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Hamiltonian control systems with natural output in the sense of [12] are consideredWe investigate state-
dependent co-ordinate transformations in the space of controls u and observables y which preserve the 
Hamiltonian structure.These transformations can be characterized and constructed by canonical trans-
formations in the (y , u)-pace.The results generalize known statements on Hamiltonian systems affine in 
the control and hold for general gradient-like control systems as well. 
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0. Introduction 

A good deal of problems encountered in current control theory belong to "systems shaping", 
that is, to gain a desired behaviour (like stability or decoupled disturbances) of a system by 
appropriately manipulating its structure. Most of the underlying concepts and methods come 
from linear control theory and they appear as more or less straightforward generalizations to 
nonlinear systems. Feedback transformations in the sense of state-dependent control transfor-
mations are at the heart of this set of problems. There are attempts to gain as large a nonlinear 
generalization as possible, but on the other hand very often it seems more promising to con-
fine attention to some class of nonlinear systems which are characterized by certain structural 
peculiarities (analytical and/or geometrical) and then to utilize these peculiarities in solving 
a shaping problem. Preferred classes under current consideration are, e. g., bilinear systems, 
polynomial systems, systems afline in the control, Hamiltonian systems. Within the framework 
of geometric control theory any system is specified by certain geometric ingredients such as state 
space, a family of vector fields describing the dynamics, an output mapping. In a sense, each 
system is considered as a geometric object per se. In order to stay within a class of systems 
every transformation (interpreted as a mapping or as some change of co-ordinates in local de-
scription of geometric objects) applied to any system is subject to the restriction to preserve 
that structure which characterizes the class of systems under consideration. 

In (11,12], van der Schaft characterizes feedback transformations which act in the class of 
affine Hamiltonian control systems. The primary aim of the present paper is to generalize his 
results to the class of general Hamiltonian control systems.
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It is well known that Hamiltonian systems are a corner-stone of theoretical physics and, in 
particular, of analytical mechanics. They entered control theory in the context of Pontryagin's 
theory of optimal control (central part of necessary optimality conditions). Then, initiated 
by Brockett's philosophy [2] in 1977, Hamiltonian control systems, forming a distinct subclass 
of input-state-output systems, have gained an increasing interest in diverse control-theoretic 
investigations. We just mention as outstanding contributions 

(i) van der Schaft's 1984 monograph [12], which treats Hamiltonian systems in a system-
theoretic setting, thus coming back to the historically original notion of Hamiltonian systems 
with external forces, and investigates typical system-theoretic properties such as controllability, 
and

(ii) the 1987 monograph [4] by Crouch and van der Schaft, where Hamiltonian control systems 
are distinguished within the set of all control systems in close connection with the inverse problem 
of variational calculus (see Santith [8]) and Jakubczyk's realization theory 151. 

Disregarding here more general definitions in a fiber bundle setting, van der Schaft's intro-
duction of Hamiltonian control systems can be sketched as follows. In the Context of affine (with 
respect to control) input-state-output systems 

= g°(x) +	UM 9(x), y h(x), n n,	 (1) 

where g, gU are given vector fields on a smooth n-dimensional manifold M (state space), u, are 
1-valued inputs, and h M -. Y is an output mapping to some manifold Y, y can be observed. 
Then M is supposed to be a symplectic manifold (e.g., of even dimension 2n) and go to be the 
Hamiltonian vector field generated by a Hamiltonian H° : M - 1,g° = XHO. Let Y = 7m, let 
h = (H 1 .....H) be submersive (that is, h(M) is an open domain in Y or, equivalently, dh has 
maximal rank, m, everywhere). Finally, let gM = -X, (Hamiltonian vector fields generated 
by the output functions HM) . Then (1) has the form 

± = XHO(x) -
	

U XHa(X), yU = HM(z)	 (2) 

and is called an affine Hamiltonian control system with natural output. This is a straight genera-
lization of the classical Hamiltonian system with external forces, written in canonical coordinates 

..........pn): 

= H(q,p), p=	n 

= -Ho (q,p)+u6 

= _qM, .i	1,..-,m 

(a comma denotes partial derivatives). Here the state space is M = TQ, the cotangent bundle 
of the configuration manifold Q, q 1 .....qm are observed, us .... . Urn are the generalized forces 
considered as controls. Note that, with 

H : M x U -, R, H(x, u) = H°(x) -	u H M (z), U Rm, 

equation (2) becomes 

th = Xjq(x,u), y = -H,(x,u).	 (2)' 

This can be generalized to a general Hamiltonian control system with natural output if the affine
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dependence of H on the controls is dropped, that is, if H is taken as any (smooth) function M x U —. 7?. 

I. Basic concepts 

In what follows, Hamiltonian control systems will be considered. The aim is to describe transfor-
mations which, in a precise sense,preserve the structure of these systems. Since these transfor-
mations are to be seen as co-ordinate transformations in respective manifolds, all investigations 
will be local and are executed by means of classical tensor calculus as an appropriate tool. 

Convention: Latin indices run from 1 to 2n, Greek indices from 1 to in < 2n, respective summation 
conventions are accepted throughout. All geometric objects, functions etc. are supposed to be of class 
C. Notations like f(x) instead off z —. f(z) are sometimes preferred for the sake of brevity. 

Keeping this in mind, a symplectic manifold M can be seen as (an open domain of) P2'' 
endowed with a tensor field fl" which is 

regular : det(fl"(x)) $ 0, z € M	 (3)a 

skew : 1r j = -ci"	 (3)b 

Jacobi :	crclrk + ill jy'cr' + nik 	= 0.	 (3) 

Here z = (x 1 -----x) denotes arbitrary co-ordinates in M. There are canonical co-ordinate 
systems (mutually connected by canonical transformations, see Section 3.2) with respect to 
which

fl"(z) = uJ', (w") 
= (	"	) -
	 (4) 

Any function H M - 7? generates a Hamiltonian vector field X = XH having co-ordinates 
= ci"!!,, - 

Definition 1: Let H be a given function M x U —. 1?, with open domains M C p2n and 
U C ./?m, m < 2n, such that rank (H,(x,u)) = in everywhere (that is, (H,,(-,u)) : M 
Y = R" is submersive), and let fl" describe a symplectic structure on M. Then 

= 

	

(x, u),	= -H(z,u)	 (5)ab 

is called a Hamiltonian control system with state x, input u and output y. If, in particular, 

	

H(x,u) = H°(x) -	 (6) 

then (5) is called an affine Hamiltonian control system. 

Now (5) is in a form which is invariant with respect to arbitrary state transformations 
= "(x). Thus,primary interest is in co-ordinate transformations in U and/or Y, which may 

depend on the state x.
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Definition 2: A state-dependent co-ordinate transformation in the control space U, 

U - v:	ãM(x,u) or UM = a(x,v)
	

IM

is called a feedback transformation. 

To be correct, the proper feedback transformation is ( 7 )6 : u is determined by a new control 
v while feeding back the state x to the input. 

Due to the invertibility of ã(x,.), the Jacobians (äM,,) and (o,) are of maximal rank, 
m ,everywhere. Obviously, if a( . ,.) is chosen arbitrarily, then H,(,a(.,v)) is not a a partial 
derivative anymore. Thus, in general, a feedback transformation will destroy the Hamiltonian 
structure of a control system. 

Definition 3: A feedback transformation (7) is called structure preserving for the Hamilto-
nian control system (5), if the system with u replaced by a(z, v) is again a Hamiltonian control sy-
stem with the same symplectic structure; that is, if there exists a Hamiltonian K(x, v) such that 

fl'(z)H,,(x,a(x,v)) = ci"(x)K,,(z,v)	 (8)

and the transformed system then is, with appropriate new observables zig, 

= fl"(x)K,(x,v), z' =	(x, v).	 .	(9)

The two Hamiltonian control systems (5) and (9) are called feedback equivalent. 

Remarks: 1. The change of observables y -. z is intrinsically determined, this will become clear in 
Section 3.2. 2. In a larger sense or could be called Hamiltonian structure preserving if ci" is allowed to 
change, that is, if there is a pair (fl", K) such that (1" satisfies (3) and 

1l"(z)H,,(za(zv))= cl"(z)K,,(z,v). 

To characterize such feedback transformations is still an open problem. Simple examples are considered 
in [9]. 

Since ci" is non-singular, it drops from (8), and a, in the sense of Definition 3, is characterized 
by

H,(x,cs(x,v))=K,(r,v) for some K(x,v).	 (8)' 

Thus, any conclusions concerning a do not depend on the underlying symplectic structure, they 
are valid for any non-singular tensor ci" (on a manifold of any finite dimension) and cover,e. g. 
also gradient systems (ci" symmetric and positive definite). Structure preservation by ci is 
simply a matter of H. Its geometric meaning is therefore that: Given a family of exact 1-
forms, dH( . ,u), a has to be such that dH(.,ci(.,v)) is a family of exact 1-forms again. The 
characterization (8)' follows immediately (integrability conditions, existence of K). 

Lemma 1: JIM is simply connected, then a is structure preserving for H if, for every t', ci 

solves the quasilinear partial differential equations 

0 = H , ,(x, a(x, v))UM,,.,(z, v) - H , (z, ci(x, v))a.,,(x, v).	 (10)
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Using this lemma, it is simple calculation to check the structure preservation by a given a. 
In the affine case (6) it yields an explicit representation of such a (see [11), the general case will 
be treated in Section 3. 

2. Output transformations in affine Hamiltonian control systems 

It is a remarkable property of affine Hamiltonian control systems (2) that the input channels 
-XH are determined by the output functions HM. This strong interconnection has certain 
consequences. 

Even for practical reasons it could be desirable to pass over from the observed quantities 
yl to some others, zM. (As an example one could think of a torque-controlled mathematical 
pendulum and wish to observe the horizontal elongation instead of the angle.) This then leads 
to the consideration of a co-ordinate transformation in the output space Y, 

Ty :	= ç,M(yi ,rn) 

Thus, a change of the output functions is implied, 

H M(-) - K M (-) := WM(Hl(.)..... 

Structure preservation by Ty (that is: the new output equations, z' = K M (x) , have to be part 
of an affine Hamiltonian control system) then requires a respective change of the input channels, 
XH . —. XK .. , while the dynamics remains unchanged (same orbits). So for any x and any u 
there is a v = (v1 , ...,Vm) such that 

XH0(x) - UM X,j..(x) Xs(x) - vj XKA(x). 

Here XHO cancels out, then, writing the Hamiltonian vector fields co-ordinate-wise, ST J drops 
because of its non-singularity, and K" = WA H' finally yields (ti - v W A ) H' = 0. Since 
by Definition 1 the output functions P' are independent, a transformation in U, Tv : tL M = 
v)"(y) follows. 

Observations: The above considerations give rise to the following statements. 
(i) The co-ordinate transformation Ty implies a linear transformation, T, of the input co-

ordinates. Restricting yU to the output values HM(x) , Tv becomes a linear output-feedback 
transformation (see Definition 2, dependence on state via output values). 

(ii) The pair (Ty,Tu) forms an extended point transformation on Y x U, that is , a special 
canonical transformation ( see [3]). In particular, caused by T, u transforms like a covector. 
By this fact the two (up to now separate) spaces Y and U must be considered as constituting the 
external space W = TY ( cotangent bundle of the output space) which in a natural way carries 
a symplectic structure (see (6, 12]), ( y', uk,) could be seen as canonical co-ordinates with respect 
to that structure in W. 

Remark: This stringent cotangent bundle structure of the external space (with its natural symplectic 
structure) depends neither on the symplecticity of the state space nor on the Hamiltonian drift field XHO.lt 
is solely a consequence of the fact that the input channels are in one-to-one linear correspondence with 
the output functions. The representation W = TY is not new, it can be found in van der Schaft's 
papers, but there it appears simply as a convenient and "most natural" interpretation [14, 151 or it is a 
priori part of the definition of a Hamiltonian control system 111, 121. 

It is interesting to see what happens if the output transformation is allowed to depend on 
the state:
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T	= 

The implied change of output functions is 

H M ( . ) -. K"() =	 Hm(.); .)	 (11) 

and, by the same reasoning as above, it follows that Ty is structure preserving if for each (x, u) 
there exists a v such that 

0 = uM H(x) - vA K , (x).	 (12)

This will specify the functions '(y; .). The auxiliary transformation in M, 

-. .s' : s = H M(x)( = 1. ... . in) and sr, = z(i = in+ 1,...,2n) 

brings in some simplifications. Let t,b'(y;s) := pM(y;x(s)), then (11) yields 4"(s",.$) := 
s"; s) = KM(r(j)) and (12), written in the new co-ordinates s, splits into 

0=uM - V A IP A , 0= -v'.	 (13).b 
I. A

(i) Let Ty be structure preserving. Then the linear equations (13)a have a solution VA 
at any UM, hence (W) is a non-singular matrix with, say, () as its inverse. Thus, 
VA = c'u follows. The second part (13) b then writes 0 = -u 'I' IP A and, since this 
holds for arbitrary u, it yields 0 = 41A ..Thus 4'' does not depend on s, which means 

= c' M (s").	 (14) 

Now fix an arbitrary y E Y. Then M = { 3 1 3 M = yM} is a (2n — m)-dimensional subrnanifold 
of M. Owing to (14), i'(y;.) is constant (with value 'I(y)) on M, therefore it does not 
depend on sm,	2n Thus	(y; s) = + M(y; 31 j) with some function +' and, finally, 

çpM( y;2 ) = +M(y;Hl(x),...,Hm(x))	 (15) 

is necessary for Ty to be structure preserving. Mind that +(s"; 3") = ''(s"), and W' has a 
non-singular Jacobian. 

(ii) Let # have the form given by (15). Then the new output functions are K M(.) = 
H"( .)) = '(H"( . )) yielding K' = W H TM . Therefore (12) will be satisfied by 

=	 vA or VA = IF' u,, respectively. Hence (15) also suffices for Ty to preserve structure. 

Theorem 1: A state dependent output transformation T	= '(y; x) preserves the
structure of the affine Hamiltonian control system 

x = XHO(z) - u XH.(x), yM = H M (x) , rank (H M ) = in everywhere, 

if and only if 
(i) pM( y ;.) = 41(y; H'(.).....Hm(.)) with some functions 4" such that IIT", ,U(y) = 4ø(y; y) 

have non-singular Jacobians,and 
(ii) Ty is accompanied with the output-feedback transformation Tu u. = W(H'(x) 

H tm (x)) VA. 
Then (Ty,Tu) takes the system to 

= X11o(x)- vAXKA(x), z = Jt(z):= qIA(l()Hm(z)).
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Remark: Typically, in all transformation formulas the state z appears "packet-wise" by 
H-(z). This fact will again be encountered in the following. 

3. Input transformations in general Hamiltonian control systems 

In this section Hamiltonian control systems in the sense of Definition 1 are considered and their 
structure preserving feedback transformations (Definition 3) are characterized in a way which 
allows for construction of such transformations. Clearly, this characterization will be independent 
of the underlying symplectic structure of M (remind Lemma 1) but equally it does not depend 
on the particular form -H of the natural output functions. In order to put this latter fact 
into evidence, systems with no output will be considered first. 

3.1 The main theorem 

Before going into details, recall the notion of Poisson bracket: Given two functions A,B depen-
ding on (y,u) E 12m, then their Poisson bracket {A,B} (needed here in a narrow sense) is 
{A, B} = A , B ,, - B ,5 , A , ,, (mind summation p = 1,..., m). 

Theorem 2: Let H(x,u) be a Hamiltonian with rank(H, 	(x, u)) = in, let F : u,, = 
cs., (x,v) be a feedback transformation (F -1 : v,, = aM (x,u)). Then the following statements are 
equivalent. 

(a) F is structure preserving for H. 
(b) There are m functions V(y, u) having Poisson brackets 

{VM ,VA} o	 (16)

such that F - ' has the representation 

a M (x,u) = V(-H,,(x,u),u).	 (17) 

(In case m = 1 the bracket condition (16) is void.) 

Remarks: (a) On account of the invertibility of a(z,.) the equations v = V(-H,,. (z, u), u) are 
solvable for u. This implies that the functions VM are independent: rank (V, V) = m. 

(b) Following Theorem 2 one can set up a structure preserving feedback transformation by prescribing 
m functions V having mutual Poisson brackets zero and non-singular Jacobian of V(-H,,,(z,.),.) and 
then solving the equations mentioned under (a). 

(c) Equally, Theorem 2 describes solutions of the quasilinear partial differential equations (10) stressed 
in Lemma 1. Each in-tuple of functions V with properties as in Theorem 2 gives rise to a family 
{a (-, V )),,E 7Z of solutions which are implicitly given by the equations mentioned under (a). 

(d) The occurence of -H,. within (17) is an intrinsic matter of the differential equations (5),, and their 
structure preservation under feedback transformation, primarily it has nothing to do with the choice of 
output functions. Clearly, it is just this fact which, later on, makes Theorem 2 fit to Hamiltonian systems 
with natural output as well. 

(e) In 13], there is a Remark concerning something like Theorem 2. But apparently it contains some 
confusion with the affine case where H occuring in (17), does not depend on u (see the Remark in 
Section 34). Structure preserving feedback transformations for affine Hamiltonian control systems are 
considered by van der Schaft in several of his papers, see, for example, [11, 12, 14, 15]. His main tool is 
to see a Hamiltonian system as describing a Lagrangian submanifold of a certain symphectic manifold,
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thereby making explicit use of the symplecticity of the state apace, but this does not hit the core of the 
problem (remind the Remarks preceding Lemma 1). His result will of course be rediscovered as a special 
case of the above theorem (Section 3.4). 

Proof of Theorem 2/Sufficiency: Let the functions VM have vanishing Poisson brackets 
and let a(x,v) be the solution of the equations VM = V,(—H,(r,u),iz). Then v,., = 
V(—H,(x,cz(x,v)),cs(z,v)) is an identity with respect to x and v. Differentiation of this iden-
tity with respect to v or x' gives rise to the auxiliary relations 

bl =	 (18) 

with

A = —Vup(y,tL)H,(x,u)+ VM.,(y,u),	 (19) 

where here and in the following u, y have to be replaced by cs(x, v), —H,(z, cs(x, v)), respectively, 
and

0 = - V(y,u)H(x,u).	 (20)

Now (18) indicates the non—singularity of (Az) and (a), thus (20) solves for 

=	Vp H,	 (20)' 

Following Lemma 1, it is to be shown that h1, := If , , a 	is symmetric, /i = h,1 . Since (20)' 
yields h., = H, a,,, V) , H,, it is sufficient to show the symmetry of k,,,	a,, V,, 
or, utilizing the non—singularity of (Az), the symmetry of 1,, := A A° k,,,. Using (19) it is 
straight caculation to find 1,,,, -	{V,1, VA}	0 I 

To prove the necessity of Theorem 2, let u = cs(z,v),v = d(x,u) be a structure preserving 
feedback transformation for H. Then it has to be shown that there are m functions V, with 
zero valued Poisson brackets such that a has the structure given by (17). This will be done by 
construction. 

Consider the auxiliary equations 

y' = —H,(x,i).	 (21) 

Owing to the supposed regularity rank (H ,) = m they can be solved for (perhaps after 
relabelling) x l , .... xm: 

= X'(y,u,;), c = 1.... . m,	 (22) 

where t stands for	= m + 1, ...,2n. Then let 

U ; ) := aM(X,(y,u;), ±, u).	 (23) 

Proposition 1: In (23), ± is  dummy parameter, so in fact t(y,tz;±) = V,(y,u).
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Proposition 2: The so-defined functions V. have Poisson brackets zero. 

In order to prove these propositions, some auxiliary relations will be needed. 
(I) Since a is structure preserving for .H there is a function K(z, v) such that 

	

(z, v)	H(z,cx(z,v)), K (z,ä(z,u)) = H , (z,u).	 (24),., 

This yields by differentiation K, (z, v) = H, (z,a(z,v))a,,,(z,o), showing K,	to be of the
same rank as provided for H,. Replacing v by a(z, u) yields 

K,(z,ã(z,u))=H,(z,u)cs,(z,ã(x,u)).	 (25) 

From identity (24) b follows, by appropriate differentiation, 

K, (z,ä(z,u))ä,	(z,u)= H ,  (z, u)	 (26),. 

K,,(z,ã(z,u))+K,(z,ã(z,u))ã,(zu)=H(X,u).	 (26)i 

Alternating i and j, the latter identity gives 

0 = K,(z,&(z,u))a, , (z,u)- K,(z,a(z,u))&,,(z,u)	 (26), 

which is the analogue to (11): a is structure preserving for K. 
(ii) The equivalent equations (21) and (22) yield the identity z' = X"(-H,,(z,u),u;). Differen-

tiating this identity by u0 and then replacing again -H , by y, it is easy to find the Poisson brackets ( 
as a parameter) 

{X , X A} o.	 (27) 

Differentiation of the above identity by x' yields 

= -X',(y,u;)H	,jX,,u).	 (28) 

(iii) Finally, differentiation of the identity -y M	H,, (X, , u) by z5 gives 

0=H(X,2,u)X+H,(X,,u).	 (29) 

Proof of Proposition 1: It has to be shown that, starting with (23), 

	

u;	= a ,(X,,u)XA,jy, ; ±) + 

is zero. If this equation is multiplied by K, (X,,ã(X,,u)), which has maximal rank in, 

then (26), (25), and (29) can be utilized in this order to find easily K ,	= 0, whence

=0 I 

Proof of Proposition 2: Again starting with (23)and now using v(y,u;) = V(y,u),one 
finds that the derivatives V, = u, X' and V, = X + (where the derivatives 

of a have the argument (X, t, u)) yield the brackets 

{V, 14} = a,,,,	{X, X} +	au,, -	a]
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Here the first term vanishes on account of (27). But so does also the second one, which is easy to 
see after multiplication by K , K , (X,±,ã(X,±,u)) and inspection of the identities (26),,, 
(28), and (26)	- 

Proof of Theorem 21Necessity: The two propositions above complete the proof of the 
necessity: relation (23) now reads a,(x, u) = VM ( - H , (z, u), u), and the VM have Poisson brackets 
zero I 

If cs(z, v) describes a structure preserving feedback transformation for H, then the Hamil-
tonian of the transformed system is given by the line integral K(x,v) = fJl,(z,cx(x,v))dxt. 
Lemma 1 ensures its integrability, thus K is well defined up to an additive term k(v) which does 
not enter the transformed differential equations z' = fI" K. There is an alternative form for 
K which will be exploited below. 

3.2 The main theorem for systems with natural output 

It is well known (see, for example, [3,6]) that any system of independent functions V,(y,u) 
having Poisson brackets zero determines a system of canonically conjugate functions ZM(y, ) 
which satisfy 

{Z, V,,} = b", {Z A Z} = 0.	 (30) 

These functions Z are well defined (by (30), seen as partial differential equations) to within an 
additive term ((V(y,u)), where C(vi.....vm) is an arbitrary function. Then 

(Y ' U) -. ( Z ' V) :	= Z'(y,u), v.	V(y,u)	 (31) 

is a canonical transformation in 12m 

Recall some basic facts on canonical transformations needed below in this pure analytical fashion: 
The transforma.gtion (31) is canonical 

(1) if {Z',Z"} = 0 W, V,} = 6, {V,V,,} = 0 (Poisson bracket characterization) 
(ii) if there exists a function S(y, u) such that 

yP du - Z dV = dS	 (32) 

(exact 1-form characterization). This differential relation is equivalent to 

-Z V	= 5,, yM - ZP VP = S' .. .	 (32)' 

S is uniquely determined (up to an additive constant) by the canonical transformation (Z, V), it is called 
coupling func t ion. 

Let now t' = a(z, u) be structure preserving for H, let a correspond to V. as in Theorem 2, let 
Z M be the canonical conjugates of VM and S the coupling function of the canonical transformation 
made up by (Z, Vj. Then there is a useful representation of the new Hamiltonian. 

Lemma 2: The new Hamiltonian is given by 

K(z.v) = H(x,cs(x,v))-i- S(-J1,jx,cx(x,v)),a(x,v)).	 (33)
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Proof: It is straight calculation, using (32)' and the identity V(-H,(x,cz(z,v)),cx(x,v)) = 
v,, to find	(x, v) = H(x,a(z,v)) U 

Remark: The ambiguity of the canonical conjugates ZU (additive terms ( (V(y, u))) implies, via 
(32), a corresponding additive term -(V(y,u)) to S. Thus (33) shows, again, K to be unique up to 
additive -((v) (remind V(-H ,. (r, a(z, v)), a(z, v)) v because of (17)). 

The most important feature of K is now disclosed by the following calculation using (33) 
and (32)' with y = -H,, (x,u) and u = a(x,v): 

K(x, v)	[H,(z, 1L) - S (y, u)	u) + S,,(l/, u)j 0p. 

= f_yP + Z' V,(y, u) H , (x, u) +? - Z" V,(y, u)1a 
= -Z"(y,u)IV,(y,u)L. 

Now, because of V,ç(-H,(x,cx(x,v)),cx(x,v)) = v,, there follows 

K(x,v) = _ZM(_H,(x,cs(x,v)),a(z,v)).	 (34) 

The crucial point in considering systems with output now is the following: Each fee- ab-
ack transformation which is structure preserving for H (that is, for the differential equations 
(5) disregarding output) is, as outlined above, connected with a canonical transformation (31). 
Theorem 2 tells that v = a(z, u) is given by restricting the v-part of this transformation to 

= -H,jx,u), which is just the natural output (5)b belonging to the differential equations 
(5),. The above equation (34) means that nothing else but the natural output of the trans-
formed system is achieved by restricting the z-part of the canonical transformation to the 
natural output of the original system (and expressing u by the new control v). This observa-
tion throws a new light on output equations of the form y' = -H,,(x,u): they are natural 
under a transformation-theoretical point of view since they now show up as being intrinsically 
determined by the differential equations themselves. 

Altogether, it has been shown that the transition of a Hamiltonian control system with 
natural output to another system of this type via feedback transformation is governed by a 
canonical transformation in the input-output space Y x U (which therefore, again, has to be 
seen as W = TY). 

Theorem 3: The Hamiltonian control systems with natural output, 

= 11'3(x)H,,(z,u), yM = -H,,(x,u) 

= &1I(z)K,,(z,v), zM = -K(z,v) 

are equivalent via feedback transformation tt = cs M (x,v),v, = ã M ( z , u), if there is, in the 
external space W = TY, a canonical transformation (y, u) -. (z, v) : z 1' = Z(, u), v,. = 
VM (y,u) such that 

ã M (x,u) = 
(x, v) = Z'(-H,(x,u),u) with u=cs(x,v). 

3.3 Special feedback transformations 

22 AmIysi.. Bd. 10, Heft 3 (1991)
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Every canonical transformation (31) can be composed of an elementary canonical transforma-
tion (which is, apart from some changes in sign, a permutation of the 2m variables u,) and 
a second canonical transformation which is featured by maximal rank of some m x m submatrix 
of its Jacobian 1 3 1 . Following [7], emphasis is on four types of canonical transformations 

type 1 : rank(Z M ) = m,	type 	: rank(V) = in 
type  : rank(Z Mj = m,	type 	rank(V.) = m 

Each of these transformations can be described by a generating function which can be used pro-
fitably for the construction of structure preserving feedback transformations. If all possibilities 
are displayed, it turns out that type 4 is the simplest case while type 2 is most important. 

Type 4 transformations. Owing to the above rank condition the equations V = I'(y, u) can 
be solved for y : yM = 9"(u, v). The identity v, = V(g(u, v), u) then implies ö = V	g, 
showing (g m ) to be non-singular, and 0	i';. g	+ V,	(appropriate arguments). Using 
the coupling function S(y,u) of the canonical transformation, let G4(u,v) := -S(g(u,v),u). 
Then (32)' yields G4 (u,v) = -gM(u,v), showing (C4	) to be non-singular, and G4 (u,v) =
Z M(g(u, v), u). Hence the canonical transformation is implicitly given by 

=	(u, V), z' =	(u, V).	 (35) 

Vice versa, any given function G4 (u, v) with maximal rank, m, of (C4	(u, v)) generates, via
(35), a type 4 canonical transformation. 

Let now G 4 (u, v) be any type 4 generator. Then the equations 

-H,(x,u)= -G4(ti,v),	 (36) 1.

where H is a given Hamiltonian, can be solved for v: v, = a(z, u). This solution is certainly 
of the form V(-H,(x,u),u), where 1', is part of a canonical transformation (generated by G4). 
The identity H, (z, u) = C4 (u, a(z, u)) implies, with appropriate arguments of functions, 
H,	= C4	+C4	ã,so the local invertibility of a(x, .)is guaranteed by non-singularity 
of (H	- C4	). Then Theorem 2 exhibits a to describe a structure preserving feedback 
transformation for H, the new Hamiltonian is given by (33). 

Theorem 4: Let H(z,u) be a given Hamiltonian, C 4 (u,v) a given function, let 
rank (C4	(u, v)) = rank (H	(x, u) - G4	(u, v)) = m for all x, u, v. 

Then the solution v = a(x, u) of the equations (36) defines a structure preserving feedback 
transformation for H. With its inverse, iz., = o(x,u), the transformed Hamiltonian is 

K(x,v) = H(x,a(x,v))- C4(o(z,v),v). 

Type 2 transformations. Similar reasoning as above now leads to the implicit form of the 
canonical transformation up = C2 ,, (y, v), z' = C2 (y, v) with a generator G 2 (y, v) having 
rank (C2,,(y,v)) = m given by C 2 (y,v) -S(y,g(y,v)) + y°g p (y,v), where gp solves the 
equations t' = V(y,u). Then there holds 

Theorem 5: Let H(z, u) be a given Hamiltonian, G 2 (y, v) a given function,let
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rank (C2 ) = rank(6 + C2 
M5P  H	) = m for all x,y,ti,v. 

.11 .,,  

Then the solution v. = 6,,(x, u) of the equations uu = G2(-H,(x,u),v) defines a structure 
preserving feedback transformation for H. With its inverse, u. = a(z,v), the transformed 
Hamiltonian is 

K(x,v) = H(x,cx(x,v)) - C2(-H,(x,cx(x,v)),v) - csu(z,v) H,(x,o(x,v)). 

3.4 Application to affine systems 

Let H be an affine Hamiltonian, H(z,u) = H°(x) .- u. HM(x), with rank (H" . (x)) = m. Then 

Theorem 2 characterizes a structure preserving feedback transformation by vu = &.( Z ' U ) = 

V(p ,u) with yu = -H_
'
 (x,u) = HU(x) now not depending on u any more. The invertibility of 

a(x,.) therefore implies rank(V (y, u)) = m Thus, in this case, the canonical transformation 
governing the feedback transformation is necessarily of type 2 and Theorem 5 applies. This 
amounts to 

Theorem 6: A feedback transformation Uu = ajx, v) is structure preserving for 

H : H(x,u) = H°(x) - u,, H l'(x), rank (H', 	= m, 

if there is a function G(y, v) with rank (G ,,, _(y, v)) = m such that 

a(z, v) = G.,, (H'(x), ..., H"(), v).	 (37) 

Then the transformed Hamiltonian is 

K(z,v) = H°(z) - G(H'(z),...,Hm(x),v).	 (38) 

In this affine case a(•, v) is (natural) output-feedback (see Observation (i) in Section 2). In 
general, the new Hamiltonian (38) is not ailine any more. The transformed system is again 
affine with respect to v, ifT so is the generating function C,G(y,u) G°(y) + G'(y)vp. In 

this case, (38) yields the natural output zu G(H'(z).....Hm(z)) of the transformed system, 
which again fits to the scheme of output transformations dealt with in Section 2. The feedback 
transformation then is 

= G°(y) + v C',(y) with p = (H'(x), ..., 

and this is exactly van der Schaft's "Hamiltonian feedback" [11,121. 

Remark: In [13,p. 4] van der Schaft claims, in a non-affine context, that a Hamiltonian control 
system after feedback is again Hamiltonian if (adapted to the presentnotation) a(z, v) has the form 
a. = G,,,.(—H , v). Formally, this coincides with the above representation (37) but it can hold in 
the affine case only since otherwise H, actually depends on u and the above formula does not give a 
representation of 0u•	 -	- 

Equation (38) describes the general form of a Hamiltonian which can be gained by a structure 
preserving feedback transformation applied to an affine Hamiltonian system. Vice versa, a 
Hamiltonian control system with some Hamiltonian K(z,v) can be transformed to an affine
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Hamiltonian system if K(z,v) has the analytic structure given by (38). How to check this 
structure and how to find an affinizing feedback transformation is considered in [10). 

4. Concluding remarks 

The starting point of this paper was to generalize known results about structure preserving 
feedback transformations for affine Hamiltonian control systems to non-affine systems. This is 
a self-contained mathematical problem which, moreover, has some relevance in control theory 
since there are Hamiltonian control systems which, in a natural way, cannot be described by 
Hamiltonsans affine in the controls. The answer to the problem is given by the main Theorem 
2. But this theorem indeed covers more than Hamiltonian control systems: since the tensor 
W3 describing the symplectic structure of the state space drops right at the beginning of all 
investigations, Theorem 2 is in fact related to the bigger class of gradient-like control systems 
in 'Ri, n E .V, 

= S" (x) H, ,(z,u), rank(Si) = neverywhere, 

where the tensor S, besides its non-degeneracy, does not undergo any restrictions and thus need 
not allow for a normal form like (4) anymore. Even for these systems it remains true that, 
seen in the context of feedback transformations, the "naturality" of outputs y = -H ,, is an 
intrinsic matter of the differential equations. 

Problems still under consideration are concerned with degenerate systems of the above kind, 
rank(S") < n. Respective results then could possibly allow for an approach to Poisson control 
systems, mentioned in [4), which generalize (but are still "near to") Hamiltonian control systems. 
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In a time of a renaissance of boundary integral methods it is good to remember the origins of 
the theory. At the beginning of our century the method of reduction of boundary value prob-
lems to linear integral equations was not only applied to ordinary differential equations and 
to the Laplace equation, but already to the equations of the linear elasticity theory. In this 
connection H. Weyl recognized in 1915 that boundary integral equations can appear, which do 
not lead to a regular integral equation for the unknown distribution. Today such integral 
equations are no more a barrier, since these are singular integral equations, though this theory 
reached a certain completion not untill the sixties. Of immediate interest is the analytic


