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The concept of curvature-minimizing is extended to parametric polynomial splines of de-
gree two. In contrast to the non-parametric case the resulting smooth curve is invariant 
under rotation of the co-ordinate system. Moreover, for a certain choice of the parameters 
(defining the functional to be minimized) it may be interpreted as a minimizer of the strain 
energy. For the case that the given data are points on a sufficiently smooth curve there is 
given an 0(11 2 ) error estimation (h - steplength). 
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1. Introduction. The approximation of plane curves by interpolating parametric polynomial 
splines of degree three is a method well-known and often used (see, e.g., HANNA, 
EVANS and SCHWEITZER [6] and the references cited there). The usual, i.e. non-par-
ametric, polynomial splines of degree two have been studied in papers by STEcKIN and 
SUBBOTIN [12], METTKE, PFEIFER and NEUMAN [11], MAESS [8,10] and others. 
Very often the main interest is in interpolating polynomials or polynomial splines preser-
ving some characteristic properties of the given data, such as convexity or monotonicity 
(cf. BERG [1-31) or possessing certain extremal properties, for instance a minimal cur-
vature (cf. DIETZE and SCHMIDT [41) or minimality in the sense of BERG [2]. 

In the present paper we extend the concept of minimizing the curvature (applied in 
[8, 101 to the common spline interpolation of degree two) to the parametric case. An in-
terpretation of the functional used is given in Section 2. Our main results are the follow-
ings: the new concept is a generalization of the minimization of the total curvature 
considered in [8], but in contrast to the non-parametric case the resulting curve is invari-
ant under rotation and thus preserving symmetry (Theorems I and 2 of Section 3). Finally 
we extend the error estimations from [8] to the parametric case. 

In order to keep the paper self-contained we recall the basic results from [8-10] 
about non-parametric quadratic splines minimizing the total curvature. We define 

p(x)pn(x) for x€[.vL1,x], n l(1)N,	 (1) 
by

Pn(Xn_i 1 th n ) = yfl -i + hn dTi I t - + (g - dn 1 )hnt 2 ,	 (2) 
0!5t:r1,h,i=xn_xn_j,gn=(yn_yn_1)/hn, 

with certain unknown parameters d,. For given data points (x,1 ,y)€ R2 , n = 0(1)N we
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assume that (x, 1 ) is a strictly monotonous sequence, i.e., 

ll	x0 < x 1 < ... < XN	 (3) 
is a partition of [x0 , XNI. The parameters dn are determined by the following conditions: 

(i) The first derivative of p is continuous, p € C'[xo,xN]. 
(ii) The function p minimizes the functional 

N X 
Q(P) =	 (with certain weights (i > 0).	 (4) 

From (i) we obtain the relation 

dn = 29 - dm1 , fl = 1(1)N,	 (5) 
the starting value d0 being uniquely defined by (ii) as 

	

N	 N 
do = g1 -	 -g1),a	 (6) 

	

J 2	 :1=) 

The special choice of the values Wn = I in (4) reduces Q to the functional from Holladays' 
well-known theorem on cubic splines. However, instead of minimizing the L 2 -norm of the 
second derivative we may minimize the L 2 -norm of the approximated total curvature or 
the approximated strain energy by choosing w n = (I +g 2 ) 3 or w. = (1 i g 2 ) _ 5'2,respect -
ively. 

Especially the physical interpretation of the last choice of the functional together 
with the computational ease makes the method attractive for applications. Indeed, our 
numerical experience affirms that the quadratic splines defined above are considerably 
cheaper than cubic ones and, moreover, they are well-suited for convex data yielding 
even "visually smoother" results than interpolating splines of higher degree (cf. Figure 1 
and [10]). 

Fig. 1. Interpolation a) by quadratic splines with minimal total curvature, and 
b) by natural cubic splines 

However, there are drawbacks of the method, too. So the interpolation is not invariant 
under rotation, although in the case of w (l +g2)_52 the rotation invariant strain en-
ergy is approximated. For larger rotations, and generally for non-monotonous data ({x} 
as well as {y,)), the method breaks down at all. For this reason a generalization is needed, 
especially if 

- closed curves and/or 
- curves exhibiting some symmetry to be preserved
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are considered as, e.g., for the interpolation of isolines or other graphical tools for diverse 
applications. In the present paper we use the concept of componentwise parametric inter-
polation by polynomial splines of degree two. For this case we choose parameter sets and 
weights in such a way that 

- computational ease and physical interpretation are preserved, 
- invariance under rotation and robustness are gained, and 
- error estimates in terms of the steplength h of the same order as in the 

non-parametrized case (cf. [81) may be given. 
We conclude the paper with some refinements, so an iterative process for reparalnetri-
zation and an interactive approach are proposed. 

As an illustration of our results - closely related to the dedication of the paper - 
Figure 2 shows some curves computed by parametric quadratic spline interpolation. In all 
cases (with exception of the "3") 5 points PO , ... . P4 were given, with P4 = P0 for the "0" 
and P4 = P1 for the "6" and the "9", respectively. The "3" consists of two 4-point interpo-
lations computed independently because of the singularity. The digits "6" and "9" demon-
strate the rotation invariance. Note that the smooth closed curve for the digit "0" is 
obtained without a C 1 -condition at the point P0 = P4. 30.o590 

Fig. 2. Some digits interpolated by parametric quadratic splines 

2. Coniponentwiae quadratic Interpolation. The idea is very simple and used frequently in 
the literature (see, e.g., [6]).We define a partition of a parameter intervall [0, T] by 

Il ' : 0	t0< ... <tNT 

and calculate separately the two polynomial splines x and y satisfying the conditions 

(i) X € xdeg1[0,T],	€ cy [o,T] , xdeg, ydeg E C1,2},	
(7) 

(ii) Q'(x)	mm , QY(y)	Thin 

with Q' and QY defined analogously to the functional Q (see (4)) by 
N 

(2 -(X) =	 .(t)2dt and QY(y) =	 .V(t)2dt.	 (8) fl1	tfl	 fl1	tflj 

Degres of freedom of this method are the choice of the partition ll and of the weights 
u and	The nontrivial choices of the weights w,, in Section 1 were motivated physi- 
cally. In the present case, for arbitrary and wK, the functionals QX and QY are lak- 
king in any physical interpretation. However, for weights equal to I and a proper choice 
of n. , the sum of both functionals
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Q xY(x , y) Q x(x)+QY(y)	 (9) 
allows the interpretation of an approximative strain energy, thus being a generalization of 
Q(p) with w,, = (1 +g"2)-512 . To make this clear, we recollect that the square of the cur-
vature can be written in the form 

= (.y	 +.2)3 = ( 2 + . 2)(l - COS 2p)/(,2+y2)2, 

where cos p is defined by 

COS (P = (,	+3>j)/[(,2 +2)(2 +52)]1/2 

Hence p is the angle between the tangent direction and the direction of the acceleration - 
which is just equal to 7t/2 if t is proportional to the arc length. If we parametrize by the 
arc length, then we obtain 

c(t) 2 = x(t) 2 +y(t) 2 (10) 
which motivates the interpretation above. However, for polynomial splines x(t),y(t) in 
general it is impossible to demand (x2 +>2)1/2 = const = 1. But for practical purposes we 
can choose the cumulative chordal distance (as, e.g., in the case of parametric cubic 
splines, cf. [61) 

to = 0, t, = t,, 1 + ((x,, - x) 2 +(y _yj)2)i/2 , n = 1(1)N ,	 (11) 
so that (10) holds approximately. A refinement of this choice will be proposed in the algo-
rithm in Section 5. If one of the conditions 

I2	- ii	i ,	..ii +j I	((.	+2)(	2 

is violated in some interval It-1,t], then rareness of data is indicated and additional 
points should be inserted. 

3. Properties of the parametric splines. First let us show that for monotonous {x} the 
parametric splines defined above, with (7), (11) and weights equal to 1, belong to the class 
of curves defined by (1) - ( 4) if a proper specification is used. 

Theorem 1: Let the partition 11 t be defined by (11) and let the x,1 satisfy the mono-
tonicity condition (3). Let xdeg = 1, ydeg = 2 and wZ I. Then the minimizer of the 
functional (9) with Q(, Q Y from (8) yields the same curve as the quadratic spline p mini-
mizing(4) with the weights Wn = 0 

+g)3'2• 

Proof: Since	= 0 and x = x,. 1 +(t - t,1)(i +g,)_1/'2 it follows y =j2(1 +g,)1/'2

and y' y(1 + g,,2 ). Thus 

X 1	 tlj	 tn 

f y' 2 dx = fy 2 (1+g, ) 2 dt =(l+g,)3'2f 2dt. 
x,,_ 1	r...j	 t,,_ 

Consequently, 
N +g,)312 

5 y ' 2dx =	j•[32 +2]dt 
n = 1	xn_i	n=1 tn_i 

and the assertion follows U



Parametric Quadratic Splines 259 

Now, we are going to study the behaviour of the interpolating curve under rotation. 
We assume here and later on that rI t is an arbitrary, but fixed partition of the parameter 
interval and that the weights are constant and equal to 1. The quadratic splines x, y de-
fined by (7), (8) (with xdeg = ydeg = 2) and interpolating the data x,,, y,, n = 0(1)N, then 
take the form 

x(t _1+th ) = x - +d" h -c +(gX_ d11 1 " )h t2 
71	 11	fl 1	71 1 fl	fl	 (0 :5 t s 1; n = 1(1)N). 

y(r,11	h 71) = y 1 +d' 1 h71 t ^(g- d1)h71t2 
Here

gnx 	gj'(y71-y711)/h71, 
and

d' = 
N  
71=1 (-1Yc71 g' , d,' = 2g" - dX 

O

	

71	fl-I'	 (12) 
d	N (-1)71c,1g', dK r2gY-dY 1 

	

71	11' o	:1=1 

where the c,, are obtained from (6) by rearranging the sum and using w = wy = 1: 
r	N	1/N 

c71 = [1/h,, + 2	1 /hj /	1 /h 
J = 11'l	J = fl -•-1 

Using these formulae it is easy to prove the following 

Theorem 2: Let x( t), y(t) denote the above defined quadratic splines, interpolating 
the data x71 , y71 , n = OWN, and let X'( t), 3( t) denote the quadratic splines, defined in the 
same manner, but interpolating the rotated data 

xv,, =x,,cos-y,,sina, 3,, =x,,sincxy,,cosa. 

Then for each t E [0, T] it follows 
.(t)x(t)cosz-y(t)sin a and 3-(t)x(t)sina+y(t)coa. 

Proof: The step sizes are invariant under rotation, since H is assumed to be fixed 
(note that for ll defined by (11) this assumption is fulfilled). Due to the linear dependence 
the slopes g,,' , g,,Y "rotate" in the same manner as x,,, y,,: 

	

= (,, -.,,,)/h,, = g,'cosa -gsina,	
(13) 

= (., - j,,..3/h,, gn' s i n a +g'cosiz. 

The same is true for the parameters d,, dK. For instance we obtain eassily from (12) and 
c,, the equalities 

=	(-1Y)c,,	=(-1)c,,(gcosa - gny 	d' cos a - d(sina, 

and
= 2	-	= d' ,cos - d'sin	 (14) ,. 71	fl-i 

Now the assertion of the theorem follows immediately from the representation 

-i + rh,,) = x,,	+ d,,_ 1 h,,c + (g,, - d,, _ 1 )h,,c	 -€

and the corresponding one for y(t,, j -'t h,,) by inserting the rotation formulae (13),(14) 1
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We conclude this section with the remark that Theorem 2 remains valid for general-
izations to Euclidean spaces of any dimension. 

4. Error estimation. Now we assume that the interpolation nodes (x v , ye ), n = 0(1)N, are 
points from a smooth plane curve 

= {(u(s), V(S)): 0 :^ s !^ S u,v € C3[0,S]}, 

where s denotes a certain parameter, for instance the arc length, with the partition fly: 
Ors0 <s 1 <... < SN. The interpolation nodes then read as u(s)=x,v(s) y,. By C 
{(x(t),y(t)): 0 s t :5 T} we denote the interpolating curve, where x and  are polynomial 
splines determined separately by (7), (8) and (11), with xdeg ydeg = 2 and weights ( 

= 1, n = 1(l)N. Each point of the curve Cmay be written in the form 

(u(s1+oh),v(s1+oh)), 

In the same manner we write the points of C in the form (x(t . 1 +k), y(t1+ok) 

1v(tn-t	ii'' 
where fl: 0 = t0 <... < tN is a second given partition (cf. (11)). Since C interpolates 0, the 
points (x(t), y(t,,)) and (u(s),v(s)), n = 0(l)N, coincide. In each subintervaiwe asso-
ciate the point Ps., -I + øh,1 ),v(s 1 +oh)) of the curve Cwith the point (x(t_ 1 +ok), 
y(t - + ok,,)) of the curve C. So we get a mapping between the parameters s and t which 
is linear on each subinterval: 

(t - t 1)/k = (s - s	 (t € [t	, ta], s E [s .j , 
and the functions u, v become functions of the parameter t: 

U(S) = u(s 1 (t - t 1 )h/k) 	17(t), 

V(S) = v (s
11 -1 (t - tn_i)hn/kn) 

Using the error estimation [7] separately for x(t) - 17(t) and y(t) - (t) we get 

Ix(t) - 17(0I s C'k 2 , Iy(t) - c(t)I S Ck2, 
with

CxM2>+TM3), C-"M(+TM(, k= m	(t-t1), n = iN 

where M1> , Mj Y are bounds for the i-th derivatives of ir and V, respectively: 

= max	sup	I17I = H' max	sup	Iu 
:i = i(i)N t [t - t,_ 1 J	 ,i=i(i)N sE[S	Sj, 

- j] 

H 
= 

Note that even in the case C Uwe may not expect generally the equalities l x ( t ) - 
= 0 and Iy(t) - (t)I = 0. 

combining the results of [7]with some estimates given in [9] one can obtain bounds 
for the error in other norms, especially norms containing the first derivative (Ft. 
STRAUSS, private communication).
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5. Concluding remarks. For the interpretation of the functional used as a strain energy it is 
essential to have satisfied the equality 

= 1,	 (15) 

at least approximately. Especially, for larger deviations from (15) there may occur sin- 
gular points with both x, yvanishing. It is easy to see that for quadratic x and y such sin-
gular points are always connected with a corner of angle 0. The occurence of such situ-
ations seems to be very unlikely, since both of the coordinates should exhibit a local ex-
tremum at the same point of a certain subinterval of the given partition, but nevertheless 
if

- there are rare data points and 
- the data points possess some special symmetry, 

then the relevance of corners was practically observed. For these cases we apply the 
following heuristic procedure: 

Step 1: Choose as an initial partition that one defined by the chordal lengths (sf. (11)). 
Step 2: Calculate the parametric quadratic spline interpolant with the actual partition 

and weights equal to 1. 
Step 3: Define a new partition of a new parameter interval basing on the arc lengths 

of the spline interpolant. 
Step 4: If there are major changes in the partition, then go back to Step 1, else END. 

We are lacking in analytic results about the convergence of this procedure, but the behav-
iour observed indicated a rather fast convergence (3...5 cycles) in all cases considered. 
For the limit curve the relation (15) holds in the sense of an integral mean value for each 
subinterval of the terminal partition. However, for practical use an interactive approach 
seems to be best. For unacceptable deviations from (15) a completion of the data as well 
as a splitting into several interpolating curves (without the C 1 -condition) should be at the 
disposal of the user. We close the paper with an example to which such an interactive 
implementation of our parametric quadratic spline interpolation was applied. The data 
points (x,, , yr ), n = 0(1)55, are points on the boundary of a plane domain C), for which a 
boundary value problem from marine hydrodynamics is considered in [11]. The splitting of 
the interpolating curve is motivated by change of type of the boundary conditions or by 
singularities of the estuary. 

'J n 

Fig. 3. Interpolation of the boundary of a bay of the Baltic Sea.
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In this context it is interesting to note (as one of the referees remarked) that parametric 
quadratic splines yield algebraic curves of degree two. This fact makes our concept com-
patible with second order isoparametric finite elements (c.f. [121). 
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