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A Generalized Commutativity Theorem

B. P. DuGcGAaL

Let H be a complex separable Hilbert space, C the class of contractions with C.o com-
pletely non-unitary parts, Co the class of A ¢ C wich satisfy the property (called proper-
ty (P2)) that if the restriction of A to an invariant subspace M is normal, then M reduces
A, and let C, be the class of A ¢ Co with defect operator D, being of the Hilbert-
Schmidt class C, and which are such that either the pure part of A has empty point
spectrum or the eigen-values of A are all simple. It is known that if A ¢ C, and B ¢ <,.
then AX = XB implies A°X = XB”. This implication fails to hold for the case in which A ¢
C. It is shown here that if A ¢ C and B”¢ C,. then AX = XB implies either (i) Alfan X and
(Blker*x)® are quasi-similar C, contractions (with B" ker*X normal), or (ii) A”X = XB®.
Let C! denote the class of contractions E satisfying property (P2), the inclusion Dgp e C,
and which are such that the pure part of F has empty point spectrum. Choosing the inter-
twining operator X to be compact it is shown that AX = XB implies A°X = XB® for A ¢ Co
and B¢ C! Recall that quasi-similar operators need not to be unitarily equivalent (or,
even, similar). We show that if A ¢ C, and B ¢ Clare quasi-similar with one of the im-
plementing quasi - affinities compact, then A and B are unitarily equivalent normal con-
tractions. Also it is shown that a compact operator A € C! is normal.

Key words: commutativity property, contraction, Hilbert - Schmidt operator, quasi -similar
operators
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1. Introduction

We consider operators, i.e. elements of the algebra B(H) of bounded linear transformati-
ons, on a complex infinite -dimensional separable Hilbert space H. Given Hilbert spaces
H, and H,, and operators A ¢ B(H,)and B ¢ B(H,), define the commutator C(A,B):
B(H,,H,) > B(H,,H,)by C(A,B)X = AX - XB. Let C denote the class of contractions
with C., completely non-unitary parts, C, the class of contractions A ¢ C which satisfy
the property

(P2) if the restriction of A to an invariant subspace M is normal, then M reduces A,

and let C, be the class of contractions A ¢ C,with defect operator Dj =(1- A%A)*/2 being
of the Hilbert-Schmidt class C, and which are such that either the pure part of A has
empty point spectrum or the eigen-values of A are all simple.

The classical Putnam - Fuglede Commutativity Theorem says that if A and B are nor-
mal operators, then C(A,B)X = 0 for some operator X implies C(A°,B*)X = 0. Generali-
zing this result it has been shown in [5: Theorem 7] that the pair (C,,C,) has the Put-
nam - Fuglede Property, i.e., given A ¢ Coand B¢ C,, if C(A,B)X = 0 for some operator
X, then C(A*,B°)X = 0. Here the hypothesis that the elements of C, satisfy property
(P2) is essential in as much as that the pair (C,C,) fails to have the Putnam-Fuglede
Property: There exist con tractions 4 ¢ C and B*¢ C,. and an operator X, such that
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C(A,B)X = 0, B*lker'X is normal, and AlfanX and (B “ker!X)" are quasi-similar C,
contractions but C(A%,B*)X # 0 (see the example in [S: Remark 1]). In this note we show
that this is precisely the way in which the pair (C,C,) may fail to satisfy the Putnam-
Fuglede Property, i.e. we show that if A ¢ C and B¢ C, are such that C(A4,B)X = 0 for
some operator X, then either AlfanX and (B ®lker'X)® are quasi-similar C, contractions
(with B *lker‘X normal) or C(A%,B*)X = 0. The hypothesis that the elements of C,, in the
pair (C,,C,), have C., completely non- unitary parts can not be replaced by the hypo-
thesis that they have C,. completely non-unitary parts. By requiring the intertwining oper-
ator X to be compact it will be shown that C(A,B)X = 0 implies C(A°,B")}X = 0 for con-
tractions A € C, and B "¢ C*, where C! is the class of contractions E such that E satisfies
Property (P2), Dg ¢ C, and the pure part of E has empty point spectrum.

Recall that quasi-similarity of operators does not in general imply their equivalence
(or, even, similarity) even in the case in which the implementing quasi-affinities are both
compact. We show that if A ¢ C, and B e C! are quasi-similar with one of the implemen-
ting quasi-affinities compact, then A and B are unitarily equivalent normal contracti-
ons. A compact contraction A ¢ C, such that D, € C, and the pure part of A has empty
point spectrum is normal [5); we show here that this result extends to all Ae C*.

2. Notation and terminology

In addition to the notation and terminology already defined we shall in the following de-
note the range, the closure of the range, the kernel and the orthogonal complement of the
kernel of an operator A by ran A, ran A, kerA and ker'A, respectively. The restriction of A
to a subspace M will be denoted by A|{M. The spectrum and the point spectrum of A will
be denoted by o(A) and o,(A), respectively. The open unit disk (in the complex plane)
will be denoted by D and C will denote the unit circle. The Fredholm index of A will be
denoted by ind A, and dimM will denote the dimension of the subspace M of H. We say
that the operator X is a quasi- affinity if both X and X * have dense range.We shall denote
the fact that C(A,B)X = 0 for some operator X with dense range (injective operator X)
by B 44 (respectively, B iA), and we shall denote the fact that C(A,B)X = 0 for some
quasi-affinity X by B < A. We say that A and B are quasi-similar, denoted A~ B,if A < B
< A. The operator A will be said to be pure if there exists no non-trivial reducing subspace
M of A such that A|M is normal.Recall that every operator has a direct sum decomposition
of the type normal® pure.

We say that the contraction A is completely non-unitary if there exists no non-trivial
reducing subspace M of A such that AlM is unitary. The contraction A is said to belong to
the class C., (class C.,) of contractions if A" = 0 strongly as n —> o (inf [A*"x|l > 0
for all non-zero x € H). The classes C,. and C,. are defined by considering A”instead of
A, and, for a,B = 0,1, the class C,pg is defined by C4. n C.g. We say that the completely
non -unitary contraction A belongs to the class C, if there exists an inner function ® such
that ®(A) = 0. Recall that if A ¢ C,, then amongst all inner functions ® such that ®(A) = 0
there is a2 minimal one (i.e., one which is a divisor in the Hardy space H % of ali others),
called the minimal function of A [7]. The contraction A is said to be a weak contraction if
the defect operator D (= (1 - A%)*”2) is of the Hilbert-Schmidt class C, and o(A) does
not fill the open unit disc D.
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3. The results

We start by stating some lemmas. Lemma 1 follows from [s: Corollary 4] and Lemma 2 is
[S: Theorem S].

Lemma 1: If C(A,B)X = 0 for some normal contraction A and contraction B¢ C
such that Dge ¢ C,, then C(A*B*)X = 0.

Lemma 2: IfA ¢ C, ando(A) ¢ C, then A does not satisfy property (P2).

Lemma3:Let A be a completely non -unitary contraction of the class C 4 and let B % C,
be a pure contraction. Then there exists no non - trivial operator X such that C(A,B)X =0.

Proof: Suppose that there exists a non- trivial solution X to C(A,B)X =0. Letting E =
Alran X, F* = B *lker‘X and defining the quasi-affinity Y: ker’X — fanX by setting Yx =
XXx for each x ¢ ker‘X we have that C(E,F)Y = 0,where E ¢ C..(and F%e C, is pure).
Clearly F*¢ Cqy; hence, since Dge ¢ C, implies Dpe € C,, F*¢ C, [12: Theorem 1). Now if
op(B‘) n D= Q, then op(F‘) n D= O, and so o(F*)s C [7: Theorem 111.5.1]. This, since
B “satisfies property (P2) implies F ®satisfies property (P2), is a contradiction (by Lemma
2). Hence X = 0 in this case. If, on the other hand, the eigen-values of B "are all simple,
then the eigen-values of F* are all simple. Recall that a C, contraction F* with minimal
function m has a triangulation F*= (f’l-:z ), where the minimal function of F, is a "Blasch-
ke product” m, and the minimal function of F, is a "singular inner function” m, (such that
m = m,m, except for a constant factor of modulus one [7: P: 129]). Since F*has simple
eigen-values, m, has sif‘nple zeros. The eigen-spaces corresponding to distinct eigen-
values of F, describe a "basic system” (in the sense of [1]) of invariant subspaces of
F, and the restriction of F, to each of these subspaces is normal [7: p. 135]. Since
F " satisfies property (P2) implies F, satisfies property (P2), these invariant subspaces
reduce F|, i.e. F, is "reductive”. Hence F, is normal and F*= F, @ F,. But then B “has a
normal direct summand - a contradiction since B is pure. Hence, once again, X=01

Theorem 1: Let A ¢ C and B*« C, be such that C(A,B)X = 0 for some non-trivial
operator X. Then ejither

(a) E=Alfan X and F =(B "lker*X)*are quasi-similar C, contractions (with F normal),
or

(b) C(A%B*)X =0 (and Alfani X and Blker‘X are unitarily equivalent normal con-
tractions). :

Proof: We consider the cases (i) A4 is pure; (ii) A is normal; and (iii) A has a normal
direct summand separately, and show that whereas hypothesis (i) implies conclusion (a),
hypotheses (ii) and (iii) imply conclusion (b).

Suppose that A4 is pure.Then, upon defining E,F"and Yas in the proof of Lemma 3,we
have that F°%C, and F < E, and hence that E, F are quasi-similar C, contractions (use [7:
Prop. 111.4.6]). The non-triviality of Ximplies, by the argument of the proof of Lemma 3

18*
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leading to the conclusion o( F*) ¢ C, that o (F*)# 0, and so we must have that the ei-
gen-values of F~ are all simple. Consequently, as in the proof of Lemma 3, F*is normal,
and so conclusion (a) holds.

Since Lemma 1 implies that conclusion {b) holds in the case in which A is normal, to
complete the proof we consider the case in which A has a normal direct summand. We
show to start with that B ®*has a normal direct summand in such a case. Suppose that the
(non-trivial) subspace M of Hreduces A and A, = AlM is normal. Set N = X "M (= the clo-
sure of the Range of X “acting on M); then N is invariant for B*. Let B = B®IN, and de-
fine the operator X,*: M — N by setting X,"x = X °x for each x ¢ M. Then X, has dense
range and C(B,A)X," = 0. Clearly, B, satisfies property (P2) and Dgs ¢ C,. Lemma 1
applies, and we have C(B,,A,)X;” = 0. Hence B, is normal, and so B*has a normal direct
summand. Now define A,B*and X', on # = H @ H, by

A=Awo, E'=o«9B'and)?=[_3.g‘].

Then C(A,B)X = 0. Decompose A and B* into their nprmal and pure parts by A = E,®E,,
B*= F2#F;, and let X have the corresponding matrix representation

X-= [X,-j]izjn, X2 = X,, X,, and X,, self -adjoint.

It is then clear that E, € C., is completely non-unitary and F,"¢ C, is the pure part of B

"Applying Lemmas 1 and 3 to the equations C(E,,F,)X,, = 0 and C(E,,F,)X,, = 0, re-
spectively, it follows that X,, = 0= X, ,. Since C(E,,F,)X,, = 0 implies C(E;",F,*)X,,= 0
(by the Putnam -Fuglede Theorem),we have C(A% B )X = 0.Hence C(A%,B")X = 0.Clear-
ly, fan X reduces A, ker'X reduces B, and AlranX and BlkerX are unitarily equivalent
normal contractions B

In the particular case in which the contraction B®is chosen to be an isometry, Theo-
rem 1 implies (in view of [5: Theorem 4]) the following generalization of [6: Theorem 1]
and [14: Theorem 2.3].

Corollary1: If C(A,B)X = 0 for some contraction A€ C and isometry B, then Alfan X
and Blker'X are unitarily equivalent unitary operators.

Proof: Since B “has no C,, part, Theorem 1 implies that C(A®,B*)X =0.Hence ran X
reduces A, ker* X reduces B, and Alran X and Blker'X are unitarily equivalent normal con-
tractions. Since necessarily Blker*X ¢ C,,, Blker'X is unitary B

Recall that given a C,, contraction B “there exists an isometry Vsuch that B®< V{7
Proposition 11.3.5]. Hence the following corollary, which generalizes [4: Remark 4.1] and
[8: Theorem 3], is immediate from Corollary 1.

Corollary 2: Given Ae C and B "¢ C,, there exists no non-trivial operator X such that
C(A,B)X =0.
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An algebra A of operators on a Hilbert space is said to be reflexive if A = AlgLatA,
where Lat A denotes the family of subspaces invariant under all elements of A, AlgLat A
is the algebra of all operators X for which XM ¢ M for every M ¢ Lat A. The reflexivity of
the commutant { A} of the operator A is preserved under quasi-similarity [2]. Let {A}~
denote the double commutant of A. We have the following

Corollary 3: Let A¢ C. If C{A,B)X = 0 for some B*¢ Cl and quasi-affinity X, then

{A})” is reflexive.

Proof: By Theorem 1, either A is normal or (the pure operator) A is quasi-similar to a
(C,) normal contraction.In either case {10: Theorem] implies that {A}” is reflexive @

Since quasi-similar C, contractions have the same spectrum [7: Proposition I11.4.6
and Theorem 111.5.1], the hypothesis that the eigen—values of B” are all simple may be
replaced by the hypothesis that the eigen-values of A are all simple (in Theorem 1). If,
however, one replace the hypothesis that the pure part of B* has empty point spectrum
by the hypothesis that the pure part of A has empty spectrum, then conclusion (a) of The- -
orem 1 is not possible (for the reason that in such a case the operator Y in the proof of
Theorem 1 must be trivial). Also, it is seen (in such a case) that if A has a normal direct
summand 4 = A, b A,, then upon letting B*= B,"% B, be the normal direct summand of
BTand X = [Xij]qu that X, = X,, = X,, = 0. Hence we have the following

Theorem 1'(a Putnam-Fuglede Theorem): Let A € C be such that the pure part of A
has empty point spectrum. If B*¢ C satisfies property (P2) and Dge ¢ C,, then C(A,B)X
= 0 implies C(A%B*)X =0.

Romark 1: As seen in [S: Remark 6] the hypothesis that B*has C., completely non-
unitary part in Theorem 1 (or, Theorem 1°) can not be replaced by the hypothesis that B®is
of such type. Since a C,, completely non -unitary contraction is quasi-similar to a unitary
operator{7: p.79], Theorems 1 and 1’ fail if A (orB®) has a C,, completely non-unitary part.
The hypothesis that Dge ¢ C, can not be replaced by the hypothesis that trace(1 - BB®)P
< o for any p > 1. To see this, let {en}::o be an orthonormal basis of F, and let B® be the
weighted shift B'e, =apene.a,=1-(n +2) 1. Then B%c C.4 is a(non-normal) hyponormal
contraction (so that B®satisfies property (P2)) with empty point spectrum. Since Z(1 - ap,)
= ©, ayay -, > 0 as n—> @, and s0 B*e¢ Cy,. Since {e,,} is a complete system of eigen-
vectors of 1 - BB®corresponding to the system of eigen-values {1 - a2}, trace(1 - BB®)P
s 2P3(n+1)"P < o for any p > 1. Choosing A = B (¢ C.p) it is seen that the hypotheses of
Theorem 1 are satisfied (with X = 1 and trace(1 - BB®)P < ) but A is not normal, or qua-

si-similar to a normal contraction of the class C, (since B« C,).

Recall that a completely non-unitary contraction B *such that Dgec C, has a trian-
gulation

i: £ . ‘;o: .

o 02 E of the type o ? . , : (1) .
3 11

00 0 E, 0 0 0 cp



270 B.P. DUGGAL

where Dg_ ¢ C, for all i =1,2,3,4 [13: Theorem 1.5].1t is clear from Remark 1 that given A
€ C, the hypothesis that B®¢ C? is not sufficient for C(A4,B)X = 0 to imply C(A"B")X = 0
for a general operator X; that this hypothesis is sufficient in the case in which X is com-
pact is the content of our next theorem. The following lemmas will be required.

Lemma 4: Let A ¢ C be completely non - unitary, and let B¢ C* be such that o(B*")n
D = ©. Then there exists no non- trivial solution X to the equation C(A,B)X=0 8

Proof: Suppose that there exists a non- trivial X with C(A,B)X=0.Let A, = Alfan X,
Bg = B lker'X and define the quasi- affinity X,:ker'X - fanXx by setting X,x = Xx for
each x e ker*X. Then C(A,,B,)X, = 0, and so, since A, € C.,, By € C.,. Clearly, Dgs € C,:
hence Bg has a triangulation

B - Cos =
[01 Bz.] of the type [0 Co]'
where Dg* ¢ C,. We show that By is non-existent: This contradiction will then imply that
X could not have been non-trivial. Since B,¢ C,,,

dim ker(B; - X) = dimker(B,"- X) +dimker(B] - X) = ind(B,”- A) +dim ker(B; - 1)

for all X ¢ D. Since oP(B‘)n D = @, and ker*X is invariant for B ap(Bo')n D = Q. Hence,
since B, ¢ C, implies that 6( B )n D is countable [7: Theorem I11.5.1], '

min {dim ker(By-A): Ae D} =ind(B,>- 1) = 0.

This implies that B,"is a weak contraction (and so has a Co- C,, decomposition [7: p. 327]).
Consequently, B; has no C,, part, and so BJ¢ C,. But then, since {Bs)n D= ®and B*
satisfies property (P2), o Bg) € C and By satisfies property (P2) - a contradiction by
Lemma 2. Hence B; is non-existent B

_ 'Lemma 5: If A€ C,, and B®is a normal contraction such that Dg* ¢ C,, then there
exists no non- trivial solution X to the equation C(A,B)X = 0.

Proof: Suppose that there exists a non-trivial solution X of the equation C(A,B)X = 0.
Then, upon defining A, . B, and X, as in the proof of Lemma 4, we have C(Ay,By )X, = 0,
where BJ ¢ C,. is subnormal. We assert that By is normal. For if not, then B has a pure
part B, (say) such that B, ¢ C, (this follows from the fact that B, ¢ C,, and Dg=e C,).0,B,)
n D =0 and B, satisfies property (P2) - a contradiction by Lemma 2. Consequently, B¢ C,,
which implies that A e C, (and A, ~ B,). Since A¢ C,,, and fan X is invariant for A, this is
a contradiction. Hence X must have been trivial §

Lemma 6: If A is a pure Coo contraction satisfying property (P2) and B* is a normal
contraction such that Dge ¢ C,, then there exists no non —trivial solution X to the equa-
tion C(A,B)X = 0.

Proof: If there exists a non-trivial X satisfying C(A,B)X = 0, then upon proceeding
as in the proof of Lemma $ we have 4, ~ B,, where Bg ¢ C, is normal. This as in the proof
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of Lemma 3 implies that A, is normal, and hence that A has a normal direct summand -

a contradiction. Hence, X =08

Lemma 7:/fA ¢ C,, and B" is acompletely non-unitary contraction, then there exists
no non ~trivial compact operator X such that C(A,B)X = 0.

Proof: Suppose that X is a non-trivial compact solution of C(A,B)X =0.Since AeC,,,
there exists a unitary U and a quasi - affinity T such that C(U,A)T=0[7:p. 79].Set TX =
Z. Then Z is compact and C(U,B)Z = 0. Letting Z*Z = S, this implies that B°SB = S,
where S is a positive compact operator. Applying [3: Theorem 8 and Corollary 6.5], we
have that fan S = ker* Z reduces B and Blker'Z is unitary. This, since B®is completely non
-unitary, is impossible. Hence Z, and so also X, is the trivial operator B

Theorem 2: IfA ¢ C, and B*¢ C*, then C(A,B)X = 0 implies C(A*,B*)X =0 for all
compact operators X.

Proof: As in the proof of Theorem 1, we consider the cases (i) A is pure, (ii) A is nor-
mal, and (iii) A has a normal direct summand separately.
(i) If A is pure, then A € C.,, and so it has a triangulation

A= [A‘ 22] of the type [%“ c'm].

Decompose B"into its normal and pure parts by B*= B @ B;, and let X have the corre-
sponding matrix representation X = [X,-j]i?jq.’l‘hen Lemma 4 applied to C(A,,B,)X,, =0
implies X,, = 0, Lemma S applied to C(A,,B,)X,, = 0 implies X,, = 0, Lemma 6 applied
to C(A,,B,)X,, = 0 implies X,,= 0, and Lemma 4 applied to C(A,,B,)X,, = 0 implies
X,2 = 0. Hence X = 0, and the conclusion holds trivially.

(i) If Ais normal, then A = A, @ A,, where A ¢ C,, is unitary and A,, ¢ Co, is normal.
Decompose B into its normal and pure parts as in (i) above, and let X have the represen-
tation X = [XU];-‘:F’.Then Lemma 4 applied to C(A,,B,)X,, = 0 implies X,, = 0and Lem-
ma 7 applied to C(A,,B,)X,, = 0 implies X,, = 0. (Notice that if X is compact and X,,
=0, then X, , is compact.) Hence, since C(A4,,B,)X,, = 0= C(A,,B,)X,, implies (by the
Putnam-Fuglede Theorem) that C(A],B,)X,, = 0 = C(A],B)X,,, we get C(A"B*)X =0.

(iii) Assume now that A = A, @ 4,, where A, is normal and A, is pure. Then, upon let-
ting B*and X have the representations of (i) of the proof, it is seen that X;2 =0 = X,,in the
equations C(A,, B,)X,, =0 = C(A,,B,)X,, (proceed as in (i)). Also, see (ii), C(A4,,B,)X,,=0
implies C(A;, BJ)X,, = 0, so that ker'X, , reduces B, and B,lker'X,, is normal.Since B, is
pure, we must have X, = 0. The fact that C(A",B*)X =0 now follows since C(A4,,B,)X,,
= 0 implies C(A],B)X,, = 0(by the Putnam-Fuglede Theorem) il

Romark 2: If the operator X is non-trivial, then the operator B ¢ C'in Theorem 2
can not be pure (and so must have a normal direct summand). To see this we notice that
if B%¢ C! is pure, then B"¢ C, (see (1) and the proof of Lemma 4). Since Dg* ¢ C,, it
follows that there exists an isometry V and a quasi-affinity T such that C(V,B*)T = 0 [9:
Theorem 1). The operator X being compact, this then implies that C(A,V*)Z = 0, where Z
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= XT®is compact. But then 7an Z = fan X reduces A and Alfan X is unitary [(4: Theorem 21].
Let A, = Alfan X, Bl' = B*lkeriX, and define the compact quasi-affinity Y:keriX — 7fan X
in the usual way. Then C(Al,Bl)Y= 0, where B,' is completely non-unitary. By Lemma 7

such an Y can not exist. Hence B® could not have been pure.

The quasi-similarity of contractions does not in general imply their unitary equiva-
lence (or, even, similarity), even in the case in which they satisfy property (P2), their pu-
re parts have empty point spectrum and the quasi-affinities implementing the quasi-
similarity are compact. Thus there exist pure quasi-normal contractions A and B satisfy-
ing A ~ B with the intertwining quasi-affinities both compact such that A is not similar to
B([14: Example 2.2). If, however, Dy ¢ C, or Dg e C,, then one has the following

Theorem 3: /If A« C, and B ¢ C* are such that A ~ B with one of the implementing
quasi-affinities compact, then A and B are unitarily equivalent normal contractions .

Proof: Since the pure part of B has empty point spectrum and Dg ¢ C,, the argument
of the proof of Lemma 4 and (1) imply that B has a triangulation

B, 0 ©
B=|o0o B, - |,
0 0 By,

where B, is normal, B,, € C,, is completely non-unitary, B, € C,,, and DB,,v DB“,DB‘OE C,.
Since A € C,, A has a triangulation

a2
A=°Aoo‘ ,

where A, is unitary, Ay, € Co, and A, € C,,. Assume, for definiteness, that BX = XA and
AY = YB, where X and Y are quasi-affinities with ¥ compact. Let X have the representa-
tion X = [X,-j:]zjq.Then X3, =X,z = Xp, = 0.(Sample argument: Since C(B,,,4,)X,, = 0,
oo = [AZX. B3] = 6 | [B,3 ] = 0 as n—> e for all x 721 X,,. Hence X, = 0.
Consequently, X,, is injective. Applying [S:Theorem 7] to C(Agy, By )X,3 = 0, it follows
that A, is normal.This then implies that A = A, @ A,,, where A, = A, D A, is normal. We
now show that A has no C,, part. Suppose that A, is non-trivial. Consider the equation
AT = TA, where the compact quasi-affinity T = YX has the representation T = [T,-j:]fj:,.
Since A,, € C,,, there exists a quasi-affinity Z and an isometry Vsuch that C(V,A,,)Z=0
[7: Proposition 11.3.5). Since C(A,,,A,,)T,, = 0, we have C(V,A,)ZT,, = 0. Hence, by the
Putnam - Fuglede Theorem for subnormal Vand normal A, we have that ker*ZT,, reduces
A, and that A_|ker!T,, is unitary. But then for all non-trivial x € fan T,,. ||[As"T,7 x| =
ITosx| = | i A"~ || = 0 as n = . Hence T,, = 0. Consequently, T,, is compact (and
has dense range).The equation C(A4,,,4,,)T,, = 0 implies the equation C(V,4,0)ZT,, =0,
and so, since ZT,, is compact, ker* ZT,, reduces A,, and A, lker*T,, is unitary (see Re-
mark 2). This contradiction implies that A, , must have been trivial. Part (ii) of the proof of
Theorem 2 now implies that C(A%,B*)X =0, and hence that A and B are unitarily equiva-

lent normal contractions B
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Remark 3: It can be seen, we leave the detail to the reader, that if the contraction B¢
C'in Theorem 3 is such that the completely non-unitary part B has empty point spectrum,

then A and B are unitarily equivalent unitary operators

Romark 4: Starting with particular quasi-similar contractions A and B, it is someti-
mes possible to deduce their unitary equivalence even when neither of the intertwining
quasi - affinities is compact. Let T¢. fe H®, denote the analytic Toeplitz operator Ty h =
fh (for each h ¢ H?). Suppose that the quasi-similar contractions A and B have triangula-

tions

A= %u . d B [Bn 0 ]

o §° N ° T’
where A, is unitary, Ay, € Coo+ By is normal, fe¢ H® satisfies ||f llo = 1 and 8 is a non-
constant inner function. Suppose further that A satisfies property (P2) and Dpg ¢ C,. Then
A and B are unitarily equivalent. To see this, let X and Y be quasi - affinities such that
C(B,A)X =0=C(A,B)Y. Letting X have the representation X = [Xij]- 1sis2and 1< <3,
it is then seen that Xas = 0 = X,,. (Recall that the analytic Toeplitz operator TB is a uni-
lateral shift if and only if g is a non-constant inner function; our hypotheses imply that Tg
is a unilateral shift.) ansequently, X, is injective. Since C( B,,Ap0)X,, =0, and DB“( C,,
Ago is normal (see [S: Theorem 7]). Hence, since A satisfies property (P2), A = A, & Tr,
where A, is normal. Letting X and Y (now) have the representations X = [xij]i?jﬂ and Y
= [Yijjfj=1' it is seen that le =0 = sz. Thus An <an <IAn and Tf <dl'g <d7}. Clearly, An
and B, are unitarily equivalent. Applying [11: Corollary 1] to the relation Te < Tg <Tg it is

seen that Ty and 7‘8 are unitarily equivalent. Hence A and B are unitarily equivalent.

Recall that a compact hyponormal (or M-hyponormal) operator is normal, but there
exists a compact quasi-nilpotent dominant operator [8]. (The operator A is said to be
dominant if to each complex number X there corresponds a real number M, 2 1 such that
KA - X)* |l s My (A - X)x |l for all x € H: if there exists a real rumber Msuch that M, <M
for all A, then the dominant operator A is said to be M-hyponormal. A 1—hyponormai ope-
rator is hyponormal.) Extending this result it was shown in [5] (see the note following
Corollary 7) that a compact contraction A ¢ C,, such that D, € C, and the pure part of A
has empty point épectrum is normal. That this result generalizes to A ¢ C* is the content
of our next theorem.

Theorem 4: A pure contraction A ¢ C!can not be compact.

Proof: Let A e C'be a non-trivial pure contraction. Then, by the proof of Lemma 4
and (1), A € C,. is a pure (and so completely non-unitary) contraction such that DyeC,.
As such there exists an isometry V and a quasi-affinity X such that C(V,A)X = 0[9:
Theorem 1]. Now if A is compact, then X' = V °XA4 is compact, and we conclude (as in Re-
mark 2) that A is unitary. This contradiction implies that A can not be compact il
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