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A Generalized Commutativity Theorem 

B. P. DUGGAL 

Let H be a complex separable Hilbert space, C the class of contractions with C.0 com-
pletely non - unitary parts, C0 the class of A £ C wich satisfy the property (called proper-
ty (P2)) that if the restriction of A to an invariant subspace M is normal, then lvi reduces A, and let C1 be the class of A c C. with defect operator DA being of the Hilbert-Schmidt class C2 and which are such that either the pure part of A has empty point 
spectrum or the eigen -valuesof A are all simple. It is known that if A £ Co and Bc C1. then AX XB implies AX = X8. This implication fails to hold for the case in which A £ C. It is shown here that if A c  and Bc Cl , then AX XB implies either (i) AIt1i X and 
(BkerX)are quasi-similar Co contractions (with BIkerX normal), or (ii) AX .?CB. Let C 1 denote the class of contractions E satisfying property (P2). the inclusion DE £ C2 
and which are such that the pure part of E has empty point spectrum. Choosing the inter-
twining operator X to be compact it is shown that AX = XB implies AX XB for A £ Co and Bc C1. Recall that quasi -similar operators need not to be unitarily equivalent (or, 
even, similar). We show that if A t Co and B £ Cl are quasi-similar with one of the im-
plementing quasi -affinities compact, then A and B are unitarily equivalent normal con-
tractions. Also it is shown that a compact operator A e Cl is normal. 

Key words: commutativ,ty property. contraction. Hubert-Schmidt operator, quasi-similar operators 
AMS(MOS) subject classification: 47810, 47B20, 47A10. 

1. Introduction 

We consider operators, i.e. elements of the algebra B(H) of bounded linear transformati-
ons, on a complex infinite-dimensional separable Hubert space H. Given Hilbert spaces 
H1 and H2 , and operators A t B(H1 )and B E B(H2 ), define the commutator C(A,B): 
B(H2,H1) - B(H2 ,H,)by C(A,B)X = AX - XB. Let C denote the class of contractions 
with C. 0 completely non-unitary parts, Co the class of contractions A E C which satisfy 
the property 

(P2) if the restriction of A to an invariant subspace Mis normal, then M reduces A, 
and let C. be the class of contractions A € Co with defect operator DA = ( I - AA)"" being 
of the Hilbert-Schmidt class C2 and which are such that either the pure part of A has 
empty point spectrum or the eigen-values of A are all simple. 

The classical Putnam -Fuglede Commutativity Theorem says that if A and B are nor-
mal operators, then C(A,B)X= 0 for some operator X implies C(A,B)X = 0. Generali-
zing this result it has been shown in [5: Theorem 71 that the pair (CO 3C 1 ) has the Put-
nam -Fuglede Property, i.e., given A € Co and B € C 1 , if C(A,B )X = 0 for some operator 
X, then C(A,B)X = 0. Here the hypothesis that the elements of Co satisfy property 
(P2) is essential in as much as that the pair (CC,) fails to have the Putnam-Fuglede 
Property: There exist con tractions A € C and B t C,, and an operator X, such that 
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C(A,B)X = 0, BikerX is normal, and AIfäIIX and (Blker 1X) are quasi-similar CO 
contractions but C(A,B)X* 0 (seethe example in [5: Remark 1]). In this note we show 
that this is precisely the way in which the pair (C,C 1 ) may fail to satisfy the Putnam -
Fuglede Property, i.e. we show that if A E C and Bt C 1 are such that C(A,B)X 0 for 
some operator X, then either AI?äitX and (BikerX) are quasi-similar C0 contractions 
(with Blker 1X normal) or C(A,B)X = 0. The hypothesis that the elements of C 1 , in the 
pair (CO 3C1 ), have C.0 completely non-unitary parts can not be replaced by the hypo-
thesis that they have C, completely non-unitary parts. By requiring the intertwining oper-
ator Xto be compact it will be shown that C(A,B)X 0 implies C(A,B)X = 0 for con-
tractions A € Co and B € C, where C' is the class of contractions E such that E satisfies 
Property (P2), DE € C. and the pure part of E has empty point spectrum. 

Recall that quasi-similarity of operators does not in general imply their equivalence 
(or, even, similarity) even in the case in which the implementing quasi-affinities are both 
compact. We show that if A € Co and B £ C' are quasi - similar with one of the implemen-
ting quasi-affinities compact, then A and B are unitarily equivalent normal contracti-
ons.A compact contraction A € C. such that DA E C and the pure part of A has empty 
point spectrum is normal [51; we show here that this result extends to all At C*. 

2. Notation and terminology 

In addition to the notation and terminology already defined we shall in the following de-
note the range, the closure of the range, the kernel and the orthogonal complement of the 
kernel of an operator A by ranA, Fan A, kerA and ker'A, respectively. The restriction of A 
to a subspace MwiU be denoted by AIM. The spectrum and the point spectrum of A will 
be denoted by o(A) and ø(A), respectively. The open unit disk (in the complex plane) 
will be denoted by D and C will denote the unit circle. The Fredholm index of A will be 
denoted by indA, and dim  will denote the , dimension of the subspace M of H. We say 
that the operator Xis a quasi-affinity if both Xand X' have dense range.We shall denote 
the fact that C(A,B)X = 0 for some operator X with dense range (injective operator X) 
by B I A (respectively, B A), and we shall denote the fact that C(A,B)X 0 for some 
quasi - affinity X by B <A. We say that A and B are quasi -similar, denoted A B, if A <B 
<A.The operator A will be said to be pure if there exists no non-trivial reducing subspace 
MofA such that AIM is normal. Recall that every operator has a direct sum decomposition 
of the type normal 't' pure. 

We say that the contraction A is completely non-unitary if there exists no non- trivial 
reducing subspace M of A such that AIM is unitary. The contraction A is said to belong to 
the class C.,, (class C.,) of contractions if A - 0 strongly as n -+ a (infIIA"xII > 0 
for, all non-zero x € H). The classes Co . and C, are defined by considering Ainstead of 
A, and, for a,D = 0,1, the class Ca3 is defined by C. ' C.. We say that the completely 
non-unitary contraction A belongs to the class C0 if there exists an inner function (D such 
that 0(A) 0. Recall that if A E CO3 then amongst all inner functions 0 such that 0(A) = 0 
there is a minimal one (i.e., one which is a divisor in the Hardy space H M of all others), 
called the minimal function of A [7]. The contraction A is said to be a weak contraction if 
the defect operator DA (r 0 - A4)1/'2) is of the Hubert-Schmidt class C2 and o(A) does 
not fill the open unit disc D.
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3. The results 

We start by stating some lemmas. Lemma I follows from [5: Corollary 4) and Lemma 2 is 
[5: Theorem 5]. 

Lemma 1: If C(A,B)X r 0 for some normal contraction A and contraction B € C0 
such that DB. E C2 , then C(AB)X= 0. 

Lemma 2: If A E C. ando(A) c C, then A does not satisfy property (P2). 

Lemma 3: Let A be a completely non -unitary contraction of the class C. 0 and let B C1 
be a pure contraction. Then there exists no non -trivial operator X such that C(A, B )X = 0. 

Proof: Suppose that there exists a non - trivial solution X to C(A,B )X = 0. Letting E = 
AIt'11X, F = B jker 1X and defining the quasi-affinity Y: ker 1X - FauX by setting Yx = 
Xx for each X £ kerX we have that C(E,F) Y = O,where E € C. 0 (and F€ C1 is pure). 
Clearly FE C00 ; hence, since DB-E C2 implies DF . € C2 , FE Co [12: Theorem 1). Now if 
o(B) n D = D, then o(F) n D cIi, and so o(F)c C [7: Theorem 111.5.1]. This, since 
B *satisfies property (P2) implies Fsatisfies property (P2), is a contradiction (by Lemma 
2). Hence X= 0 in this case. If, on the other hand, the eigen -values of Bare all simple, 
then the eigen-values of F are all simple. Recall that a CO contraction F with minimal 
function mhas a triangulation F = where the minimal function of F. is a "Blasch- 
ke product" m1 and the minimal function of F2 is a "singular inner function" m2 (such that 
M = m 1 m2 except for a constant factor of modulus one [7: p: 1291). Since Fhas simple 
eigen-values, m 1 has simple zeros. The eigen-spaces corresponding to distinct eigen-
values of F1 describe a "basic system" (in the sense of [ I ]) of invariant subspaces of 
F1 and the restriction of F1 to each of these subspaces is normal [7: p. 1351. Since 
F satisfies property (P2) implies F. satisfies property (P2), these invariant subspaces 
reduce F1 , i.e. F1 is "reductive". Hence F1 is normal and F= F1 l F2 . But then Bhas a 
normal direct summand - a contradiction since B is pure. Hence, once again, X= 01 

Theorem 1: Let  € C and B€ C1 be such that C(A,B)X= 0 for some non-trivial 
operator X. Then either 

(a) E = AIFauX and F=(B 1kerX)are quasi-similar Co contractions (with Fnormal), 
or

(b) C(AB)X = 0 (and AIFaTnX and BIkerX are unitarily equivalent normal con-
tractions). 

Proof: We consider the cases (i) A is pure; (ii) A is normal; and (iii) A has a normal 
direct summand separately, and show that whereas hypothesis (i) implies conclusion (a), 
hypotheses (ii) and (iii) imply conclusion (b). 

Suppose that A is pure.Then, upon defining E,Fand Yas in the proof of Lemma 3,we 
have that FEC0 and F' E, and hence that E,Fare quasi-similar C o contractions (use [7: 
Prop. 111.4.6]). The non-triviality of Ximplies, by the argument of the proof of Lemma 3 
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leading to the conclusion o(F') c C, that o(F)* 0, and so we must have that the ci- 
gen-values of F are all simple. Consequently, as in the proof of Lemma 3, Fis normal, 
and so conclusion (a) holds. 

Since Lemma I implies that conclusion (b) holds in the case in which A is normal, to 
complete the proof we consider the case in which A has a normal direct summand. We 
show to start with that BThas a normal direct summand in such a case.Suppose that the 
(non-trivial) subspace M of H reduces A and A 1 AIM is normal. Set N = X'M(= the clo- 
sure of the Range of X acting on M); then Nis invariant for B. Let B r BIN, and de- 
fine the operator X1 : M-+ Nby setting X1 x = Xx for each x E M. Then X,* has dense 
range and C(B.A)XI 0. Clearly, B' satisfies property (P2) and DB e C2 . Lemma I 
applies, and we have C(B 1 ,A1 )X1 0. Hence B is normal, and so Bhas a normal direct 
summand. Now define A,B and X, on H H ±, H, by 

A = A 4, 0, B = 04, B and = 
IN. '] 

Then C(A,B)X = 0. Decompose Aand	into their nprmal and pure parts by A = E1 ®E2, 

B F1 t1 F", and let Xhave the corresponding matrix representation 

= [x] 1 ,	= X2 , X11 and X22 self -adjoint. 

It is then clear that E2 € C.0 is completely non-unitary and F; E C1 is the pure part of B. 
Applying Lemmas I and 3 to the equations C(E1 , F2 )X12 = 0 and C(E2 , F2 )X22 = 0, re-
spectively, it follows that X12 = 0 = X22 . Since C(E1 , F1 )X11 = 0 implies C(E,F")X11 0 
(by the Putnam -Fuglede Theorem), we have C(AB )X = 0.Hence C(A,B)X = 0.Clear-
ly, iriX reduces A, ker'X reduces B, and AIFa1IX and BkerX are unitarily equivalent 
normal contractions I 

In the particular case in which the contraction B • is chosen to be an isometry, Theo-
rem 1 implies (in view of [5: Theorem 4]) the following generalization of [6: Theorem I 
and [14: Theorem 2.3]. 

Corollary 1:1! C(A,B )X = 0 for some contraction A € C and isometryB' then AIfAi'nX 
and B I ker 1X are unitarily equivalent unitary operators. 

Proof: Since Bhas no C00 part, Theorem I implies that C(AB)X 0. Hence fiiX 
reduces A, kerX reduces B, and AlFaliXand BIker 1X are unitarily equivalent normal con-
tractions. Since necessarily BIkerX€ C11 , BIkerX is unitary I 

Recall that given a C10 contraction B there exists an isometry Vsuch that B' <  V[7: 
Proposition 11.3.5]. Hence the following corollary, which generalizes [4: Remark 4.1] and 
[8: Theorem 3], is immediate from Corollary 1. 

Corollary 2: Given A € C and B C10 , there exists no non-trivial operator X such that 
C(A,B)X = 0.
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An algebra A of operators on a Hilbert space is said to be reflexive if A AIg Lat A. 
where LatA denotes the family of subspaces invariant under all elements of 4, AlgLat/I 
is the algebra of all operators X for which XM cM for every M c Lat/I. The reflexivity of 
the commutant {A} of the operator A is preserved under quasi-similarity [2]. Let A) 
denote the double commutant of A. We have the following 

Corollary 3: LetA e C. if C(A,B)X 0 for some B€ C1 and quasi-affinity X, then 
{A} is reflexive. 

Proof: By Theorem 1, either A is normal or (the pure operator) A is quasi-similar to a 
(CO ) normal contraction.ln either case [10: Theorem] implies that (A) is reflexive U 

Since quasi-similar Co contractions have the same spectrum [7: Proposition 111.4.6 
and Theorem 111.5.11, the hypothesis that the eigen—values of B are all simple may be 
replaced by the hypothesis that the eigen -values of A are all simple (in Theorem 1). If, 
however, one replace the hypothesis that the pure part of B • has empty point spectrum 
by the hypothesis that the pure part of A has empty spectrum, then conclusion (a) of The-
orem I is not possible (for the reason that in such a case the operator V in the proof of 
Theorem I must be trivial). Also, it is seen (in such a case) that if A has a normal direct 
summand A = A 1 fA21 then upon letting B BBbe the normal direct summand of 
Band Xr [X]r_ 1 that X12 =	=	= 0. Hence we have the following 

Theorem 1'(a Putnam -Fuglede Theorem): Let A e C be such that the pure part of A 
has empty point spectrum. JIB € C satisfies property (P2) and DB-E C2 , then C(A,B)X 
= 0 implies C(A,B)X=o. 

Rcmark 1: As seen in [5: Remark 61 the hypothesis that Bhas C. 0 completely non-
unhtry part in Theorem I (or, Theorem V) can not be replaced by the hypothesis that B is 
of such type. Since a C11 completely non - unitary contraction is quasi - similar to a unitary 
operator [7: p.79], Theorems I and 1 . fail if A (or B) has a C11 completely non - unitary part. 
The hypothesis that DE C e C2 can not be replaced by the hypothesis that trace (1 - BB) 
< for any p a 1. To see this, let be an orthonormal basis of H, and let B be the 
weighted shift Be = = I - (n • 2)- . Then Be C.0 is a (non - normal) hyponormal 
contraction (so that Bsatisfles property (P2)) with empty point spectrum. Since I0 - a) 
= W. aICC2 a - 0 as n -	, and so W e C. Since {e} is a complete system of eigen-
vectors of 1 - BB' corresponding to the system of eigen-values {i -	trace(1 - BB)P 

2P . (n 1)P for any p > 1. Choosing A = B (c C. 0 ) It is seen that the hypotheses of 
Theorem 1 are satisfied (with X= 1 and trace (1 - BB)P a ce) but A is not normal, or qua-
si - similar to a normal contraction of the class Co (since BC( Co). 

Recall that a completely non - unitary contraction Bc such that DB . E C2 has a trian-
gulation 

[E2	• 1	
[co

1	• 1 
0	

of the type	
0 CO	

(1)l 00 E o o 
L0 0 0 E4 j	 [o 0 0 c10J
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where DE. € C2 for all i = 1,2,3,4 [13: Theorem 1.51. It is clear from Remark I that given A 
€ C, the hypothesis that B € C 1 is not sufficient for C(A,B)X 0 to imply C(A,B )X = 0 
for a general operator X; that this hypothesis is sufficient in the case in which X is com-
pact is the content of our next theorem. The following lemmas will be required. 

Lemma 4: Let A e  be completely non-unitary, and let B€ C be such that
D	Then there exists no non- trivial solution X to the equation C(A,B)X = 0 I 

Proof: Suppose that there exists a non-trivial Xwith C(A,B)X= 0. Let A0 = AIFaIIX, 
B,7 = Blker'X and define the quasi-affinity ) :ker 1x--> fXby setting X0x Xx for 
each x € ker 1X. Then C(A0 ,B0 )X0 0, and so, since A0 e C. 01 B0 e C. O . Clearly, DB • £ C2; 
hence B has a triangulation 

rB .•1 
L 0 B J 

of the type rc0, • -1 
[o c,J' 

where DB • € C2 . We show that Bo' is non -existent:This contradiction will then imply that 
Xcould not have been non - trivial. Since B1 € C10, 

dim ker(B' - X) = dim ker(B- X) + dim ker(B- )0 ind(B1 - A) + dim ker(B- A) 
for all X  D. Since cv (B)n D = D, and kerX is invariant for B", p(B')r D	. Hence, 
since Ba" e CO implies that ci(B")n D is countable [7: Theorem 111.5.11, 

min {dimker(B;_A): Ac D} = ind(B1 -A) = 0. 

This implies that B"is a weak contraction (and so has a CO- C11 decomposition [7: p. 327]). 
Consequently, B has no CO, part, and so B€ Co . But then, since cp(B')r D = tD and B" 
satisfies property (P2), o(B') C C and B," satisfies property (P2) - a contradiction by 
Lemma 2. Hence Bc," is non-existent I 

Lemma 5: If A € C10 and B"is a normal contraction such that DB" € C2 , then there 
exists no non-trivial solution X to the equation C(A,B)X= 0. 

Proof: Suppose that there exists anon -trivial solution X of the equation C(A, B)X 0. 
Then, upon defining k.B0 and X as in the proof of Lemma 4, we have C(A0 ,B0 )X0 = 0, 
where B'€ CO . is subnormal. We assert that B is normal. For if not, then B4 ' has a pure 
part B, (say)such that B1 e C, (thisfollows from the fact that B1 e C00 and DB• E C2).c(B1) 
n D 0 and B. satisfies property (P2) - a contradiction by Lemma 2. Consequently, B'c CO, 
which implies that AO  C0 (and A0 - B0 ). Since Ac C10 , and fãliXis invariant for A, this is 
a contradiction. Hence Xmust have been trivial  

Lemma 6: If A is a pure C, contraction satisfying property (P2) and B" is a normal 
contraction such that D8 . € C2 , then there exists no non—trivial solution X to the equa-
tion C(A,B)X= 0. 

Proof: If there exists a non-trivial Xsatisfying C(A,B)X 0, then upon proceeding 
as in the proof of Lemma 5 we have k B0 , where Be" € CO is normal. This as in the proof
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of Lemma 3 implies that A. is normal, and hence that A has a normal direct summand - 
a contradiction. Hence, X 0. 

Lemma 7: If A c C11 and B is a completely non-unitary contraction, then there exists 
no non - trivial compact operator X such that C (A, B )X = 0. 

Proof: Suppose that Xis anon-trivial compact solution of C(A,B)X = 0. Since A cC11, 
there exists a unitary Uand a quasi-affinity Tsuch that C(U,A)T r 0[7: p. 79].Set TX 
Z. Then Z is compact and C(U,B)Z = 0. Letting ZZ = S, this implies that BSB = S, 
where S is a positive compact operator. Applying [3: Theorem 8 and Corollary 6.51, we 
have that FañS= kerZreduces Band Blker'Zis unitary. This, since Bis completely non 
-unitary, is impossible. Hence Z, and so also A', is the trivial operator I 

Theorem 2: 11.4 cC0 and B€ C', then C(A,B)X = Oimplies C(A,B)X = O for all 
compact operators X. 

Proof: As in the proof of Theorem 1, we consider the cases (i) A is pure, (ii) A is nor-
mal, and (iii) A has a normal direct summand separately. 

(i) If A is pure, then A € C.0 , and so it has a triangulation 

1
A
0 1
	 rc,,,1

A' A2  of the type [o c,0j' 

Decompose Binto its normal and pure parts by B B,'iB, and let X have the corre-
sponding matrix representation X[X ij Lemma 4 applied to C(A2 ,B2)X22 =0 
implies X22 = 0, Lemma S applied to C(A2 ,B,)X2, = 0 implies X21 = 0, Lemma 6 applied 
to C(A,,B1 )X, 1 = 0 implies X,, = 0, and Lemma 4 applied to C(A,,B2 )X, 2 0 implies 
X12 = 0. Hence X 0, and the conclusion holds trivially. 

(ii) If A is normal, then A = A 1 (1) A2, where A,€ C11 is unitary and A22 € C00 is normal. 
Decompose B into its normal and pure parts as in (i) above, and let Xhave the represen- 
tation X= [X1 ] 1 .Then Lemma 4 applied to C(A2 ,B2)X22 = 0 implies X22 = Oand Lem-
ma 7 applied to C(A,,B2 )X, 2 = 0 implies X, 2 0. (Notice that if Xis compact and X22 

= 0, then X12 is compact.) Hence, since C(A 1 ,B1 )X, 1 = 0 C(A2 ,B,)X2, implies (by the 
Putnam -Fuglede Theorem) that C(A, B")X1 , 0 = C(A, B,")X21 , we get C(A 'B )X = 0. 

(iii) Assume now that A A, A21 where A, is normal and A2 is pure. Then, upon let-
ting Band Xhave the representations of  of the proof, it is seen that X22 = 0 = X2, in the 
equations C(A 2 ,B2 )X22 = 0 = C(A2 ,B,)X21 (proceed as in (0). Also, see (ii), C(A,,B2 )X, 2 = 0 
implies C(A,B')X12 = 0,so that ker 1X12 reduces B2 and B2 tker 1X12 is normal.Since B2 is 
pure, we must have X12 = 0. The fact that C(A',B)X = 0 now follows since C(AI,BI)XI, 
= 0 implies C(A,,B,")X,, = 0(by the Putnam -Fuglede Theorem)I 

R.mark2: If the operator X is non-trivial, then the operator Bc C' in Theorem 2 
can not be pure (and so must have a normal direct summand). To see this we notice that 
if 8c C' is pure, then B€ C, (see (1) and the proof of Lemma 4). Since DB C C21 it 
follows that there exists an isometry Vand a quasi-affinity T such that C(V,B)T 0 [9 
Theorem I]. The operator Xbeing compact, this the,, implies that C(A. V)Z = 0. where Z
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XT is compact. But then t5ii Z f5ii X reduces A and Al x is unitary [4: Theorem 21. 
Let A 1 AlinX, B) = Blker'X, and define the compact quasi - affinity Y:kerX —s . riiiX 
in the usual way. Then C(A 1 B 1 )Y 0, where B is completely non-unitary. By Lemma 7 
such an Ycan not exist. Hence B could not have been pure. 

The quasi-similarity of contractions does not in general imply their unitary equiva-
lence (or, even, similarity), even in the case in which they satisfy property (P2), their pu-
re parts have empty point spectrum and the quasi-affinities implementing the quasi-
similarity are compact. Thus there exist pure quasi-normal contractions A and B satisfy-
ing A -. B with the intertwining quasi-affinities both compact such that A is not similar to 
B [14: Example 2.2]. If, however, DA € C2 or DB E C2 , then one has the following 

Theorem 3: If A E Co and B€ C1 are such that A B with one of the implementing 
quasi -affinities compact, then A and B are unitarily equivalent normal contractions. 

Proof: Since the pure part of B has empty point spectrum and D8 e C2 , the argument 
of the proof of Lemma 4 and (1) imply that B has a triangulation 

[Bn 0 0 
B=o 11

0 0 B10 

where B0 is normal, B11 € C11 is completely non-unitary, B10 € C10 , and Ds, DB , DB € C2.to 
Since A € Co , A has a triangulation 

0 0 
A=Io A00- 

L° 0 A10 

where A is unitary, A00 € C00 and A 10 € C10 . Assume, for definiteness, that BX = X4 and 
AY YB, where Xand Yare quasi-affinities with Ycompact. Let Xhave the representa-
tion X [Xj ]. Then X31 X32 = X22 - 0. (Sample argument: Since C(BIO , A U )X31 = 0, 

11xx 11 = 11A1?XB1 0x 11 s II''II II1' x Il -+ 0 as n —	for all x E Fan X31 . Hence X31 = 0.) 

Consequently, X12 is injectiveApplying [5:Theorem 7] to C(,4,70 ,B,,* )X,2 = 0, it follows 
that A00 is normal.This then implies that A = An A10 , where An = A ') A00 is normal. We 
now show that A has no C10 part. Suppose that A10 is non-trivial. Consider the equation 
AT TA, where the compact quasi - affinity T 'rXhas the representation T= [T1]11. 
Since A10 € C O ,1 there exists a quasi - affinity Zand an isometry Vsuch that C( V,A10)Z 0 
[7: Proposition 11.3.51. Since C(A10,A0)T21 = 0, we have C(V,A0 )ZT21 0. Hence, by the 
Putnam-Fuglede Theorem for subnormal Vand normal A,we have that ker'ZT 21 reduces 
An and that A 0 Iker 1 T21 is unitary. But then for all non-trivial x € fI1T21 , 4'31xII = 
7x = T,A"xII - 0 as n — Hence T21 = 0. Consequently, T22 is compact (and 

has dense range).The equation C(A10 , A10 ) T22 0 implies the equation C(V,A 1 0)ZT22 01 
and so, since ZT22 is compact, ker 1 ZT22 reduces A10 and A10 Iker'T22 is unitary (see Re-
mark 2). This contradiction implies that A0 must have been trivial. Part (ii) of the proof of 
Theorem 2 now implies that C(A,B)X r 0, and hence that A and Bare unitarily equiva-
lent normal contractions U
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Remark 3: It can be seen, we leave the detail to the reader, that if the contraction B  
in Theorem 3 is such that the completely non-unitary part B has empty point spectrum. 

then A and B are unitarily equivalent unitary operators 

Remark 4: Starting with particular quasi-similar contractions A and B, it is someti-
mes possible to deduce their unitary equivalence even when neither of the intertwining 
quasi - affinities is compact. Let T. ft Ho', denote the analytic Toeplitz operator 1' h 
fh (for each lic H 2 ). Suppose that the quasi -similar contractions A and B have triangula-
tions

1Au 0 0 1 A=I 0 A00 - I and B=[rt 01 

[o OTf J	L07i 

where A u is unitary, A00 c C00 , B. is normal, f C H satisfies 11f II0 s 1 and g is a non -

constant inner function. Suppose further that A satisfies property (P2) and DB C C2 . Then 
A and B are unitarily equivalent. To see this, let X and V be quasi-affinities such that 
C(B,A)X= 0 = C(A,B)V. Letting Xhave the representation X Is I s2 and I sj :r3, 
it is then seen that X21 = 0 = X22 . (Recall that the analytic Toeplitz operator 7 is a uni-
lateral shift if and only ifg is a non-constant inner function; our hypotheses imply that T8 
is a unilateral shift.) Consequently, X 12 is injective. Since C ( Bn,AOO )XIS 0, and DBnC C2, 

A00 is normal (see [5: Theorem 7]). Hence, since A satisfies property (P2), A A '& Tf, 
where A 1 is normal. Letting Xand V(now) have the representations x	 and Y 

it is seen that X2  = 0 V2 . Thus An 'n <A 1 and Tf <d1	7' Clearly. An
and B 0 are unitarily equivalent. Applying [Ii: Corollary 11 to the relation Ti.- <1 < Tj it is 
seen that Tf and	are unitarily equivalent. Hence A and B are unitarily equivalent. 

Recall that a compact hyponormal (or M-hyponormal) operator is normal, but there 
exists a compact quasi-nilpotent dominant operator [ 8 ] . (The operator A is said to be 
dominant if to each complex number A there corresponds a real number Mx 2t I such that 
tI(A - A)x11 :5 MIKA - A )xIJ for all  € H; if there exists a real rumberMsuch that M:5M 
for all A, then the dominant operator A is said to be M-hyponormal. A 1-hyponormal ope-
rator is hyponormal.) Extending this result it was shown in [5] (see the note following 
Corollary 7) that a compact contraction A e Co such that DA € C2 and the pure part of A 
has empty point spectrum is normal. That this result generalizes to A € C is the content 
of our next theorem. 

Theorem 4: A pure contraction A € C can not be compact. 

Proof: Let A € Cl be a non-trivial pure contraction. Then, by the proof of Lemma 4 
and (l),A E C1 . is a pure (and so completely non-unitary) contraction such that DA € C2. 
As such there exists an isometry Vand a quasi-affinity A' such that C(V,A)X = O[9: 
Theorem I]. Now if A is compact, then X= VXA is compact, and we conclude (as in Re-
mark 2) that A is unitary. This contradiction implies that A can not be compact I 

It is my pleasure to thank the Department of Mathematics, University College Lon-
don, for the use of their facilities during the preparation of this note.



274 eP.DUGGAL 

REFERENCES 

[1] APOSTOL,C.: Operators quasi-similar to a normal operator. Proc. Amer. Math. Soc. 
53(1975). 104 - 106. 

[2] BERCOVICI, H., FoiAS, C., and B. SZ.-NAGY: Reflexive and hyper-reflexive op-
erators of class Co. Acts Sd. Math. (Szeged) 43(1981). S - 13. 

[3] DOUGLAS, R. G.: On the operator equation SXT X and related topics. Acts Sc. 
Math. (Szeged) 30 (1969). 19 - 32. 

[4] DUGGAL. B. P.: On intertwining operators. Monath. Math. 106 (1988), 139 - 148. 
[5] DUGGAL, B. P.: On generalized Putnam - Fuglede theorems.Monatsh. Math. 107 

(1989), 309 - 332. 
[6] GOVA, E., and T. SAITO: On intertwining by an operator having a dense range. To-

hku Math. J. 33 (1981). 27 - 31. 
[7] SZ.-NAGY.B., and C.FOIAS: Harmonic Analysis of Operators on Hubert Space. Am-

sterdam: North-Holland 1970. 
[8] STAMPFLI. 1.0., and B.L. WADHWA: On dominant operators. Monatsh. Moth. 84 

(1977), 143 - 153. 
[9] TAKAHASHI, K.: C1 . contractions with Hubert -Schmidt defect operators.J. Oper. 

Theory 12 (1984). 331 - 347. 
[10] TAKAHASHI. K.: Double con,mutants of operators quasi-similar to normal operators. 

Proc. Amer. Math. Soc. 92 (1984), 404 - 406. 
[11] TAKAHASIII, K.: On quasi -similarity for analytic Toeplitz operators. Can. Math. Bull. 

31 (1988), 111 - 116. 
[12] TAKAHAHl,K., and M. UCHIYAMA: Every C contraction with Hilbert-Schmidt 

defect operators is of class Co . J. Oper. Theory 10(1983). 331 - 335. 
[13] UCHIYAMA, M.: Contractions with (o,c) defect operators. 1. Oper.Theory 12 (1984), 

221 - 233. 
[14] WILLIAMS, L.R.: Quasi-similarity and hyponormal operators. 1. Oper.Theory 5 (1981), 

127 -139. 

Received 10. 10. 1989 

Author's address: 
Prof. Dr. B.P. Duggal 
School of Mathematical Sciences , University of Khartoum 
Khartoum, Sudan, P.O.Box 321 

Current address: 
Mathematics Department 
National University of Lesotho 
Roma, Lesotho, Southern Africa


