIf'II. 

Then the abstract Taylor formula [12] 

f = Fr f + TD rf 
=

TF, Df + TD rf for f € C r( P)	 (1.6)

yields the following 

Theorem 1.1 (see[21): For every f E Cr(p) (r € N) we have 

f = Fr! + a0(f) + f(r) 
, Br.	 (1.7) 

Further, F, is a projector of C' 1 (P )onto kerD' =	and! - F, is a projector of
C 1 ( p ) onto c;1. 

Proof: Formula (1.7) follows immediately from the abstract Taylor formula (1.6) and 
from the representations (1.3) - (1.4).By (1.5) we see that Fr ! € ker D for 1€ C( P ). 
Since Fg (I- T'D)gforg€ C T (P),we obtain, for arbitrary ft C'(P), F,.fe C(P) 
and hence F,2 ! = (I •- TD r )Fr I Fr ! TD tF,. I = Fr f . Further, if p is an arbitrary 
algebraic polynomial of degree p 15 r with a0(p) = 0, then T r D rp = 0 and p = F,. p. Thus
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Fr is a projector of C 1( P ) onto ker D r. Hence I - F. is a projector, too. Setting h = 

(I - F,.)! forgiven! € C l - '( P), we obtain 

h (i ) (0) = hJ(270 =	 - fJ(2it)) 
+ 80 a0(f)	(j = 0..... r - 1), 

i.e. h C	. Obviously, if 1€ C 1 , then Fr ! = 0 and f = (I - Fr) !. Consequently, I - Fr 

is a projector of c' 1( P) onto C2 1 1 

Note that the representation (1.7) of f is valid on the whole of P unlike a correspon-

ding result of [2]. 

Corollary 1.2: Any function f € C'( P) n C 1 can be represented in the form ! 
TrDrf = a0(f) + f(r) Br. 

This follows directly from (1.7). By Corollary 1.2 we obtain the interesting estimate 

II! - a0(f )II :5 liBr il i IIrII ^ 2(1 - 21r)1 IIrII for! € c( P)	C 1 (r ^ 2). 

2. The Krylov - Lanczos decomposition 

It is known that for a function f€ c 2ç (r E N) the corresponding Fourier series converges 
rapidly (see Corollary 2.3). Unfortunately, there are smooth functions f € C'(P) - for 
example algebraic polynomials - whose Fourier series converge extreme slowly. Since 
very often a given function f  C T(P )does not fulfil the boundary conditions (1.1), it has 
been proposed by A.N.KRYL0v and by C.LANcz0s [11] to use an algebraic pre-approxi-
mation h to !(constructed by two-point interpolation), such that the remainder g f - h 

belongs to C'(P) n C 1 and has a rapidly convergent Fourier expansion. Choosing h = Fr!, 

the Krylov - Lanczos method is an immediate consequence of the Taylor formula (1.7). 

Theorem 2.1 [2]: If fE C ( P) ( r ,0!! 1), then we have the Krylov - Lanczos decompo -
sition 

! = F, f + a, (f )  
+	IkI>o (j ak(rk, 

where Fr! is the algebraic polynomial 0.5). 

Proof: From (1.2) and from Lebesgues bounded convergence theorem it follows that 

f(r) , Br = f (r) , br =	IkI>o (ik)-ak(f)ek 

Then, by (1.7), we obtain immediately the assertion. In the case r z 2 we get the estimate 

II! - a0(f ) - Fr! II !^ IiBr II i lif( r)II ^ 20 - 21_r)1 IIfII for f€ c(P 

This completes the proof I
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Remark: A similar method can be applied for accelerating the convergence of eigen-
function expansions associated with self-adjoint boundary-value problems [13, 141. 

For a E N and f E C( P) let us denote by S,3 I the n - th Fourier partial sum 

Sf 
=

ak(f)ek. 

It is known [7] that the norm of S: C(P) ` C( P) can be estimated by 

IISn IIS

	

- + —j lnn	 (2.1) 
It 

Then we obtain the following error estimate with respect to the uniform norm. 

Theorem 2.2: If  € C r(p) (r a 1) and g f - F,. 1 f, then 

1 1 g - S,3 g II :5 .L(_ +	Inn (n + 1)-.r IIf( r )II forall n €N. 

	

2	TE 2	) 

Proof: Let 7,, be the set of all trigonometric polynomials p of degree p s a. By Theo-
rem 1.1 we have g € C 2 . Let p € 9. n be the best approximation to g with respect to the 
uniform norm. Hence for E,3 (g), the n-th degree of approximation of g by trigonometric 
polynomials, it follows that E(g) = inf {IIg - p11: p = h g - p * 11. Note that p* = S,, p'. 
Then we obtain 

hg - S,, g II :5 Ihg - p 'hI	IIS(p' - g )Ih :^ (1 + hIS, II) hhp - g Il = 0 + US n II)E(g ). 

Using Jackson's theorem for g€ C 2 (see [101) we get the estimate 

E(g) :5 (n + i) - ' hlghI	(n €N) 

with

g (r) = (r) - a 0(f) - (2it)	( 
f ( r )(0) - f ( r)(2))B 

By hIg'tI 5 3 11f	II we obtain the stated error estimate U 

Remark : Analogously, we can prove error estimates with respect to an L° - norm (1 
P	'). A corresponding asymptotic error estin3ae in the uniform norm can be found in [2]. 

In the case f  C	(r N), Theorem 2.2 yields the following known result. 

Corollary 2.3: If 1€ c 2ç (r € N), then we have the estimate 

hIfSnfIH_(_4jlnn)(n+1)-nIhf(1hh for all n€N. 

Now we formulate an analogous result for accelerating convergence of trigonometric 
interpolation. For this end we consider the trigonometric interpolation operator L,3 : C( P)
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--ir T,, defined by 

n
a,'(f)ek, a,'(f) 

k=-n	 - 2n+ 1 !:30 

(a ,( " ) - discrete Fourier coefficients)with h = 27t/(2n + 1). By [5], it follows that for n 2: 4 

the norm of L,, C( P) - C( P) can be estimated by IIL II ^ 3/2 + (2 /it)lnn. 

Theorem2.4: If ft C(P) (r N) and 	f - F,.. 1 1€ C, then we have the estimate 

h g - L,,gII s
+
 - ln n)( n + IY T hIf( r)II for all n ^ 4. 

The proof is similar to that of Theorem 2.2 and is omitted here I 
The same procedure can be also applied to an efficient computation of the Fourier 

coefficients and of the discrete Fourier coefficients for a given smooth function. 

Theorem 2.5: If  E C r (P) (r€ t'J) and g = f - F,, I f, then we have 

r 
a(g) = ak(f) - - k--

	

	I (fio - f(i)(27t))( ik) 
j-1	 (k € Z) 

j=o 
F 

a4(g) = a"(f) - -L	(fU)(0) - f (i) (27t)) ak(")(BJ.l) (Iki s n). 2it 

Further, if b'(f) =a (n)( g ) , ak( F,. +i f ), then 

b'(f) =	n)( f ) +	 - fU)(2))(00-i 1 - ak()(BJ,l)) 

	

is a better approximation of the Fourier coefficient a k( f) than a	( f): 

ak(f) - b, -)(f )I --^ 3it( n + l ) - r II! (r)hh. 

Proof: The representations a(g), a'(g) and bk'kf) follow directly from (1.2) 

and (1.5). By Theorem 1.1 we have g € C. Let p € C7 be the best approximation to g 

with respect to the uniform norm. By Jackson's theorem [10] we get for n € N the estimate 

h g - pII s-- ( ,, + I)hIg'hI 5 
3ir (r + iYr IIfII. 

Note that ak(p) a,'(p) (1k I --^ n). Hence we obtain 

ak(f) - b(f )	ak(g) - a, " )(g) 1 :5 a,(9 - p	+ Ia(p - 

s 2 Hg - p II s 3ir(n + i y If	Il. 

This completes the proof I
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3. Parametric extensions 

The above one - dimensional approach to the Krylov - Lanczos method can be extented 
to the bivariate case by Gordons blending function method [2, 4, 6]. Let Q = Px P. For r 

N0 , let Cr.'(Q) denote the set of all functions 1: Q-' C with continuous partial den- 
vatives 1(j,k) (j, k = 0.....r). Further, C21 2 , is the set of all f E C""(Q) with 

f(ik)(o) = f(J.k)(2,) , f(i.k)(x,Q) = f(J.k)(x2) 

for all x,y € P and j,k = 0.....r. We write C(Q) and C2,2 instead of C°'°(Q) and 
C t;, respectively. The uniform norm on Q is denoted by 

The parametric extensions of D are defined on Q by 

D'f - f(1,O) + a(f - f(1O))	(1 € c 1 '°( Q')), 

D'f = (O.1) + a;(f - f(O.1))	(f € C°' 1 ( Q)), 

where 

a(f)(y)	J'pf(u,y)du ,	a'(f)(x)=-tfpf(x,v)dv. 

Further, the parametric extensions of Tare explained on Q by 

(Tf)(x,y) -Jp (b1 (x - u) + l)f(u,y)du
(1€ C(Q)). 

(T"f)(x,y)	fp ( b1(y - v) + l)f(x,v)dv 

Finally, the parametric extensions of F1 are introduced on Q by 

(F'f)(x,y) -(f(o,y) - f(27t,y))Bi(x)
(f€c(Q)). 

(F1"f)(x,y)	 2,7C 	- f(x,2it))B1(y) 

Note that D'T' = D"T" = I, F' is the initial operator of D' corresponding to T' and F' is 
the initial operator of D" corresponding to T". Further, we see that parametric extensions 
commute, i.e. D'D' = D -D', T'T" = T"T', F1'F" = F1"F1', D'T" = T-D, D'F" = F"D, 

For example, for I E C( Q) we have 

47t( F1'F'f )(x,y) (1(0,0) - f(0, 2it) - f(27r, 0) + f(27t, 270) BI(x)BI(y) 

Now we consider the operators 

D D'D": C1'1(Q)-C(Q) , T' T'T": C(Q)-€C1'1(Q)n C2 

and the Boolean sum operator 

F1 = F1, 4, F1" = F1' + F1" - 

Then these operators are given for related functions I by
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Df = f (1	+ a(f( 0 . 1 ) - f (11)) a;(f( 1 . 0 ) - f(l 1)) +	- f(O.l) - f (10) + f(l .1)), 

where 

4it 2 a00(f) = JJ0f(u,v)dudv, 

and

4it 2 (Tf)(x,y) jJ0 (bi (x - u) + 1)(bi (y - v)+ l)!(u,v)dudv, 

2it(F1 f )(x,y) = (f(O,y) - f(2t,y))B i( x) +(f(x,O) - f(x,2it ))B1(y) 

- +(f(o,o) - f(O,2it) - f(2ir,O) + f(2it,2t)Bi(x)Bi(y). 

Since DTI= D'(D"T")T'f D'T'f !holds for all ft C ( Q ), the operator Tis a linear 

bounded right inverse of D. For f E C 1 - 1 ( 0) we get the Taylor formula TDf = f - F1 f by 

TDf = T'(T"D")D'f = T'(I-F1')D'f T'D'f -(T'D')F1"f 

= I - F1'f - F1"! + F1'F1"f = f - F1f. 

Thus, F1 is the initial operator of D corresponding to T. Further, I - F1 (I - F1' ) ( I - F1") 

is a projector of C(Q) onto C272.For ft C 1 ' 1 (Q)we obtain the Taylor formula f F1f 

+ TDf with 

(TD!)(x,y)	a00(!) + jj0 b1 (x- u)f(1o)(uv)dudv 

+ T 1-j fj'0 b1(y v)f(°U(u,v)dudv 

+	jJ'0b1(x- u)b1(y -v)f"(u,v)dudv. 

In the case ft C 1 ' 1 ( Q) n C22,r we have F1 ! = 0 and hence [8] 

f(x,y) (TDf)(x,y) = -a00 (f) +a'(f)(x)+a0'(f)(y) 

+	jjJ0 bi(x - u)b1 (y - v)f1,1 ku,v) du dv for (x,y) 

Considering the operators D': Cr(Q) c(Q), 1'": C(Q ) -+ C"(Q ) n 
for r € N, it follows that T r is a linear bounded right inverse of D t The initial operator F. 
of DT corresponding to T r is given by 

r-1 
Fr = I - TD' = 7, T JF1 D J on 

j=O 

From D = D'D", T= T'T" and F1 F'1' F1" it follows that 

Fr = F; ± Fr- and IFr(IFj')(IFr") 

with
r-1 

Fr'= i - ( T')r (D') r = 5 , ( T')JF1'(D')-' on 
j=O 

and
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r-1 
F; = i ( T") r (D) =	( T")J F"(D")	on COT(Q) 

j=o 
This yields, by (1.5),

r- 1 
2yt(F;.f)(x,y) =	(r(10)(o,y) - fU°)(2t,5))B+1(x) 

j=o 
r-1 

+	(fok(.,c) - f(Ok)(x,2))Bk+l(y) 
kO

(3.1) r-1 r-1 
-	 (1uk)(0) - f(Jk)(02) 

27t - 
j=O k=O 

- (i. k)(20) + rU k)(27t,2Tr))BJ*1(x)Bk1(y) 

for 1 E C r . T(Q) , so that F,. and I -F, can be extended to C r -li(Q) . Thus, F, is a projec-
torofC1r_l (Q)onto kerD' Further,! -Fr is a projector of C rl. (Q) onto 

An application of the abstract Taylor formula (1.6) yields the following 

Theorem 3.1 (see [21): For every f € C"(Q) (r€ N) we have 

I = F,.f+ TDf	 (3.2) 

with

(T'D'f)(x,y)=

	

+Ji2fJ0 br(Y v)f o (u,v)dudv	 (3.3) 

+ -'--fJ0 br(x - u) br(Y - v)f(rr)(uv) dudv. 

Note that this representation is valid on the whole of Q unlike a corresponding result 

of [2]. In the case ft C'(Q) n 1 (r€ N) we have F,.! = 0 and 

f(x,y) (TrDrf)(x,y) - a00(f) + a'(f )(x) + a(f )(y) 

+Jjbr(x-u)b,.(y-v)f(u,v)dudv for(x,y)€Q 

(see [81) and hence for r 2- 2 we get the estimate 

hf + a( f ) - a(!) - a'(f )II slBr 11 
i 
2 11f(M11 :s4(1 - 2 1 - r)_2 II! ''ii. 

4. Bivariate Fourier approximation 

It is known [9] that for a given function 1€ C2 ,,'(r € N) the corresponding Fourier co-

efficients 

akl( f ) = 4T2 JJ'Q f(u,v)e kl(u,v)cIudv	(k,1 € Z)
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converge rapidly to 0 for I ki + Ill - -.Here we use the notation ekj(x,y) = e k(X )e1(y). 
The asymptotic behaviour of the Fourier coefficients depends on the order of partial deri-
vatives of f having a continuous periodic extension to R2 . To obtain an acceleration 
method of the Fourier expansion for a given function f E Cr(Q), we have to specify 
a function h e C"(Q) such that f - h has this extension property. By Section 3, we can 
choose h = Fr ! or h = Fr+ i !. This yields f -Fr! £ C 1 and f - Fr*if €

rr 

respectively. Then the Krylov - Lanczos method for bivariate Fourier expansions follows 
immediately from the Taylor formula (3.2). 

Theorem 4.1: if 1€ Crr(Q) (r ^ 1), then we have the Krylov - Lanczos decompo-
sition 

f(x, y ) = (F;f)(x,y) + a00(f) 

•	(ik)_ra(f(r0))ek(x ) +	(il)_a01(f(Or))ej(y) 

	

IkI'o	 IJf>o 
' 

	

• (_l)r	i	(kl)	akl(f (r,r) )ekl(x,y), 
IkI'o 1110 

where Frf is the blending interpolation function (3.1). 

Proof: From (1.2), it follows for r  N that 

br(x) b(y)	 ( )J(jçj)_reJ(x,y) for all (x,y) € 1R2 
IkI'o III>o 

Hence we obtain 

Jjbr(X u)f (r. o) (u , v)dudv = 42	: (ik)akO(f(r.0))ek(x), 
0	 IkI>o 

Jj br(Y - v)f (Or) (u , v)du dv = 4ir 2	() ra0j(f(O.r))ej(y) 
0	 Iflo 

.ffbr(x - u) b(y - v)f"(u,v) du dv 
0

	

(_1)r42	i: (kl)r akl( f ) ekl(.v,y) 
Iko I1I>o 

for! E Cr.(Q). Using (3.2) and (3.3), we get the assertion U 

Remark: The same method was applied in [1, 3] for accelerating the convergence of 
a bivariate sine series expansion. 

For n E No and f € C (Q ) we introduce the Fourier partial sum 

S 11 ,,f =
k-n 1=-n
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If-we denote by S, C(Q) - C(Q) and S,;: C(Q) - C(Q) the parametric extensions 
of the univariate Fourier partial sum operator S: C(P) - C(P), then we conclude by 
(2.1) that S,11,	s, s,;, II	II = II	II = IIS,II (see [41) and 

ii sfl ,, 'I	IIs, iii s; II -'q(	+	In )2 

Finally we obtain the following error estimate with respect to the uniform norm. 

Theorem 4.2: If ft Cr.r(Q) (r E N) and- g =f - F,,, f, then 

hg - SghI :5 c,, (n + lTM(g) for all n EN, 

with
7t2\ f13	12	16 =( 

it+—)---+--j-Inn +_j_(Inn)2) 

and

Mr( g) = max (u g(O. r)lI k (r,O	(r, r)II) 

Proof: By Section 3 we know that g E C22 . Let	denote the set of all bivariate 
trigonometric polynomials of the form 

n	11

	

1 ,J e kl	(ak) EC). 
k -n  

The infimum of 1jg - p hi for allp.t T is the degree of approximation E,111 (g). Bivariate 
Jackson estimates can be obtained by treating the variables successively. This tensor pro-
duct approach leads to rather sharp constants 

E 1111 (g) :^	(n + 0 r hIg( r . 0 )hi	(n +1)_rug (O ,r) II -!E-2 (n +1)_ 2r iig( r r)Ii 

:^ OT + 70/8 )( n + i)_TM(g) (n €N). 

Let	be the best approximation to g with respect to the uniform norm. Then 

h g - p '11. Since p = 5,,,, p, we obtain 

hg - S,,g Ii ` hg - piI + hbS(p - g )hl :5 (1 + US nn II)E(g) :5 c(n + l)_rM(g) 

for all n € N. By (3.1) and the proof of Theorem 2.1 we conclude that 

h'li (g ) !r 411! (1,1)11 + max (II! (0.1)11 , II F (1.01) 

M(g) :5 40 - 2y 1 hhf( r. r )II + max (uhf (O.r)II 11f (r,0)11) (r a 2). 

This completes the proof I 

Note that an analogous procedure as in Section 2 can be applied to an efficient com-
putation of the bivariate Fourier coefficients and of the discrete .bivarjate Fourier coeffi-
cients for a given smooth function. 

17 Analysis. Bd. 10. Heft 2(1991)
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