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Domains of Attraction of Generic w-Limit Sets for Strongly Monotone Semiflows

P. TAKAC *

Asymptotic behavior of a strongly increasing semifiow ¢ in a strongly ordered metrizable topological space
X is investigated in terms of the w-limit set w(x) of a generic point T € X whose positive semiorbit
O%(z) is assumed to be relatively compact. The domain of attraction of the w-limit set of a generic order
w-stable point is determined. If X is an open and order-convex subset of a separable strongly ordered
Banach space V, it is proved that “almost all” points Z € X are order w-stable, whereas the remaining
w-unstable points are contained in the union of at most countably many Lipschitz manifolds of codimension
one in V. If ® admits a strongly positive, compact linearization about its equilibria, then w(z) is a single
equilibrium for every order w-stable point z € X.
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0. Introduction

The primary goal of this paper is to investigate the asymptotic behavior and the domain
of attraction of a generic w-limit set for a continuous-time semiflow & = {®, : t € R}}
where ®, : X — X, for every t > 0, is a strongly increasing continuous mapping in a
strongly ordered, metrizable topological space X. For instance, X can be an open subset of
a strongly ordered Banach space V, i.e., V is a real Banach space with an order relation “<”
whose positive cone V4 = {z € V : z > 0} has nonempty interior Int(V,). We write z < y
inViffy—z € Int(V,), whereasz < yin Vmeansz <yandz #y. ThenT: X — X
is called strongly increasing iff z < y in X C V implies Tz < Ty.

To describe the asymptotic behavior of our semiflow ® we study the w-limit set w(z) of
a generic point £ € X whose positive semiorbit (orbit, for short) O*(z) = {®,z : t € R}}
is assumed to be relatively compact in X. Here w(z) is the set of all limit points in X of
&,z as t — oco. Asymptotic behavior and domains of attraction of w-limit sets are closely
connected through stability properties of z € X expressed in terms of the w-limit sets w(y)
for y € X near z, y § z, which we call w-stability. To state this stability classification we
assume that & is w-compact in every simply ordered, compact arc J C X, i.e., OF(z) is

.
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relatively compact for every z € J, and also U w(z) is relatively compact in X. Given any

z € X, we first define the lower and upper w-lwmt sets of z, respectively, by

w_(z) = 'Qx Cl '%Jx w(z) and wy(z) = ,re'\x Cl Y w(z);
7<= i< > X ¥23d>x
their properties are described in Proposition 3.4 through Corollary 3.7. Here “Cl” denotes
the closure in X.

A point z € X is called lower w-stable (symbolically z € S_) if w_(z) = w(z); otherwise
z is lower w-unstable (zx € U_). A point z € S_ is called lower asymptotically w-stable
(z € A.) if w(y) = w(z) for some y € X, y < z. The upper w-stability classificatior
of z € X is defined analogously with w4(z) in place of w_(z). We set § = S_ NS,
81/2 =8_ US+,L( =U_ UL(+, uz =U_ﬂu+, A=A_ n.A+ and .A]/Q =A_ UA+.

Our most important result describing the asymptotic behavior of ¢, Theorem 5.1 sup-
plemented by Proposition 4.4 and Corollary 4.5, shows that “almost all” points z € X are
order w-stable, i.e., z € S, and either w(z) C S),2 is a single equilibrium, or else w(z) C U;
is a set of equilibria with z € .A,/g We denote by £ = {r € X : &z = z forall t € R} } the
set of all equilibria. The main part of this result, namely w(z) C € for “almost all” z € X
was proved already by Hirsch {20, Thm. 7.5 and 7.8] and later in a more general space
setting by Smith & Thieme [41, Thm. 3.3]. For a very common class of semiflows associ:
ated with autonomous evolution equations, e.g., irreducible cooperative systems of ordinary
differential equations or semilinear parabolic partial differential equations, it was shown by
Polacik [32, Thm. 1} and Smith & Thieme (42, Prop. 2.5] that w(z) is a single equilibriumn
for every z € S, cf. also our Theorem 5.2. Our approach has an interesting addition tc
their results, namely, description of #_ and U4 as the unions of at most countably manj
Lipschitz manifolds, thus showing that Smale’s example {37] is; in fact, rather general. Ou
study of w-unstable points was inspired by Hirsch [21, Thm. 1.1 and Prop. 2.6]. Further
more, U- C 4 Aand U4 C 8_A, where d_ and 8; denote the lower and upper boundaries.
resp., cf. Section 4. In particular, a strongly increasing continuous-time dynamical systemn
(X, ®) cannot be “very chaotic”; all “chaos” must occur inside Uz, the set of all w-biunstable
points. To state this and other results precisely we will assume, for simplicity, that V is
a separable strongly ordered Banach space and X is a nonempty, open and order-convex
subset of V. (X is called order-convezin V iffa, b€ X,z€ Vanda<z < bimplyz € X.]
We also assume that the semiflow ® : R, x X — X is strongly increasing and w-compact
in every simply ordered, compact arc J C X. Finally, we denote by V the set V with the
order-topology generated by all open order intervals [[a,d]] = {z €V : a< z <« b} inV
The order-topology is obtained from any ordered norm on V: Fix any e € Int(V; ) and define

lz]e =inf{A€RL: —de<z< )de} for z€V.

Theorem 0.1. Given any z € X, precisely one of the following three alternative:
occurs: '
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(1) z € S1/2 and w(z) = {p} C EN S,z in which case $1z — p as t — oo.

(2) z € Ayj2 and w(x) C ENU; in which case there ezist p, ¢ € € such that w(z) C [[p,q]]
and w(y) p and w(z) = q whenever p < y < w < z < q for some w € w(z). If, in addition,
V =V and & admits a “strongly positive, compact linearization” about sts equilibria (cf.
Theorem 5.2), then w(z) is a single w-biunstable equilibrium. ‘

(3) z € Uy and w(z) C U, in which case there ezist p K q as in Alt. (2) above.

Finally, the sets Uy C U = U_ U U, are “very small”: Each U and Uy is the union
of at most countably many Lipschitz manifolds of codimension one in V = (Vs |- ]e) In
particular, u(U) = 0 for every Gaussian measure u on V.

This theorem is a combination of Theorems 5.1 and 5.2 with Propositions 4.4 and 5.3
and Corollary 4.5. A number of closely related results showing convergence to an equilibrium
for the trajectory of every point in X can be found in Alikakos & Hess [2], Alikakos, Hess &
Matano (3], Aronsson & Mellander (8], Henry [13], Hess [14], Hirsch [18-20, 23], Lajmanovich
& Yorke [27], Selgrade [36], Smith [39, 40}, Smith & Thieme {41, 42] and Takac [43-45). Most
of them assume at least one of the following three additional hypotheses: (i) £ C S, cf. [43,
45], or even X = S, f. [2, 3, 13, 14, 18]; (ii) £ contains no triplet p < ¢ < r, cf. (41, 45),
or even £ is a singleton, cf. (13, 20, 23}; and (iii) X C V is star-shaped from the origin
and @, is sublinear for each t € R}, cf. (8, 19, 27, 36, 39, 44]. An interesting replacement
of (i) (or X = S) was found by Hirsch (23, Sec. 2] who requires V = R® and &, does not
increase volume for each t € R} (rather than distance to achieve X = S, cf. [2, 18]). It is
often not too difficult to verify an w-stability hypothesis imposed on an equilibrium or even
a generic point z € X. For instance, when dealing with an autonomous evolution equation
which admits a linearization, one can apply the Principle of linearized stabslity, cf. Henry
(13, Chap. 5).

A novelty in this article is an interesting description of the domain of attraction of the
w-limit set w(z) of a generic point z € S)/;. Given § # W C X, the set D(W) = {zeX:
w(z) C W} is called the domain of attraction of W. It follows from our Theorems 5.1 and
5.2 that, for any fixed z € S1/2, w(z) can have only one of the following three forms, cf.
Theorem 4.8, provided also z ¢ 3_U N 8, U:

Theorem 0.2. We have w(z) C K where the set K C X is defined by one of the
following three alternatives:

() K = {p}, for some p € £N Aya;

(ii) K = P*, where P* is a mazimal subset of £ with the following property: P* is
the image of a strictly increasing continuous path P: T —s X defined in a nondegenerate
interval T C R!;

(iii) K = w(z), for some zg € A2 such that w(zo) CEN(U UD_UU oL U).

The domain of attraction of K from Theorem 0.2 has the following “shape”:
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relatively compact for every z € J, and also LéJJw(x) is relatively compact in X. Given any
E 4

z € X, we first define the lower and upper w-limit sets of z, respectively, by

w_(z) = :g‘: Cl ,'S'E,J':, w(z) and wy(z) = :g{ Cl ,';,J’)‘, w(z);
their properties are described in Proposition 3.4 through Corollary 3.7. Here “Cl” denotes
the closure in X.

A point z € X is called lower w-stable (symbolically z € S_) if w_(z) = w(z); otherwise
z is lower w-unstable (z € U_). A point z € S_ is called lower asymptotically w-stable
(z € A.) if w(y) = w(z) for some y € X, y < z. The upper w-stability classification
of z € X is defined analogously with w4 (z) in place of w_(z). We set S = S_ N Sy,
51/2 =S5_ US+, U=Uu_ UL(+, uz =U_ nu+, A=A n.A.;. and .Al/g =A_ UA.,.‘

Our most important result describing the asymptotic behavior of ¢, Theorem 5.1 sup-
plemented by Proposition 4.4 and Corollary 4.5, shows that “almost all” points ¢ € X are
order w-stable, i.e., z € S, and either w(z) C ), is a single equilibrium, or else w(z) C U,
is a set of equilibria with z € A,;;. We denoteby £ = {zr € X : &z =z forallt € RL} the
set of all equilibria. The main part of this result, namely w(z) C £ for “almost all” z € X,
was proved already by Hirsch {20, Thm. 7.5 and 7.8] and later in a more general space
setting by Smith & Thieme (41, Thm. 3.3]. For a very common class of semiflows associ-
ated with autonomous evolution equations, e.g., irreducible cooperative systems of ordinary

- differential equations or semilinear parabolic partial differential equations, it was shown by
Polaéik (32, Thm. 1] and Smith & Thieme [42, Prop. 2.5 that w(z) is a single equilibrium
for every z € S, cf. also our Theorem 5.2. Our approach has an interesting addition to
their results, namely, description of //_ and U4 as the unions of at most countably many
Lipschitz manifolds, thus showing that Smale’s example [37] is, in fact, rather general. Our
study of w-unstable points was inspired by Hirsch [21, Thm. 1.1 and Prop. 2.6]. Further-
more, U_ C 34 A-and U4 C O_ A, where 8_ and 94 denote the lower and upper boundaries,
resp., cf. Section 4. In particular, a strongly increasing continuous-time dynamical system
(X, ®) cannot be “very chaotic”; all “chaos” must occur inside Uz, the set of all w-bsunstable
points. To state this and other results precisely we will assume, for simplicity, that V is
a separable strongly ordered Banach space and X is a nonempty, open and order-convex
subset of V. (X is called order-convezin Viffa,b€ X,z€ Vanda<z < bimplyz € X.)
We also assume that the semiflow & : R} x X — X is strongly increasing and w-compact
in every simply ordered, compact arc J C X. Finally, we denote by V the set V with the
order-topology generated by all open order intervals [[a,b]] = {z €V : a<z « b} inV.
The order-topology is obtained from any ordered norm on V: Fix any e € Int(V, ) and define

|z]e = inf{\ € Rf,, : =de<z <A} for z€V.

Theorem 0.1. Given any z € X, precisely one of the following three .alternatives
occurs:
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This is the Continuity principle in Proposition 3.10. Our proofs of Propositions 0.5 and
0.6 and many other results employ Hirsch’s Limit set dichotomy {20, Thm. 0.8}:

Proposition 0.7. Let a, b € X, a < b. Then either (a) w(a) <K w(b), or else (b)
w(a) = w(b).

This article is organized as follows. In Section 1 we prove the existence and smoothness
of invariant d-hypersurfaces. In Section 2 we prove the existence of an invariant order
resolution of X. Most of the results from Sec. 1 and 2 were already published in Takéé [43,
45]. In Section 3 we study the continuity properties of the set-valued mapping w : X — X.
In Section 4 we investigate the domain of attraction of a generic w-limit set, cf. Theorem
4.8. Finally, in Section 5 we prove several deeper results about the asymptotic behavior of
continuous-time semiflows. Our main contribution here is a new description of U,, the set
of all w-biunstable points. Analogous results for discrete-time semigroups {T" : n € Z,}
are proved in Takaé [45].

Numerous applications of our results to autonomous evolution equations are well-known;’
e.g., irreducible cooperative systems of ordinary differential equations, semilinear parabolic
partial differential equations, and some functional differential equations with delay. The
reader is referred to Henry [13], Hirsch [19, Chap. III, Sec. 6] and [20, §3-5), Smith [40]
and Smith & Thieme [42]. Therefore we present only two examples, 2.4 and 2.5. Many
examples from population and cell biology, ecology and epidemiology can be found in Fife
[11], Friedman (12], Hethcote & Yorke [15], Othmer {29] and Selgrade [36].

1. Invariant 4-hypersurfaces

In Takac (43, 45) the author studied the existence and some smoothness properties of the
so-called d-hypersurfaces (cf. Definition 1.1 below) which are invariant under a given discrete-
time semigroup {T" : n € Z,} of nonlinear mappings acting on a strongly ordered space X.
This study was inspired by a result of Hirsch [21, Prop. 2.6] for X C R", the N-dimensional
Euclidean space. In this section we will obtain the existence of d-hypersurfaces which are
invariant under a given continuous-time semiflow ¢ = {®; : t € R} acting on X. We
start with some notation and a few definitions. We set Z, = {0,1,2,---} and R} = [0, c0).
Throughout the entire paper-we assume the following four hypotheses (X), (V), (T) and
(®):

(X): X is an ordered, metrizable topological space, i.e., X is a metrizable topological
space with a closed (partial) order relation “<” in X x X (shortly, X is an ordered space).
We write z < y if (z,y) belongs to the interior of the order relation in X x X, while z < y
means z <y, z # y.
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Theorem 0.3. (i) Both D(K) and In(D(K)) are order-convezr and nonempty.

(ii) There ezist two invariant (under &) Lipschitz hypersurfaces H, and H, in V with
H, below Hy (i.e., z € Hy and y € H, never satisfy > y), both unordered and such that
0_-D(K) C H,y, 0;D(K) C H and Fx(D(K)) C H,; N H; (where “Fr” denotes the frame in
Section 4).

(i) The hypersurfaces Hy and H, from (ii) can be chosen such that also Int(D(K))
is the union of some components of the set W C X \ (H, U H;) squeezed between H, and
Hy (ie, for allz, y € X, we have y ¢ W whenever eithery <z € H, ory > = € H,,
whereas [[z,y]] C W whenever z € Hy and y € Hz). If KN S,;; # 0 then Int(D(K)) is also

connected.

This theorem is a consequence of our Theorem 4.8. The Lipschitz hypersurfaces occur-
ring here are the so-called d-hypersurfaces studied in Prop. 1.3. In general, we define them
to be the boundary H = AN B of an order decomposition (A, B) of X, cf. Definition 1.1,
which is called invariant if $:(A) C 4 and &,(B) C B, for all t € R}. The existence of
invariant d-hypersurfaces is rather abundant, ¢f. Prop. 1.2: Every nonempty, unordered,
snvariant set G C X is contained in some invariant d-hypersurface H C X.

Even a far more powerful result is valid:

Theorem 0.4. Let A be any (possibly empty) simply ordered system of invariant order
decompositions of X, i.e., (A1,B1), (A2,B3) € A => A; C Az or A2 C A;. Then A is
contained in another such system T satisfying also the followiné mazimality condition: If
z € X has unordered orbit, then O*(z) C H = AN B for some (A,B) CT.

This is our Theorem 2.2; the system T is called an invariant order resolution of X.
We refer to Hirsch {21, Thm. 1.1} for a related result stated for a competitive system of
autonomous ordinary differential equations; a time reversal yields a cooperative system.
This theorem and the following two propositions are, in fact, our key tools:

Proposition 0.5. Letz € U_, i.c., w_(z) # w(z). Then w_(z) is a single equilibrium
in Ay, and there ezists a € X, a € z, such that w(y) = w_(z) forallye X,a<y< z.
Analogously for z € U,..

This is the Discontinuity principle stated as Proposition 3.6.

Proposition 0.6. Let J C X be a simply ordered, compact arc with endpoints a < b
satisfying w(a) # w(b). Assume a € Sy, b€ S_ and J° = J\ {a,b} C S. Then w(z) is
a single equilibrium in S)p for every z € J, and zleJJu.)(:z:) = F for some simply ordered,
compact arc FF C £.
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This is the Continuity principle in Proposition 3.10. Our proofs of Propositions 0.5 and
0.6 and many other results employ Hirsch’s Limit set dichotomy [20, Thm. 0.8]:

Proposition 0.7. Leta, b € X, a < b. Then either (a) w(a) < w(b), or else (b)
w(a) = w(b).

This article is organized as follows. In Section 1 we prove the existence and smoothness
of invariant d-hypersurfaces. In Section 2 we prove the existence of an invariant order
resolution of X. Most of the results from Sec. 1 and 2 were already published in Takaé [43,
45). In Section 3 we study the continuity properties of the set-valued mappingw : X —+ X.
In Section 4 we investigate the domain of attraction of a generic w-limit set, cf. Theorem
4.8. Finally, in Section 5 we prove several deeper results about the asymptotic behavior of
continuous-time semiflows. Qur main contribution here is a new description of U,, the set
of all w-biunstable points. Analogous results for discrete-time semigroups {T" : n € Z,}
are proved in Takaé [45].

Numerous applications of our results to autonomous evolution equations are well-known;
e.g., irreducible cooperative systems of ordinary differential equations, semilinear parabolic
partial differential equations, and some functional differential equations with delay. The
reader is referred to Henry (13], Hirsch [19, Chap. III, Sec. 6] and {20, §3-5], Smith [40]
and Smith & Thieme [42]). Therefore we present only two examples, 2.4 and 2.5. Many
examples from population and cell biology, ecology and epidemiology can be found in Fife
[11], Friedman [12], Hethcote & Yorke [15), Othmer [29] and Selgrade [36).

1. Invariant d-hypersurfaces

In Takac (43, 45) the author studied the existence and some smoothness properties of the
so-called d-hypersurfaces (cf. Definition 1.1 below) which are invariant under a given discrete-
time semigroup {T" : n € Z4} of nonlinear mappings acting on a strongly ordered space X .
This study was inspired by a result of Hirsch [21, Prop. 2.6} for X C R¥, the N-dimensional
Euclidean space. In this section we will obtain the existence of d-hypersurfaces which are
invariant under a given continuous-time semiflow & = {®, : t € Ry} acting on X. We
start with some notation and a few definitions. We set Z; = {0,1,2,---} and R} = [0, 00).
Throughout the entire paper we assume the following four hypotheses (X), (V), (T') and
(®):

(X): X is an ordered, metrizable topological space, i.e., X is a metrizable topological
space with a closed (partial) order relation “<” in X x X (shortly, X is an ordered space).
We write z < y if (z,y) belongs to the interior of the order relation in X x X, while z < y
meansr <y, T #y.
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(V): V is a strongly ordered, metrizable topological vector space (shortly, strongly
ordered vector space), which is equivalent to saying that the positive cone V4, = {z € V :
z 2 0} of V has nonempty interior denoted by Int(V,). (In some of our results we will
assume that X is a nonempty subset of V with closure Cl(X).) .

(T): T is a continuous, strongly increasing mapping of X into itself, i.e., z, y € X and
z < y implies Tz < Ty.

(®): @ is a strongly increasing semiflow in X, i.e., a mapping ® : R} x X — X which
satisfies:

Continuity: $ is continuous in R} x X.

Determinism: ®(0,z) = z and ®(s +t,z) = ®(t,P(s,z)) forallz € X and s, t € RL.

Strong monotonicity: ®(t, -): X — X is strongly increasing for every t > 0.

(In most of our results we will assume that T' = ¢, = @(r, -) for some fixed 7 > 0.) We
write &, = ®(2,-): X — X for t € R}, and identify ¢ = {®,: t € R}}.

An ordered space X is called strongly ordered if every open subset U of X satisfies:

(SO1)fr €U thena < z <€ bfor somea, be U.

It is easy to see that, for every open subset U of X, (SO1) implies:

(S02)H a, b€ U and a < b then a € z < b for some z € U.

E.g., every nonempty, open subset of V is a strongly ordered space.

The positive semiorbit (shortly, orbit) of any z € X is defined by O*(z) = {®z: t €
RL}, and the w-limit set of z is defined by w(z) = {y € X : $¢,z — y (n — o0) for
some sequence t, —+ oo in R} }. A subset Y of X is called positively invariant (shortly,
invariant) if (Y) C Y for each t € R}, and totally invariant if (Y) =Y foreach t € RL.
For instance, every O%(z) is invariant, and every w(z) with O%(z) relatively compact is
totally invariant. Moreover, O*(z) is connected, and if it is also relatxvely compact in X
then also w(z) is connected, compact and nonempty.

Analogous concepts are defined for the discrete-time semigroup {T" : n € Z,}: The
orbitof z € X is defined by OF(z) = {T"z: n € 1,}, and the w-limit set of z is defined by
wr(z) ={y € X : T™z — y (k — o) for some sequence ny —s oo in Z,}. Notice that
if OF(z) is relatively compact in X, then wr(z) # 0.- A subset Y of X is called T-invariant
if T(Y) C Y, and totally T-invariant if T(Y') = Y. For instance, every OF 7(z) is T-invariant,
and every wr(z) with OF(z) relatively compact is totally T-invariant.

If T = &, for a fixed 7 > 0, the continuous-time and discrete-time orbits of z € X .are
obviously related by

Ot(z) = Uogci<r@:(OF(2)).

If, in addition, K7 = Cl(OF(z)) is compact in X, then so is K = Cl(O*(z)), by K C
([0, 7] x K7), and we have also

w(x) = Uogt<r Pe(wr(z))-
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Given a, b€ X, theset [a,b)]={z€ X: a<z < b} is called a closed order interval,
and [[a,b]] = {z € X : a « z < b} is called an open order interval in X. We write
[a,00)] = {z € X : z > a}, and similarly for [[~oo, b] etc. A subset Y of X is called:
order-convez in X if (a,b] C Y whenever a, b € Y and a < b; lower closed if [[—o0,8) C Y
whenever b € Y; and upper closed if [a,00]] C Y whenever a € Y.

We denote closed order intervals in V by [a,8)y ={z€V: a<z<b}, and similarly,
all other concepts in V will be marked by the subscript V in case confusion might arise.

Now we are ready to introduce our crucial concept:

Definition 1.1. A pair (A4, B) of subsets A, B of X is called an order decomposition of
X if it has the following five properties:
(i) A#0 and B #90;
(ii) A and B are closed;
(iii) A is lower closed and B is upper closed,
(iv) AUB = X; and
(v) Int(ANnB) =0. v
An order decomposition (A, B) of X is called invariant if ®(A) C A and ¥(B) C B,
for each ¢t € R}. Analogously, (4, B) is called T-invariant if T(A)Cc A and T(B) C B.
The set H = AN B (possibly empty) is called the boundary of the order decomposition
(4,B) of X. A d-hypersurface is any nonempty subset H of X such that H = AN B for
some order decomposition (4, B) of X. ]

Notice that the boundary H of an order decomposition (A4, B) of X satisfies H = 04 =
- OB, where “3” is the boundary symbol in X » and H isinvariant whenever (4, B) is invariant.
It is also easy to see that a d-hypersurface H never contains two strongly ordered points z,
y (with z < y). Consequently, if H is invariant then it must be unordered, i.e., no pair of
points z, y € H satisfies z < y. .

If X is a strongly ordered space it turns out to be very-useful to work with the order
topology on X whose neighborhood base is generated by all open order intervals [(a, ]} with
a<b IfY C X, we denote by ¥ the set ¥ endowed with the induced order topology.
A subset Y of X is called order-open (order-closed, resp.) if it is open (closed, resp.) in
X. Notice that the identity mapping t : X — X is continuous, but in general not
homeomorphic. It is proved in Hirsch [20]) that if f: X, — X, isa continuous, increasing
mapping between two strongly ordered spaces (i.e., z <x, y implies f(z) < x; f(y)), then
f is continuous also in the order topologies, that is, the induced map f : X, — X, is
continuous. It is easy to see that the order topology on V is induced by any ordered norm
|- |e on V defined by

' lzle =inf{A € R} : —Xe < z < Ae}

for some e € Int(V,.).

19 Analysis. Bd. 10, Hett 3 (1991)
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Our first result guarantees the existence of invariant d-hypersurfaces, and our second
result describes them as Lipschitz hypersurfaces: ’

Proposition 1.2. Let X and ® satisfy (X) and (®), and let X be strongly ordered.
Assume that G is a nonempty, unordered, invariant subset of X. Then there ezists an
invariant order decomposition (A, B) of X such that G C H = AN B. In particular, we can
define (A, B) in esther of the following two ways:

(a) A = Cl(A°) and B = X \ A® where A° &<f {r€X: &z Ky for some t € R} and

y € G}; .

(b) A= X\ B° and B = CI(B°) where B° =4 {z€ X: &z >y for somet € R} and

y € G}.

For instance, we may take G = w(z) for any relatively compact O*(z), ¢f. Proposition
3.2 below.

We recall that an everywhere defined linear mapping L : V; — V, between two
ordered vector spaces is called positive (strongly positive, resp.) if z < y in Vi implies
Lz < Ly (Lz < Ly, resp.) in V3. We set I = identity mapping on V, and R! = (—oco0, o0).

Proposition 1.3. Let X be a nonempty open subset of V, and let (A, B) be an order
decomposition of X with the boundary H = ANB. Fiz any vector v € Int(V, ), and denote by
R = lin{v} the linear subspace of V spanned by v. Let Q be a positive continuous projection
of V onto R, which always exists, and set P = I — Q with W = P(V), the range of P, so
that V. = W @ R is the direct algebraic and topological sum of W and R. Then we have the
follouning statements:

(i) The restriction Plu of P to H is one-to-one, and both PIH and ils inverse w1 =
(PIH)'l : P(H) — H are Lipschitz continuous in the ordered norm |- |, with a common
Lipschitz constant 2. .

(ii) PIH s @ homeomorphism of H onto P(H) in the topologies induced by that on V.

(iii) Furthermore, sct

H®R={z€eV: z=z9+ 710 for some zo € H and r € R'},

where 2o and T are uniguely determined by Px = Pz, and define a mappingh: HGR —
V by
h(z) =Pzog+T1v, 2=20+TVE HOR,

and similarly for P(H) @ R. Then also h and its inverse h™': P(H)® R — H ® R arc
Lipschitz continuous in the ordered norm |- |, with a common Lipschitz constant 7, and h
1s @ homeomorphism of H ® R onto P(H) ® R in the topologies induced by that on V.
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(iv) If, in addition, X is order-open in V (i.e., open in V), then P(H) is order-open
in W, and P(H)® R is order-open in V.

Only Part (i) of Proposition 1.3 will be needed later on. Notice that Proposition 1.2
supplemented by Proposition 1.3 bears resemblance to a version of the Hahn-Banach theo-
rem, cf. Schaefer [35, Sec. V.5.4, Cor. 2|, which guarantees the existence of the projection
Q in Proposition 1.3. The first version of Part (i) was proved by Hirsch [21, Prop. 2.6) for
the case dim(V) < oo, the dimension of V. We refer to Takaz [43, Prop. 1.2 or {45, Prop.
1.3] for a proof of Proposition 1.3. Our proof of Proposition 1.2 is based on the following
two lemmas from Takaé [43, 45):

Lemma 1.4. Let X be a strongly ordered space. If F C X is lower closed (upper
closed, resp.), then so are its interior Int(F) and closure CI(F), while its complement X\F
is upper closed (lower closed, resp.). The union and intersection of any family of lower
(upper) closed sets are lower (upper) closed.

PROOF. Let F C X. It is clear that F is lower closed if and only if X \ F is upper
closed. Now assume that F is lower closed. Consider any z € Int(F'). Then also y € Int(F)
for some y >> z because X is strongly ordered. Consequently, we have [[—oc0,y] C F since F
i1s lower closed. Hence, [[-o0,z] C Int[[—o00,y] C Int(F) shows that Int(F) is lower closed.
Analogously, Int(X \ F) is upper closed which in turn implies that C F)=X\Int(X \ F)
is lower closed. The remaining claims are trivial. |

Lemma 1.5. Let X be a strongly ordered space. Assume that (A',B’) is a pair of
subsets of X satisfying properties (i), (iii), (iv) and (v) of Definition 1.1. Set A = Cl(A")
and B = CI(B'). Then (A, B) is an order decomposition of X. Furthermore, if both A' and
B' are T-invariant, then so is (A, B), for any mapping T satisfying (T).

PROOF. Properties (i), (ii) and (iv) are obvious while (iii) follows from Lemma 1.4. It
remains to show property (v), i.e., Int{(A N B) = 0. Suppose b € Int(A N B) # 0. Then
also z < b < w for some z, w € Int(4 N B), since X is strongly ordered, and consequently
7' € b < v’ for some 2z’ € B' and w' € A'. Hence b € [[z',w']] C A’ N B’ since A’ is lower
closed and B’ is upper closed. But then b € Int(A' N B') contradicts (v) for (4', B'). ]

PROOF of Proposition 1.2. We prove only (a), the proof of (b) being analogous. So
let (4, B) be defined by (a). Clearly, A° is open since each @, (t € R}) is continuous, and
A?® is lower closed since each &, is increasing. Lemma 1.4 shows that 4 = Cl(A°) is lower
closed, whereas B = X \ A° is upper closed. Hence, the pair (A°, B) satisfies properties (i),

19+
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(iii), (iv) and (v) in Definition 1.1. We apply Lemma 1.5 to conclude that (A4, B) is an order
decomposition of X.
Furthermore, making use of the fact that each &, (t € R} ) preserves the strong ordering
“&”, we arrive at ®,(A°) C A° and &,(B) C B. Hence, (A, B) is invariant by Lemma 1.5.
Finally, since G is invariant and contains no pair of strongly ordered points r <« y, we
have A°N G = 0. On the other hand, X is strongly ordered implies G C Cl(vgc[[—-oo,y]]),

and in particular G C CI(A°). Consequently G C CI(A°) \ A° = JA° = AN B as desired.
This finishes our proof of Prop. 1.2. 1

2. Invariant order resolutions

In this section we will obtain a considerably more powerful result than Prop. 1.2, namely,
the existence of an invariant order resolution of X, ¢f. Theorem 2.2. This result will turn
out to be very useful for our investigation of the domain of attraction of a generic w-limit
set (in Section 4).

Definition 2.1. A system T' of invariant order decompositions of X (cf. Definition 1.1)
is called an invariant order resolution of X if it satisfies the following two conditions:

Simple ordering: If (A,, By), (A2, B2) € T then either A; C A; or 42 C A4;.

Mazimality: f z € X and O*(z) is unordered, then z € H = AN B for some (A,B) erl.

Notice that z € X and O*(z) is relatively compact implies w(z) C H = AN B for some
(4, B) €T, by Proposition 3.2. In particular, if z & H for every (A,B) €T, then w(z) is a
single equilibrium p € X, i.e., ®p=p, t € R}.

The main result in this section is the following analogue of a theorem due to Hirsch (21,
Thm. 1.1] for irreducible competitive systems of autonomous ordinary differential equations:

Theorem 2.2. (Invariant order resolution.) Let X and & satisfy (X) and (®), and
let X be strongly ordered. - Assume that A is a (possibly empty) system of invariant order
decompositions of X satisfying the simple ordering condition from Definition 2.1. Then there
ezists an invariant order resolution I' of X such that A C T.

We introduce the following ordering “C” of invariant order decompositions of X: We
write (A;,B;) C (A2,B;) if and only if 4, C A, (<= B, C B,). Observe that, if X
is an open order interval in a strongly ordered topological vector Space V, then we have
(41, B1) € (A2, By) if and only if H, < H,, where H; = A; N B; for: = 1,2. Here H, < H,
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means the following: f x € H, then z <y for some y € Hz, and if y € H2 then z < y for
some z € H,.
Our proof of Theorem 2.2 hinges on the following technical lemma from Takag [45].

Lemma 2.3. Let X and ® satisfy (X) and (®), and let X be strongly ordered. Let
(A1,B)) and (A2, B;) be invariant order decompositions of X with (A, By) C (A2, B2).
Assume that G is a nonempty, unordered, invariant subset of Y = Int(A;) NInt(B,). Then
there ezists a third invariant order decomposition (A, B) of X such that G C H = ANB
and

 (A1,B1) C (A,B) C (42, B2).
A similar statement holds if A, =0 or By = 0.

PROOF. Since X is strongly ordered, A; lower closed and B; upper closed, we conclude
that Y is an open, order convex subset of X. In particular, Y is a strongly ordered space.
Observe that Y is invariant, because both Int(A;) and Int(B,) are invariant by the strong
monotonicity of each &, t € R} \ {0}. By Proposition 1.2 there exists an invariant order
decomposition (A3, B3) of Y such that G C H; = A3 N B;. We define A’ = A, U A; and
B' = B, U B; and also A = Cl(A’') and B = CI(B’') in X. Clearly Ay C A C A, and
B; C B C B,. We claim that (A4, B) is an invariant order decomposition of X.

First we have:

(i) A' # 8 and B’ # 0. (Trivial.)

(ii) A and B are closed. (Trivial.)

(iii) A’ is lower closed and B’ is upper closed. Proof: Take any z € A'. If z € A, then
([~o0,z] C Ay C A'. If z € A3\ A; then [[~00,7] C 4; U([[~00,2)NY) C A; U A3 since Y
is order-convex in X and A; is lower closed in Y. Thus, A’ is lower closed, and analogously
B' is upper closed.

(iv) A'UB' = X. Proof: We have A'UB’' = (A, UB2)U(A3UB;) = (X \Y)UY = X.

(v) Int(A' N B') = 8. Proof: Set H; = A;N B, for i = 1,2,3. Then

A'nB'=(A] UA;)ﬂ(BzUB;)=(A] nBz)U(AanBs) C (Hl nHz)UHa

since Ay UB; = X \Y and A; UB;3; =Y. Now suppose Int(4’' N B') # 0. Since Hy N Hy is
closed with Int(H, N H3) = @, we conclude that Z = Int(A' N B’) \ (H, N H,) is open and
nonempty. But also Z C H3 which contradicts Int(H3) = 8. So (v) is valid.

It follows from Lemma 1.5 that (A, B) is an order decomposition of X which is invariant
because both A' and B’ are invariant as unions of invariant sets. This concludes the proof.

PROOF of Theorem 2.2. Let G denote the collection of all systems I" of invariant
order decompositions of X satisfying the simple ordering condition form Definition 2.1 and
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A C T. We order G by inclusion “C”. Clearly G # 0 by A € G, even if A = 0. Furthermore,
every simply ordered nonempty subset G’ of G has an upper bound in G, namely, the system
I =U{T': T € G'}. Hence, we may apply Zorn’s lemma to conclude that G possesses a
maximal element, say, I's. We claim that I’y satisfies also the maximality condition from
Definition 2.1.

On the contrary, suppose there exists z € X such that O%(z) is unordered and z ¢
H = AN B for every (A, B) € T. Hence, either z € Int(A) or else z € Int(B). We define
the subsystems .

I'o={(A,B) €Ty :z€Int(B)} and TI'j= {(A,B)€T,:ze€lInt(4)}.

Observe that Fj UT2 =T and T} NT3 = 0. Next we set _

Ay =U{A:(A,B)€T}} and B; =n{Int(B):(A,B)€T}}
and analogously

Ay =N{Int(A) : (4,B) €TZ} and B, =U{B:(4,B)eTI?}.
It is easy to see that both A} and A} are lower closed, while both B} and B} are upper closed,
by Lemma 1.4. Furthermore, AUB; = X and AN B! =@ fori = 1,2, and 4 C 4} C 4}
for each (A, B) € '}, while A} C A} C A for each (A4, B) € I'2. Finally, all A}, A}, B! and
B, are invariant, and z € A}, N By.

From now on we assume that A} # @ and B} # 0; the other cases are similar. We
set A; = CI(A]) and B; = CI(B}) for i = 1,2. Applying Lemma 1.5 we obtain that
(Ai, B;i) is an invariant order decomposition of X. Moreover, we have A C A, C A,
for each (A,B) € T§, Ay C A; C A for each (A,B) € T}, and z € A; N B,. The
maximality of I'g in G implies (A4;, B;) € Ty, and in particular (A4,,B;) € T} for : = 1,2.
Hence £ € Y = Int(A;) N Int(B,), where Y is invariant by the strong monotonicity of
each &, t € R} \ {0}. We employ Lemma 2.3 to obtain an invariant order decomposition
(A B) of X such that G = O*(z) C H = AN B and (4,,B,) C (4,B) C (A2, B3). Thus
(A, B) g T, but the system T’y = To U {(A4, B)} is still simply ordered; a contradiction with
the maximality of r o in G. We conclude that 'y is an invariant order resolution of X, and
ACT,. (]

The following is a simple example of an invariant order resolution for a semilinear
time-independent parabolic partial differential equation in divergence form:

Example 2.4. Consider the initial-boundary value problem
N

(IVP): at Z oz, Z a,,(z) + ai(z,u) in © x (0, 00);
- du
Zni(i) ZG-;(I) +a,(:r u)| =0  on 99 x (0,00);

u(z,0) = uo(z) in Q.
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Here Q C RY is an open bounded domain of class C*, [a.-,-(;r:)],’f’j=l is a uniformly po
definite matrix for z € Q and satisfies a;; € C*(Q), and a; € C*( x R!) with

aza,‘

Bu?

da; 0%a;

E’ 6:,-814 and

uniformly bounded in Q x R!. Finally [n;(z)), denotes the outer unit normal to ¢
z € 0. We assume that all a;; and a; are real-valued. To guarantee existence, uniqu
and continuous dependence on the initial data of a mild solution u to (IVP) by simple t}
of. Amann [5, Thm. 15.1, Cor. 15.3], Ladyzhenskaya, Solonnikov & Uraltseva (26, (
V., Thm. 7.4] or Pazy [30, Sec. 8.4], we assume that our boundary conditions are line

ai(z,u) = a;(z)u on 8Q x R!.

The reader is referred to Amann (7, Thm. 6.1, Cor. 6.2] for more general boundary ¢
tions.

We denote by C°(Q2) (0 < a < 3) the Holder space and by W7 () (N < p -
1+ % < o < 2) the Sobolev-Slobodeckii space, see e.g., Adams (1] or Triebel [46).
the imbedding W7 (2) — C*(R) is continuous, all these spaces are strongly ordered B:
spaces. We set either V = C*() or V = W7 (). Using Pazy’s results [30] we obt
unique mild (semigroup) solution u : R} — L%*(Q2) to (IVP) which depends continuou:
the initial data uo € L2(£2). We define a mapping & : R x L?(Q) — L¥(Q) by ®up =
t € R, which is continuous. Applying the regularity theory of Ladyzhenskaya et al. |
V = C*(%1), and Amann [5)if V = W7(Q), we conclude that $,(V) C V and the restri
d, = <i>,|v : V — V of $, to V is continuous and order-compact for every t > 0. Mor«
if up € V then u € C??(Q x (0,00)) and u is a classical solution of (IVP). Hence &, :
is strongly increasing by the strong maximum and boundary point principles, cf. Prot
Weinberger [34, Chap. 3, Sec. 3], and the integral

/ u(z,t)dz, te Rl+,
e}
is independent from ¢ > 0, by the divergence theorem. In other words, the set
H,={feV: /f(x)dz:p}, for every p € R!,
Q
is an invariant d-hypersurface in V; we have H, = A, N B, where the sets
A=feV: [f@s<p) wd By={feV: [ f)dz2p)
Q 1]

form an invariant order decomposition of V. We conclude that the system I' = {(A,,
p € R'} is an invariant order resolution of V. This system reflects the conservation «
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integral in (1) and satisfies H, << H, whenever —oco < p < 0 < co. Here H, «< H, means
the following: If € H, then r < y for some y € H,, and if y € H, then z < y for some
T € H,. |

Another example of an invariant order resolution is the following one:

Example 2.5. Consider the irreducible cooperative system of autonomous ordinary
differential equations with reaction-type nonlinearities:

d |z _ -1 1] [11J+[f(31)

dt |z, 1 -1] [z f(z2)
where f(z) = —az(z — 1)?, z € R?, with a constant &« > 0. Given any initial val-
ues (21(0),22(0)) = (z30,%20) € R?, this system has a unique solution (z,(t),z(t)) =
¢+(210,Z20) which exists locally in time for 0 < ¢ < t, where to = to(10,Z20), 0 < to < o0,
denotes the escape time of (z10,220). The mappings ¢, : R — R?, t € R, form a local
semi-flow ¢ in R?, and each ¢, t > 0, is strongly increasing in its domain in R?, by Kamke’s
theorem, see e.g., Hirsch {19, Chap. III., Sec. 1). That ¢ is complete, i.e., ty = oo for all

(210,220) € R2, follows from the strong monotonicity of each ¢, t > 0, and the following
identity, for ¢t € R}:

dit(zl +22) = —a[zi(z1 ~ 1)? + z5(z; — 1)?]

where (z,(t), z2(t)) = é4(z10,Z20).

Namely, observe that p = (0,0) and ¢ = (1,1) are equilibria of ¢, and our identity
implies: .

(i) If (z10,220) < porp < (z10,220) < q, then #¢(T10,%20) —* p as t — o0, since
both [[—o0, p] and [p,q] \ {¢} are invariant under each ¢, and §(z; +2,) > 0 (< 0, resp.)
for (z1,22) < p (p < (z1,22) < g).

(ii) If (z10,220) > q then $4(z10,220) — ¢ as t — oo, since [g, o0]] is invariant under
each ¢4, and %(z, + z2) < 0 for (z,,2;) > q.

Our final goal in this example is to show that every point (z19,29) € R? is attracted
by either p or else ¢, and to determine the domain of attraction of each p and g, i.e., the set

D(p) = {(z10,720) € R? : #e(z10,T20) — p as t — oo}

and similarly for ¢. With regard to Theorem 2.2 (and Prop. 3.1 below), it suffices to
construct an invariant order resolution I' for the dynamical system (V, ®), where V = R?
and ¢ = ¢, such that I' consists of precisely two invariant order decompositions (4,,B;)
and (Aq, Bg) withpe H, = A,NB, and g € Hy = Ay N By. Obviously, it follows from (i)
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and (ii) combined with the strong monotonicity of ¢, that every (z10,z20) € R? is attracted
by the union
Y = {[~o0,p] U[p,q] U g, 0],

and consequently by either p or else ¢. Furthermore, we have £ = {p, ¢} with p attracting
([—o0,q] \ {¢} and ¢ attracting [q,c0]). Hence, it remains to determine the invariant d-
hypersurfaces H, and H, together with their uniqueness. Since our system of ordinary
differential equations is symmetric with respect to z, and z,, the uniqueness of H, and H,
will imply that both H, and H, are symmetric with respect to the axis z; = z,. Thus, we
set V' = {(z1,2z2) € V: 7, <22} and V" = {(21,22) € V : z; > 22}, and compute only
the unique curves H, N V' and H, N V' starting at p and ¢, resp. To compute these curves
we introduce the following new coordinate system in V:

1 1
&= 5(12 -z), n= 5(11 + z2).

It is easy to see that both these curves are graphs of a function = 5(£) of £ € R} which
satisfies the following ordinary differential equation:

dp _ _(+m+n—1?—-(§-n)¢-n+1)

df¢  LE+(E+n)E+n—12+(E—n)(E—n+1)?
_ =1 +&@Bn-2) '
T4 +(n-1)3n-1) ‘

for { > 0. This is the equation for the integral curves of our original system of ordinary

differential equations. These curves are uniformly Lipschitz continuous if and only if at
§ = 0 we have either n = 0 or n = 1. It is obvious that, for these values of £ and 7, they are
unique and. have the Maclaurin series

n(€) =ao +az€? + a,* +---, 0< €< &,

for some {o > 0, where ao = (0) (= 0 or 1), a; # 0, etc. In particular, both H, and H,
are analytic curves diffeomorphic to R'. Finally, we have D(p) = Int(4,) and D(q) = B,. 1

3. Lower and upper w-limit sets

Let X and @ : R} x X — X satisfy (X) and (®). We denote by £ = {z € X : &,z = z for
all t € Ry} the set of all equilibria (i.e., stationary points) of ®. We start with the following
elementary results which are due to Hirsch [20, Thm. 6.4 and 6.2]:

Proposition 3.1. (Convergence criterion for strongly .monotone semiflows.) Let X
and ¢ satisfy (X) end (®). Assume that z € X, O*(z) is relatively compact, and either
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®,2 > z or ¥,2 < z for some T > 0. Then &,z —+ p as t — o0, for some p € £, and

either p K z or p>> z, respectively.

Proposition 3.2. (Nonordering of limit sets.) Let X and ¢ satisfy (X) and (®).
Assume that £ € X and O%(z) is relatively compact. Then w(z) is nonempty and unordered.
If CY(O*(z)) is not unordered, then w(x) is a single equilibrium.

PROOF. This result is a direct consequence of Proposition 3.1, cf. Taka¢ (43, Lemma
2.2]. 1

These two propositions are essential for the proof of Hirsch’s Limit set dichotomy [20,
Thm. 6.8] for strongly increasing semiflows.

Proposition 3.3. (Limit set dichotomy.) Let X and & satisfy (X) and (4)) Let z,
y € X, z <y, and assume that O (z) U Ot (y) is relatively compact in X. Then either

(a) w(z) < w(y) (in which case w(z) Nw(y) =0)
or else

(b) w(z) = w(y) C € (in which case, for any sequence t; € R}, tx — 0o, and for any
w € w(z) = w(y) we have: $,2 — w <=> ¢,y — w).

Consequently, the w-limit sets of points with relatively compact orbits are partially
ordered by “<”. We write A < B (A < B, A < B, resp.) for A, B C X whenever r < y
(z<y,z<y)holdsfor all z € A and y € B.

Throughout the remaining part of this section we assume that X and & satisfy (X ) and
(@), and X is strongly ordered. We say that the semiflow ® is w-compact in a subset Y of
X if O*(z) is relatively compact for each z € Y, and also U w(:r) is relatively compact in
X. For such Y and ¢ we define the lower and upper w- Itrmt aets of z €Y relative to Y by

Y
wi(z) = :g{ Cl ,'SE,J‘;, w(z) and w¥(z) = :g{ Cl ,;%J;, w(z),
respectively. Observe that if there exists a sequence z, € Y, z, < z (2, > z, resp.) and
zn — z, then wY(z) # 0 (wY (z) # 0), by the w-compactness of ¥.
Under the w-compactness hypothesis for ® in a suitable subset Y of X we will be able

to describe some important properties of the set-valued mapping w : X — X. We start
with the following analogue of Proposition 3.2:

Proposition 3.4. (Nonordering of lower and upper limit sets.) Let X and & satisfy
(X) and (@), and let X be strongly ordered. Assume that z € Y C X and ® is w-cormpact
in Y. Then both w¥(z) and wY(z) are compact, totally invariant and unordered.
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P ROOF. We consider only wY(z). It is compact because ¢ is w-compact. Since
& (CI(K)) = Cl(®(K)), t € R., for any relatively compact set K C X, we have also
®wY(z) = w¥(z). To prove that wY(z) is unordered, we suppose there exist a, b € wY(z)
with a < b. But ¢, <« ®,5 and wY(z) is totally invariant imply that we may assume
a € b. Hence, there exists y € Y, y < z, such that a < b* for some b* € w(y). Now choose
z €Y,z <z, such that &,y < ;2 < ¥,z and a* < b* for some a* € w(z). Then there
exists a sequence t; € RL, ty — oo as k — oo, such that &,y — b* and &,z — ¢
for some ¢ € w(z). It follows that a* < b* < ¢ which shows that w(z) is not unordered, a
contradiction to Proposition 3.2. Therefore wY (z) must be unordered. |

Corollary 3.5. Let all hypotheses of Proposition 3.4 be satisfied. If z, —» z for some
sequence z, €Y, z, < z, then

Y _ oo o
wli(z)= kf;ll Cl nl=ka(z,.)

and w(y) < wY¥(z) < w(z) for ecack y € X, y < z and O*(y) relatively compact. A
corresponding result holds for w_‘;(z).

PROOF. Since @, is strongly increasing and continuous, hence also order-continuous,
the sequence {2,} contains a subsequence denoted again by {2, } such that $,z, < ®,2, <
.-+ € ®,z. Therefore we may assume 2z, € 23 € --- € z. Set Z = {z, 21, z2,---}. Then
Z C Y shows that @ # wZ(z) C wY(z). Now take any a € wY(z) and choose a sequence
ay — ain X as k —» oo such that a; < a3 € --- € a. Then there exists a sequence
Y& €Y, yi < z, such that a; < v; for some v; € w(yx). Next choose n; € N, ny /~ oo
as k — o0, such that $,yx < ®,z,, <« $;z. Hence, there is wy € w(zn, ) satisfying
wi 2 vi 2> ax for each k € N. Since ® is w-compact in Y, we can pass to a subsequence
W, — w in X as m — oo. It follows that w € w?(z) and w > a. But a,w € w¥(z) and
wY¥(z) is unordered force a = w. So we have proved our first claim

wY(z) =wi(z) = ;li‘lbl Cln‘(,J:kw(z,,).

Next we observe that w(z,) < w(z) for all n € N, by Prop. 3.3. Since & is w-compact in Y,
we conclude that w¥(z) < w(z).

Finally, fix any y € X, y < z with O*(y) relatively compact. Then there exists ng € N
such that &,y < ¢,2, < ¥,z for all n > ny. Hence, to prove w(y) < wY(z) we may assume
Y < zq for all n > 1. It follows that w(y) < w(zy) for all n € N, and so w(y) < wY(z). [}

Remark. It is clear from Corollary 3.5 that the set wY(z) (wY(z), resp.) is independent
from the choice of Y C X such that z € Y, z,, — z for some sequence zp, €Y, 2, < z (2, >



.V
292 P.TAKAC

z), and ® is w-compact in Y. Therefore, we séy that a point z € X is lower (upper, resp.)
approzsmable if there exists a sequence z,, € X, z, < z (zn > z), satisfying z,, — z and
® is w-compact in Z = {z,1),22, - -}. We define the lower (upper) w-limit set of such z by

w_(2) = w(z) (wi(z) = wi(2).

Now we can introduce the following stability classification of a lower (upper, resp.)
approximable point z € X:

We say that z is lower (upper) w-stable if w_(z) = w(z) (w4(z) = w(z)); otherwise z
is lower (upper) w-unstable. We say that z is lower (upper) asymptotically w-stable if there
exists y € X, y < z (y > z), with O*(y) relatively compact and w(y) = w(z). The set of all
lower (upper) w-stable points z € X is denoted by S_ (S, ), the set of all lower (upper) w-
unstable points by 2/_ (U, ), and the set of all lower (upper) asymptotically w-stable points
by A_ (A4).

Observe that our stability notions are equivalent to the continuity properties of the
set-valued mapping w : X —+ X. The structure of the w-limit sets near an w-unstable point
z € X is very simple:

Proposition 3.6. (Discontinuity principle.) Let X and & satisfy (X ) and (®), and let
X be strongly ordered. Assume that = € U_. Then there exists a € X, a & z, such that
w(y) =w_(z) for everyy € X witha <y < z and O*(y) relatively compact. Moreover, if
the set .
O*(y) is relatively compact and p< y < g
Yo=<yeX:
for some p € w_(z) and g € w(z)

is nonempty, then w_(t) is a single equilibrium, and w(y) =w_(z) for everyy € Y,. In
particular w_(z) € w(z).
A corresponding result holds for z € U,.

PROOF. The set w_(z) is nonempty, totally invariant and unordered by Proposition 3.4.
Thus, we may apply Proposition 1.2 to obtain an invariant order decomposition (A, B) of
X such that w_(z) C H = ANB. Suppose z € A. Then also w(x) C A. On the other hand,
the inequality w_(z) < w(z) implies w(z) C B whence w(z) C H. Then w_(z) <w(z)in H
and H unordered imply w_(z) = w(z), a contradiction to our hypotheses. So we must have
z € Int(B) which entails z > a for some a € B. Now fix any y € X, a<y<zand O*(y)
relatively compact. Then y € B, w(y) C B and w(y) < w_(z) by Corollary 3.5, which shows
that w(y) C A. Again w(y) < w_(z) in H and H unordered force w(y) = w_(z) as desired.

Now fix any y € Y # @. Then also w_(z) < w(y) < w(z) by Prop. 3.3 combined with
the Absorption principle of Hirsch [20, Prop. 6.9]. As above there exists an invariant order
decomposition (A4, B) of X such that w(y) C H = AN B. Consequently w_(z) C 4 and
w(z) C B. We claim that z € Int(B) = X \ A.
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Suppose £ € A. Hence w(z) C AN B = H, and therefore w(y) < w(z) in H which,
in turn, forces w(y) = w(zx). Next choose p € w_(z) and ¢ € w(z) such that p< y < g,
by y € Y,. Since &,p « &,y < ®,9 and &,y € Y by the invariance of w_(z) and w(z),
we may assume p € y < ¢. So we can find 7 € R} \ {0} satisfying y < ®,z. Since &,
is continuous, we can find also b € {[—o0, z]] with y < ¢,b. In particular, for every z € X
with b € z < z and O%(2) relatively compact, we have w(z) = w(y) = w(zx), thus obtaining
w_(z) = w(z) and contradicting our hypotheses. We have verified z ¢ A as claimed.

Since z € Int(B), we have a* < z for some a* € B. It follows that w_(z) = w(z) C B
for every z € X with O%(z) relatively compact and a < z < z, e¢* < z; fix such a point
z. We obtain w_(z) C H, and so w_(z) € w(y) in H forces w(y) = w-(z). As above we
may assume p < y < ¢ for some p € w_(z) and ¢ € w(z). Again we can find 7 € R} \ {0}
satisfying ®,z < y which implies w_(z) = w(z) < w(y). Consequently w(y) = w_(z) and
y > p € w(y). Hence CI(O*(y)) is not unordered, and we conclude that w(y) must be a
single equilibrium, by Proposition 3.2. This proves that w_(z) is a single equilibrium and
w_(z) € w(z). |

Remark. In Proposition 3.6 above let us consider the set
Y={yeX: p<y<qfor somep€ w._(z) and ¢ € w(z)}.

Then X is strongly ordered and w_(z) <« w(z) imply Int(Y) # 0. Thus, if every y € Y has
relatively compact orbit O*(y), we have Y = Y; and w_(z) is a single equilibrium attracting
a nonempty open set.

A set J C X is called a closed (or compact) arc (open arc, resp.) in X if it is homeomor-
phic to the closed (open) interval [0,1] C R! ((0,1) C R!). A set Y C X is called simply (or
totally) ordered if z, y € Y = z < y or z > y. The following result is an easy consequence
of Proposition 3.6 and the Remark thereafter.

Corollary 3.7. Let X and & satisfy (X) and (®), and let X be strongly ordered.
Assume that the set

Xo={z € X: O%(z) is relatively compact}

s dense in X. Let J C X be a simply ordered, open arc. Then the set J_ = JNU_ is at most
countable (i.c., either finite or countable), and for each z € J_ there ezists a € [[—oo,z])
satisfying [a,z]NJ_ = {2} and w(y) =w_(z) = {p} C € forally € Xy, a <y < z.

A corresponding result holds for U, . ]
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Remark. If in Corollary 3.7 the semiflow ® is w-compact in J, then all but at most
countably many points z € J are order w-stable, i.e., z € S = S_NS,. More precisely, we '
have '

J=(NS)unuU), SNU=9, and JNUC d,(Int;(J N A)),

where U = U_ U U, is the set of all order w-unstadle points and 4 = A_ N A, is the set
of all asymptotically order w-stable points. The symbols 8; and Int; refer to the relative
topology on J.

The structure of w-limit sets near a simply ordered, closed arc J C X with endpoints
a, b (a < b), whose points are w-stable and w(a) N w(b) = @, is not much more complicated
than near an w-unstable point. We say that the restriction w| gofw: X — X to Jis
continuous if ¢ is w-compact in J and w_(z) = w(z) for every z € J\ {a} and w,(z) = w(z)
for every z € J \ {b}. We start with the following technical lemma.

Lemma 3.8. Let X and ® satisfy (X) and (&), and let X be strongly ordered. Let
J be a simply ordered, closed arc in X. Assume that & is w-compact in J and wIJ 1s
continuous. Then cvery strictly increasing unbounded sequence in R} contains a subsequence
t) <t < --- such that tx — oo and for every x € J we have

$,z — 9w in X as k — o0, for some ¢ = p(z) € X.

Furthermore, ¢ : J — X is increasing (i.c., 71 < z2 implies p(z;) < p(z2)) and con-
tinuous. In particular, the image of ¢ is either a simply ordered, closed arc in X or else a
singleton.

PROOF. Denote by a, b € J the end-points of the arc J satisfying @ < b. Let M
be any countable dense subset of J. Applying a diagonal process we conclude that every
strictly increasing unbounded sequence in Rl+ contains a subsequence ¢; < t; < --- such
that ¢z — oo and for every z € M we have

®,z2 — p in X as k — oo, for some ¢ = ¢(z) € w(z). (1)

Since ®,, t € R.’H is increasing, so is ¢ : M — X. Furthermore, the w-compactness of &
shows that ¢(M) is relatively compact in X. Consequently, we can define

w—(z) =sup{p(y): y€ M, y<z} foreveryzeJ\/{a), and

p+(z) =inf{o(y): ye M, y >z} foreveryze J\ {b}).

It is easy to see that p_(z) € w_(z) and ¢4(z) € w4 (z), respectively.



Domains of Attraction 295

Now consider any z € J \ {a}; the case z € J \ {b} is analogous. Let w € w(z) be any
limit point of the sequence &, z, k € N. Since &, t € R}, is increasing, we obtain ¢(y) < w
for every y € M with y < z, and therefore ¢ _(z) < w. By the continuity of wIJ we have
w_(z) = w(z), an unordered set. Thus w = ¢_(z) and &,z — y_(z) as k — oo. We
conclude that (1) holds also for every z € J \ {a} where ¢ = ¢_(z) € w(z), and for every
z € J\ {b} where ¢ = ¢(z) € w(z). Hence, ¢ can be extended to a continuous mapping
from J into X by setting

e(a) = pi(a), @(b) =9_(b) and ¢(z)=¢_(z) =p4(z) for z € J\{a,b}.

Then (1) holds for every z € J, and ¢ : J — X is increasing,.

- Finally, assume that o(J) is not a singleton. Then ¢(J) is a simply ordered continuum
which is not a point. It follows that ©(J) must be a simply ordered, closed arc in X, cf.
Wilder [47, Chap. I, Thm. 11.12]. 1

Following the conclusion of Lemma 3.8 we introduce the following concept:

Definition 3.9. Let J be a simply ordered, closed arc in X such that O*(z) is relatively
compact for every z € J. A simply ordered, closed arc F in X is called an w-limst fibre
of J if there exist a sequence t; < ¢ < --- in R} and an increasing continuous mapping
¢: J — F of J onto F such that t; — oo and ®;,z — ¢(z) in X as k — oo, for every
z€J.

The set of all w-limit fibres of a simply ordered, closed arc is either empty or a singleton:

Proposition 3.10. (Continuity principle.) Let X and ® satisfy (X) and (®), and let
X be strongly ordered. Let J C X be a simply ordered, closed arc with endpoints a, b (a < b)
satisfying w(a) # w(b). Assume that ® is w-compact in J and w'_, is continuous. Then w(z)
is a single equilibrium for every z € J and :LEJJw(z) = F is the only w-limit fibre of J.

PROOF. Since w(a) # w(b), Prop. 3.3 gives us also w(a) <« w(b). Fix any p € w(a). By
Lemma 3.8, there exists an w-limit fibre F of J such that p € F. So p = min(F). Since
both J and F are simply ordered, compact arcs, we may apply Prop. 3.3 to conclude that
w(a) < z for all z € F'\ {p}. But this means w(a) < p € w(a) in an unordered set w(a)
which, in turn, forces w(a) = {p} C £. Analogously w(b) = {¢} C £. Applying these two
results to any z € J we arrive at w(z) = {r} C £ and zLeJJ w(z) = F C £ as desired. 1

Remark. In Proposition 3.10 we have J® = J \ {a,b} C S by the continuity of wIJ.
Moreover, the set J°\ (A_ U .A,) is infinite and uncountable. To see this we examine the
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napping ¢ : J — F from Lemma 3.8. Take any z € J® and observe that z € 4_ U A, if
wnd only if J: = ¢~!(p(z)) is a closed arc in J, because ¢ is increasing and continuous. The
eparability of J implies that there are at most countably many w € F such that ¢~ Nw) is

-closed arc; otherwise ¢~!(w) is a singleton contained in J\ A’ where A’ = J°N(A_UA,).
‘his proves our claim.

. Domains of attraction

this section we want to determine the domain of attraction of a generic w-limit set making
e of the existence of an invariant order resolution established in Section 2. More precisely,
- X and @ satisfy (X) and (%), and let X, denote the set of all z € X with relatively
mpact orbit. Given a totally invariant, compact, nonempty subset W of X , the set

D(W) = {z € X : w(z) Cc W}

:alled the domain of attraction of W. Observe that if W is connected, then so is D(W),
:ause every orbit is connected.

To complete our stability classification of a lower and/or upper approximable point
X from Section 3 we denote by 8142 = S— U Sy the set of all w-semistable points, by

= U- N U, the set of all w-biunstable points, and by A2 = A_ U A, the set of all
nptotically w-semistable points.

Given a set Y C X, we denote by

0.Y={z€dY: z<y, €Y for some sequence y, — z}
'ower boundary of Y, and by

;Y ={z€0Y: 2>y, €Y for some sequence Yn — T}

:pper boundary of Y. Observe that, when Y is open and order-convex, we have
.Y ={z€0dY: [[z,00]]NY #0} and 8,Y = {z€0Y: [[-oo0,z]|NY # 0}.

d,ifz€ Y and r < y, €Y, then also z < Yn < y;, for some y, € Y. On the other
if z € 8Y and z < y for some y € Y, choose Yn € [[z,y]] with y, — z, and also
¥ with 2, — z and z, < y,; then Yn € Y by the order-convexity of Y. Analogously
Y.

inally, we denote by

Fr(Y)=08Y \(d_Y U 04Y)
meof Y.
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Next we introduce the following notation: M_ (M4, respectively) denotes the set of all
r € X satisfying &,z > ®,z (®,z < ®;z)for somes, t € RL, s <t. Weset M = M_UM,.
Several important properties of these sets are stated in the following lemma:

Lemma 4.1. Let X and & satisfy (X) and (®), and let X be strongly ordered. Then
both M_ and My are order-open in X, and M_N My = 0. In particular, if T is an
invariant order resolution of X, then U{H = ANB: (A,B) € '} = X \ M is order-closed.

PROOF. Let z € M_, ie., ¥,z > ®,x for some s < t. Since ®,, 7 > 0, is strongly
increasing and continuous, we have ®,41y > ®¢41y, y € [[a,d]), for some a, b € X with
a € z K b. Thus, ([a,b]] C M_, and so M_ is order-open. Analogously, M is order-open.
Finally, M_ N M, = 0 is the Non-oscillation principle of Hirsch {20, Lemma 6.1]. ]

A set Y C X is called order-connected if every pairz, y € Y, z < y, is contained in
a simply ordered, compact arc J C Y. Observe that if X is strongly ordered and order-
connected, then every open order interval [[a,]] in X, a, b € X, is arcwise connected, and
in particular, X is locally arcwise connected. :

Our first result is an analogue of a theorem from Takaé [45, Thm. 5.1] stated for
discrete-time semigroups.

Theorem 4.2. Let X and & satisfy (X) and (®), and let X be locally connected,
strongly ordered and order-connected. Let T be any invariant order resolution of X. Assume
that Y is a component of M_ satisfying Y C Xo. Then we have the following statements:

(a) The sets Y and X \'Y are invariant. :

(b) There ezists p=ENA_Y such that

$x— past— o0, for everyz €Y U(3_Y N X,).

(c) p K w(z) for every z € 3, Y N X,.

(d) F(Y) N Sy = 0, in particular, cvery z € F(Y) whick is lower (upper, resp.)
approzimable satisfies z € U_ and w_(z) K p (z € U; and P € wi(z)), where w_(z)
(w+(z)) is a single equilibrium provided some point w € w(z) is lower (upper) approzimable.

An analogous theorem holds if Y is a component of My. Every component of M is a
component of either M_ or else M.

Our proof of this theorem is based on the following lemma which also provides more
information about the order structure of the sets Y and 8Y.

Lemma 4.3. Let X and & satisfy (X) and (®), and let X be locally connected, strongly
ordered and order-connected. Let T be any invariant order resolution of X. Assume that

20 Analysis. Bd. 10. Heft 3 (1991)
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Y is a component of M. Then either Y C M_ or else Y C M. Furthermore, there
ezist (A}, B)), (A2,B) € TU {(8,X),(X,0)} suck that A, C A, and Y s a component of
Int(A2) N Int(By) C M. In particular, the following statements are valid:

(a) Y is order-open and order-convez in X.

(b)d_-YCH, =ANB, ;Y CH,=A,NB; and Fr(Y') C H, N Hy. Moreover, the
sets 3_Y and 8, Y are open in fil and fIg, resp., whereas Fr(Y) = 8Y N H, N Hy is closed
in X. .
(c) All sets Y, X \Y, 8_Y, 8,Y and Fr(Y') are invariant.

PROOF. By Lemma 4.1, both M_ and M., are order-open in X and satisfy M =
M_UM, and M_NM, =0. Since Y is a component of M, it must also be a component
of either M_ or else M.

Next we set ' = I'U {(#, X),(X,8)} and define

' = {(4,B)eT: YCInt(B)} and T?={(4,B)el: Y ClInt(A)}.

Observe that both I'! and I'? are nonempty and satisfy A' C A? whenever (A}, B') € T,
t = 1,2. Now define

Al =U{A: (A,B)el"), Bi=n{t(B): (4,B)el},
A, =n{Int(4): (4,B)el?}, Bj=U{B: (4,B)el?}

and set
4;=CI(A), Bi=Cl(B)fori=1,2, and Z =Int(4;)NInt(B,).

Using the same arguments as in the proof of Theorem 2.2, where the réle of our present set
Y is played by the point z, we deduce that (4;, B;) € I and A' C A; C Az C A? whenever
(A, B') € T, for i = 1,2. Obviously Y C Z. We claim that also

F=rurz (1)

Suppose not; then A; C A C A; for some (A4,B) € [\ (I UT?) which forces (4, B) € T.
ThusYNA 3 @ and YNB # 0, whence Y NInt(A) # 8 and Y NInt(B) # 0, since YNH =0
where H = AN B. But this means that Y is contained in the union of two separated sets
Int(A) and Int(B) and intersects both of them; a contradiction to Y is connected. So (1) is
valid.

From (1) we obtain Z C M, and so Y is also a component of Z. Now we are ready to
prove the remaining statements:

(a) Since both Int(A4;) and Int(B,) are order-convex and order-open, so are Z and Y,
because Z C X is order-connected and Y is a component of Z.
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(b) Since Y is a component of the open set M C X, we have Y C X \ M. Moreover,
Y C Z and (1) force Y C H, U H,. Now fix any z € 8_Y; hence r € 8Y and z < y
for some y € Y. Then z ¢ B, since y ¢ B, and B; is upper closed. Consequently
z € Hy. Observe that also Int(B;) N [[—oo,y]] C Y C Int(B,) which, in combination with
H, = 8B, = 0_(Int(B,)), implies H; N {[—o0,y]] C 8-Y. Hence, 8_Y is an open subset of
H,. Analogously, 8, Y is open in Hj.

Finally, fix any ¢ € Fr(Y'); hence z € 8Y \ (8-Y U 8,Y), and we may assume also
z € H,; the case z € H, is analogous. Suppose z ¢ H,. Then z € Int(A,), and there exist
z2€ Z\Y withz < zand alsoy € Y with y < 2. Since X is order-connected, there exists a
simply ordered, compact arc J C X with endpoints y and 2. The order-convexity of Z forces
JCZCM. ButyeJNY andY is a component of Z imply J C Y; in particular, z € Y
contradicts our choice of z € Z \ Y. It follows that z € H,, and so F(Y) C 8Y N H, N H,.
The inclusion 8Y N Hy N H, C F(Y) is an easy consequence of Y C Z. We conclude that
Fr(Y') = 8Y N Hy, N Hy is closed in X.

(c) Since $(RY xY) = U{@(Y): t € R}} is a connected subset of M, we must have
PRy xY)=VY,ie,®(Y)C Y foralte Rl Similarly, since Y is a component of M,
theset Y# = {z € X : O*(z)NY # 0} is connected with Y C Y# C M, and consequently
Y# =Y, ie, ®(X\Y)C X\Y forall t € R,. Furthermore, 8Y C H, UH; and &,(3Y) C
CYY) imply ®:(dY N H;) C 8Y N H;, i = 1,2. This proves that Fx(Y) = 8Y N H; N H; is
invariant under ®,. Now fix any z € _Y, i.e., z € Y and z < y for some y € Y. Then
®:z < ®.y, by the strong monotonicity of ®,, t > 0, and also ®,z € dY and Py eY.
Consequently ¢z € 3_Y as desired. We have proved that 8_Y is invariant under $,, and
analogously for ;Y. This completes the proof of our lemma. |

PROOF of Theorem 4.2. (a) We have (Y) CY and (X \Y)C X \Y, t > 0, by
Lemma 4.3 (c).

(b) Since Y C M_ N Xy, we can find y € Y such that &,y < y for some 7 € R \ {0},
and $,y — p as t — oo, for some p € £, by Prop. 3.1. Smcea.lsop<<ya.ndp¢M by
Prop. 3.2, we obtain p € 3_Y. Hence, the set

Z={z€Y: &z — past — oo}

is nonempty. We claim that Z is both open and closed in Y. We first show that Z is lower
and upper closed in Y.

Pickany z € Z and y € Y withy < z. Let H; = AinB;, t =1,2, be as in Lemma
4.3. Then w(y) < w(z) = {p} in H, and H, unordered imply w(y) = {p}, and consequently
y € Z. Hence, Z is lower closed in Y.

Now pick any z € Z and y € Y with z < y. Then y € M_ shows that w(y) is a single
equilibrium and w(y) C 8-Y. Since also {p} = w(z) < w(y) in H,, we have w(y) = {p}
again, and consequently y € Z. Thus, Z is also upper closed in Y.

20*
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To show that Z is open in Y we choose any z € Z. Since Y is open in X, we can find
y € Y such that z « y. But then y € Z because Z is upper closed in Y, and consequently
z € [[—o0,y]] NY C Z because Z is lower closed in Y. So Z is open in Y.

To show that Z is closed in Y we fix any z € C{Z)NY. As above we can findy € Y
with z < y. Then also z < y for some 2z € Z. Since Z is upper and lower closed in Y, we
arrive at y € Z and z € Z. Hence, Z is also closed in Y.

Finally, we must have Z = Y since Y is connected. In particular, if z € 8_Y N X, then
z < y for some y € Y, whence w(z) < w(y) = {p} in H; which, in turn, forces w(z) = {p}
and also $,z — p as t — oo. This finishes the proof of (b).

(c) Take any z € 3,Y N X,. Then y < z for some y € Y, whence w(z) C H, satisfies
{r} = w(y) < w(z), by Lemma 4.3(b).

(d) Fix any z € Fr(Y). First assume that z is lower approximable, i.e., there exists
a sequence zp, € X, zn < z, such that z, — z and ® is w-compact in {z,z;,z,,---}.
Then @z, < ¥,z € Fr(Y) shows that $;z, < y, for some y, € Y, and therefore
w(Za) < w(yn) = p by Part (b), where n = 1,2,---. We claim p ¢ w(z,) for any n € N.
Suppose not; then p € w(z,) for some n € N, whence w(z,) = p because w(z,) is unordered.
by Prop 3.2. This implies p < w(z) in H,, and consequently w(z) = p because H; is
unordered. But w(z) C Fx(Y') since Fr(Y) is closed and invariant, by Lemma 4.3 (b,c), and
so p € F(Y). This contradicts p € 9_Y; hence p € w(z,) must hold for every n € N.
Moreover, we have w(z,) <« p. We apply Prop. 3.6 to conclude that w_(z) < p, where
w—(z) is a single equilibrium provided z < y < w for some w € w(z), z € w_(z) and
¥ € Xo which is the case if w is lower approximable. Observe that the hypothesis z € &_ in
Prop. 3.6 is satisfied, since otherwise w_(z) = w(z) combined with w(z,) < p would imply
w(z) < p in H,, and consequently p = w(z) C Fr(Y) as above which is a contradiction to
p € 0.Y again. In particular, z ¢ S_. ‘

Now assume that z is upper approximable, i.e., there exists a sequence z,, € X, zn > z,
such that z, — z and @ is w-compact in {z,z,, s, --}. In analogy with the previous case
we obtain p < w(za) C B, since z, € By. Then p € 3_Y C Int(4,) implies p ¢ w4 (z) C B,
and p € w4(z). We apply Prop. 3.6 again, with z € Uy, to obtain the desired conclusion.
The hypothesis z € U, is satisfied, since otherwise wy(z) = w(z) would imply p <« w(z)
in H,, a contradiction to H, is unordered. In particular, z € S;+. We have proved also
Fx(Y)N S;/2 = 0. The proof of Theorem 4.2 is now complete. (]

A very useful consequence of Theorem 4.2 is the following extension of Proposition 3.6
(Discontinuity principle) which provides an interesting description of the set U_ (U, , resp.)
of all lower (upper) w-unstable points.

Proposition 4.4. Let X, ® and T be as in Theorem 4.2. Assume that every z € X
has relatively compact orbit. Then we have

U- =U{0+Y : Y is a component of M_},
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and the following statement 1s valid:

Suppose x € U_, and let Y be the component of M_ such that z € 8;Y. Then there
ezists a € Y, a <€ z, such that every y € X witha < y < z satisfies also y € Y and
w(y) =w_(z) = {p}. Here p € £ is as in Theorem 4.2.

A corresponding result holds for My and U;.

PROOF. First consider any component ¥ of M_ and any z € 0;Y. Let (A4;, B;) and
H; = A;NB;,i=1,2,beasin Lemma4.3. ThenY isacomponent of W = Int(A;)NInt(B,),
and z € H,. Since z € 8, Y, we can find a € Y with a € z. Lemma 4.3(a) shows that every
y € X, a <y < z, satisfies also y € Y. Furthermore, we have w(y) = {p} < w(z) for every
y €Y, by Theorem 4.2(b,c). We conclude that z € U_ and w_(z) = {p} as desired.

Now consider any z € U_. Set

Yo={y€ X: p<y<gqforsomep€ w_(z)and g € w(z)}.

Obviously Yy # @, and therefore we may apply Prop. 3.6 to obtain w(y) = w_(z) = {p}
for every y € Yy, where p € £. It is now easy to see that Yo C M_. Moreover, the order-
connectedness of X implies that Y, is connected, and so Yy C Z where Z is a component
of M_. Let I' = T'U {(0,X),(X,0)}. By Lemma 4.3 with Z in place of Y, there exist
(Ai,Bi) € T, i = 1,2, such that Z is a component of W = Int(4;) N Int(B;) C M. By
Theorem 4.2(b,c) we have

w_(z)={p} CO-ZCH, and w(z)C8:+ZC H,,

where H; = A; N B;, j = 1,2. We claim that z € Int(B;) N H,.

Suppose not; then we can have only the following alternatives:

(i) z € A;. Then also w(z) C A;. Hence, w_(z) € w(z) implies w_(z) C Int(A,) which
contradicts w_{z) = {p} C H,. We have verified z € Int(B,;).

(ii) £ € W = Int(A;) N Int(B,). Then either z € M_ or else z € M. In either case
z € A= A_N A, by Theorem 4.2(b), a contradiction to z € U_.

(iii) z € Int(B;). Then w_(z) C B;. Hence, w_(z) < w(z) implies w(z) C Int(B,)
which contradicts w(z) C Ha.

We have verified z € Int(B,) N H2. By Prop. 3.6 we can find a € X, a < z, such that
.w(y) = {p)} for every y € X, a < y < . We may choose a with a € Int(B,); hence a € W.
Let Y be the component of M containing a. Since X is order-connected, there exists a simply
ordered, compact arc J C X with endpoints a and z. Observe that J \ {z} Cc W ¢ M
forces J \ {z} C Y, whence z € ;Y. We claim also Y C M_. Indeed, if Y C M, then
Theorem 4.2(b) entails z € A_ which contradicts z € «_. We conclude that z € 8,Y for
some component Y of M_. This completes our proof. ]

Even more can be said about the structure of the sets &/ and 4, when X C V:
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Corollary 4.5. Let X be an order-open and order-connected subset of a separable
strongly ordered vector space V, and let & : R} x X — X satisfy ($). Assume that every
z € X has relatively compact orbit in X. Then M has at most countably many components,
and U_ 1s the union of at most countably many Lipschitz manifolds of codimension one in
V. Each of these manifolds has the form 0,Y, where Y is any component of M_, and 8, Y
is an open subset of H where H = AN B for some (A,B) € T, any given invariant order
resolution of X. Here H is a Lipschitz hypersurface in V as described in Proposition 1.3.

A corresponding result holds for U, .

In particular, if V is a separable strongly ordered Banach space and p is ¢ Gaussian
measure on V, then u(U) = 0 where U = U_UU,. IfV = RV then U has zero Lebesgue
measure, too. ‘

¢

The reader is referred to H-H. Kuo {25] for general facts about Gaussian measures in
Banach spaces, and to Aronszajn [9] and Phelps [31] for descriptions of their null sets. Some
additional details about null sets can be found in Hirsch [20, Lemma 7.7).

PROOF of Corollary 4.5. We have W_ = U{d;Y : Y is a component of M_} by
Prop. 4.4. Here each 8,Y is an open subset of some H where H = AN B for a suitable
(A,B) € T, by Lemma 4.3(b). The set H is a Lipschitz hypersurface in V, by Prop. 1.3,
which is homeomorphic to an open subset of a closed hyperplane in V. It follows that .Y
is a Lipschitz manifold of codimension one in V. Since V is separable, the open set M can
have at most countably many components which, of course, are open and belong to either
M_ or else M4, by Lemma 4.1.

Our claim that u(U) = 0 follows immediately from Hirsch [20, Lemma 7.7(a))]. ]

To state our second result we need the following concept. Given a set Y C X, we denote
by Arcint(Y') the set of all z € Y such that z € J for some simply ordered, open arc J C Y;
we call it the arc interior of Y. Observe that Int(Y) C Arcint(Y') provided X is strongly
ordered and order-connected. We say that Y is arc-open if Y = Arcint(Y). H, in addition,
T: X — X satisfies (T), then T is an arc-open mapping: :

Y is arc-open = T(Y) is arc-open.

(Warning: The arc-open subsets of X do not necessarily define a topology on X, because
the intersection of two simply ordered, open arcs in X might be a singleton; take X = R?
as an example.)

We denote A = Arcint(X \ M). Our second result is an analogue of a theorem from
Takdc [45, Thm. 5.7] stated for discrete-time semigroups.

Theorem 4.6. Let X, & and T be as in Theorem 4.2. Assume that every z € X
has relatively compact orbit. Let Y be a component of A” such that & is w-compact in
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every simply ordered, compact arc J C YUY UO,Y. ThenY and X \'Y are invariant,

Y C 8 = S_ NS, and precisely one of the following two alternatives holds provided every

simply ordered, order-connected subset of £ is separable in the relative topology from X:
(a) w(a;) # w(az) for some simply ordered, compact arc L C Y with endpoints a, and

az. In this case there ezists a strictly increasing continuous path P : I — X (with its

image) contained in £, for some nondegenerate interval T C R!, with the following property:
For every z € Y UB_Y U 8,Y there ezists a unique 7 € T satisfying

&z — P(r) in X ast — oo.

(b) w(a;) = w(az) for every simply ordered, compact arc L C Y with endpoints a,
and a;. In this case, for every zo € Y and every sequence t; <t < --- in RY satisfying
ty — oo and ¥,z — w as k — 0o, for some w € X, we have:

$,z — win X as k — o0,

for everyz € Y UA_Y U,Y. In particular, we have w(z) = w(zo) C E.

Furthermore, in both cases (a) and (b), the set Y is order-convez and order-open in X.
Finally, if Z is another component of N such that . (Y)NZ # 0 for some T € RL, then
¢ (Y)CcZ=Y.

PROOF. Since & is continuous and strongly increasing, the set ®(R} x Y) = U{®(Y):
t € R% } is connected and arc-open and satisfies Y C (R} xY) C V. But Y is a component
of N forces $(R} x Y) =Y, ie, Y is invariant.

To prove the invariance of X \ Y we need the fact that Y is order-open in X which
will be verified in the proofs of Alt. (a) and (b) below. We combine this fact with the
order-continuity of each @, t € R}, to conclude that also '

Y#={zeX: OY(z)NY # 0} = U ' (Y)

is order-open. Consequently, Y C Y# C N because X is order-connected. Moreover, Y#
is connected since Y and every orbit are connected. Thus, Y is a component of N forces
Y# =Y, ie, X\Y isinvariant.

Suppose there exists € Y\ S. Hence, z € J for some simply ordered, open arc J C Y.
‘We may assume z € U_, the case z € U; being analogous. By Prop. 4.4 we have also
T € 8,Y' for a suitable component Y’ of M, and there exists a’' € Y', a' < z, such that
every y' € X with @’ < y' < z satisfies also y' € Y'. In particular, JNY' # @ which
contradicts J C Y C X \ M. We conclude that Y C S as claimed. Next we prove the
alternatives (a) and (b).

(a) Assume w(a;) # w(az) for some simply ordered, compact arc L C Y with endpoints
a; and a2 (a; < az). Then we may apply Prop. 3.10 to obtain the existence of an w-limit
- fibre Fy, of L such that Fy C £ and for every = € L:

¢,z — weF, ast-— oco.
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Let F denote the collection of all simply ordered, compact arcs F c £ containing Fy.
We claim that Iy, F, € F = FLUF e F. Indeed, pick any Fy, F; € F and set

o =min(F;) and B; = max(F;) fori=1,2.

By Taka¢ (43, Thm. 1.3 or [45, Theorem 2.5(a)], the order interval lai, Bi] is attracted by
the set F;, i = 1,2. Hence, F N{az, 82} C Fy and F, N [a1,B81] C Fi. These inclusions force
either a; < a; or else a; > aj, and either B < Bz or else B, > B,, and consequently, also
FyUF, € F. From the properties of F we deduce that the union P* = U{F: F ¢ F}
is simply ordered and order-connected. Obviously P* C £, and so P* is separable by
hypothesis. It follows from Wilder [47, Chap. I, Thm. 11.12} that P* = Image(P) where
P: I — X is a strictly increasing continuous path defined in a nondegenerate interval
I C R'. We claim:

P* attracts Y. Proof: Set Y* = {ye Y : @y — p€ P* ast — oo}.

Since Y is connected, it suffices to show that Y'* is both open and closed in Y. Observe that
L C Y* by our construction of P*. Moreover, the entire order interval [a1,az} is attracted
by P*, as a simple consequence of Takaé (43, Thm. 1.3] or {45, Theorem 2.5(a)).

Pick any y € Y*. Hence y € J° for some simply ordered, compact arc J C Y with
endpoints a < b, where J° = J \ {a,d}. Then either wiz)=w(y)=pe P*forall z € J,
or else there exists an w-limit fbre Fy of J such that F; C £ , by Prop. 3.3 and 3.10. Since
P € F;NP* # @, our definition of P* implies F; C P*. Thus P* attracts the order interval
[a, 8], where a <y<b Usinga < $,y < ®,5 we can find u,v € X such that u Ly
and ®1a < $,u € ;v < &;b. We conclude that ([u,v]] is attracted by P*. In particular,
Y*isopeninY. . ’

Now consider any y € CI(Y*)NY. Using the same arguments as above we can find
4,v € X such that u € y < v and [[u, v]] is attracted by either w(y), or else by an w-limit
fibre F; C £. Choosing any y' € Y*N{[u,v]] # @ we arrive at either w(y) =w(y') =p' € P*,
or else F; C P*. In either case w(y)=p€ P*,andsoy € Y*. Thus, Y* is open and closed
inY,and Y* # 0, whence Y* = Y as claimed.

To prove that Y is order-convex we fix arbitrary u, v € Y with u < v. As above
we apply Taksz [43, Thm. 1.3] or [45, Theorem 2.5(a)] to conclude that the entire order
interval [u,v] is attracted by either a simply ordered, compact arc or a singleton P' C P-.
In particular, @ is w-compact in [u,v). Combining these facts with Prop. 3.6 and the order-
connectedness of X we arrive at u € S, v € S_ and (u,v) C S where (u,v) = [, v]\ {u,v).
Now choose any z € (u,v). Hence, z € J° for some simply ordered, compact arc J C [u,v]
with endpoints u and v, where J° = J\ {u,v}. We claim J° c X \ M. Suppose not, i.e.,
there exists y € J° N M # 0. Let Y’ denote the component of M containing y, and set
K = JNnCIY'). By Lemma 4.3, K is a simply ordered, compact arc with endpoints v’
and v, and K° = K\ {u',v'} C Y'. Since u, v € N = Arcint(X \ M), we must have u',
v'E€J°CS. Alsou' €_Y' and v' € 0.Y' provided u’ < v'. It follows that 8_Y' N S#£0
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and 8, Y' NS # @, a contradiction to Prop. 4.4. We conclude that J° C X \ M as claimed.
Consequently z € A, and so z € Y, because J C Y. We have proved that Y is order-convex.

To prove that Y is order-open in X we fix any y € Y. Hence, y € J° for some
simply ordered, compact arc J C Y with endpoints a < b, where J® = J \ {a,b}. By
the order-convexity of Y, the entire order interval [a,}] is attracted by either a simply
ordered, compact arc or a singleton P' C P*. Obviously, the same is true of [®;a, ®,b],
as Y is invariant. Since ®;a € ¥,y <« P,b we can find u, v € X such that u K y K v
and ®,a € $,u € ¢,v € $,b. From &,[u,v] C Y we deduce that [u,v] C X \ M, and
consequently also {[u,v]] C Y by the order-connectedness of X combined with y € [[u,v]]NY.
We conclude that Y is also order-open.

Now we are ready to prove that P* attracts also 9_Y and 8,Y. Both cases are analo-
gous; we prove only

P* atiracts 3_Y. Proof: Pick any z € 8_Y. Since Y is open and order-convex, there
exists a sequence x, > I, 3> --- > z satisfying z, € Y and z, — . Hence, we can
construct a simply ordered, compact arc J C X with endpoints z and z, such that z, € J,
n € N. We have J\ {z} C Y by the order-convexity of Y. Then ¢ is w-compact in J
by hypothesis, and consequently, either z € S, or else z € U;. The case z € U, is easily
excluded by Prop. 44and Y C SN (X \ M); so z € S4. In particular, the sequence
w(Zn) = pn € P* has a limit p € X which satisfies also p, \, p and w(z) = w(z) = p. Our
~ definition of P* forces p € P*. We have proved that P* attracts _Y.

Finally, let Z be another component of A such that ¢,(Y)N Z # @ for some 7 € R}.
Since ¢,.(Y) C Y, we have also Y N Z # 0. It follows that ¢,(Y) C Z =Y as desired.

(b) Assume w(a;) = w(az) for every simply ordered, compact arc L C Y with endpoints
a; and a2 (@) < az). Now fix any zo € Y and any sequence ¢, < t; < --- in R} satisfying
ty — oo and

$,,20 — w as k — oo, for some w € X.

We claim:
w(Zo) C € attracts Y, and for every z € Y we have &,z — w as k — o00. Proof: Set

Y*={y€Y: w(y) =w(z) and &,y — w as k — co}.

Similarly as in (a) it suffices to show that Y* is both open and closed in Y. This is easier
when we first show that Y* is order-convex in X. Pick any z, y € Y*, z < y. Then for
every z € [z,y] we have w(z) < w(z) < w(y) whence w(z) = w(zp), and &,z — w as
k — oco. Hence z € Y*, and Y* is order-convex, by the order-connectedness of X.

Y* is open in X: Pick any y € Y*. Choose J as in the proof of (a). Then w(a) =
w(b) = w(y) = w(zo), and so a, b € Y*. Hence [a,b] C Y*. Again, we find u, v € X such
- that ¥ € y €« v and ®)a < ¢,u € ®,v < $;b. We conclude that w(u) = w(v) = w(zy)
and $,,z — w as k — o0, for z € [u,v]. In particular, we have [[u,v]] C Y* since X is
order-connected.
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Y* is closed in Y: Take any y € Ci(Y*)NY. Again, we find u, v € X such that
u € y € v and w(u) = w(v) = w(y). Choosing any y' € Y* N {[u,v]] # @ we arrive at
w(y) = w(y') = w(zo) and all &, y', ¥, u, ¥, v and &,, y converge to w as k — oo. Thus
yevY". '

We have proved Y* = Y, and Y is order-convex and order-open. In particular, w(ze) C
€ by Prop. 3.3(b). The remaining part of the proof of (b) is an almost word-by-word
repetition of the proof of (a) upon replacing P* by w(zo), and &, (t € R}) by &, (k€ N),
resp. We have completed the proof of our theorem. 1

Under a mild additional hypothesis on a given component Y of N, called order-quasi-
boundedness, the order structure of Y and 8Y is similar to that of a component of M and
its boundary in Lemma 4.3. A set Y C X is called order-quasibounded if for every z € Y
there exist a, b € X such that a < z < band [[-o0,a]NY C {a} and [b,0]]NY C {b}. It
is easy to see that every order-bounded set is also order-quasibounded. On the other hand,
let X =V and & : R} x V — V satisfy (V) and (@), and let T be an invariant order
resolution of V. Consider any (4;,B;) € T, i = 1,2, such that 4, C A,;. Then the set
Az N B; (and any of its subsets) is order-quasibounded, but A; N B, is not order-bounded.

Corollary 4.7. Let X, Phi and I" be as in Lemma 4.3. Assume that every z € X has
relatively compact orbit. Let Y be a component of N such that Y is order-quasibounded and
® is w-compact in every simply ordered, compact arc J CY US_Y UB,Y. Then there ezist
(A1, By), (A2, B;) € T such that A; C Az and Y ss a component of Int(A4;) NInt(B,). In
particular, also the statements (a), (b) and (c) from Lemma 4.3 are valid.

Remark. Observe that in this corollary we have dropped the separability hypothesis
on every simply ordered, order-connected subset of £ required in Theorem 4.6. Therefore,
at this moment we know only that the set P* defined in the proof of (a) in Theorem 4.6 is
simply ordered and order-connected. However, when Y is order-quasibounded, the path P
in (a) still exists, as it follows from our proof of Corollary 4.7 below.

P ROOF of Corollary 4.7. Let us fix an arbitrary 2o € Y. Since Y is order--
quasibounded and X is order-connected, z¢ is contained in a simply ordered, compact arc
J C X with endpoints a < b having the following property:

Ifz € X,andeitherz <aorz>b thenz¢gV.

By Theorem 4.6, the set Y is order-convex and order-open, and hence, the set J' =
JN(Y Ud_Y UO,Y) is again a compact arc with endpoints @’ € _Y and ¥ € 8,V
satisfying J' \ {a',d'} C Y. Consequently, without any loss of generality we may assume
that a € 8_Y, b€ 8;Y and 7o € J = J\ {a,b} C Y. Observe that a,b ¢ M. Thus, the
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sets
I'={(A,B)eT: ac H=ANB} and I'’={(A,B)eTl: be H=ANB}
are nonempty, disjoint and A’ C A? whenever (A*, B') € T, i = 1,2. We define

A =n{A: (A,B)€T'}, and B, =U{Int(B): (4,B)eT'},
A, = U{Int(4): (A,B)€T?}, and By =n{B: (4,B)eTI?}

and set

A, = A, B, = CI(B}), A, = C(4}), B; = B,

and W = Int(4;) N Int(B,) = A} N Bj. Using the same arguments as in the proof
Theorem 2.2 we deduce that (A4;, B;) € I and 4, C A! C A? C A, whenever (A',BY) €
for i = 1,2. It is obvious that J° is contained in a component W' of W. Since X is ord
connected and W is order-convex and order-open, also W' is order-convex and order-op:
Note that J° C Y N W'. We apply Theorem 4.6(a,b) to conclude that J is attracted
either an w-limit fibre F of J in which case F C P* as in the proof of Theorem 4.6(a),
else to w(zy) as in the proof of Theorem 4.6(b). We set K = F if (a) holds, and K = w(a
if (b) holds. We claim that

K attracts W'. Proof: Denote W* = {z € W': w(z) C K}. Since J° C W* and W'
connected, it suffices to prove that W* is both open and closed in W'. Similarly as in t
proof of Theorem 4.2(b) one first shows that W* is lower and upper closed in W', and th:
W* is open and closed in W’. We leave the details to the reader. Now we can prove

K attracts W' U3_W'U 3, W'. Proof: Consider any z € d_W'; the case z € 9, W'
analogous. Then w(z) < w(y) C K whenever ¢ < y € W', and w(z) C H,. Distinguishi:
between the cases K = F in which case F is a simply ordered, compact arc with endpoin
in Hy and H;, and K = w(z¢) in which case w(z¢) C Hy N H,, we arrive at w(z) = KNH

In particular, we conclude that & is w-compact in W US_W' U8, W', and W' C S
S_NS&4,8_-W'C S,;,8,W' C S_. Hence, W' is a connected subset of N = Arcint(X \ M
and therefore W' C Y. We claim also

Y C W'. Proof: Suppose not, i.e., there is yo € Y\ W’. Similarly to o € W', also yq
contained in a component U’ of the set U = Int(C;) N Int(D,) where (C;,D;) €T, =1,
are defined for yp exactly as (A;, B;) for zo. By our definition of J, a, b and (A;, B;) for z
we must have a € Cy and b € D, whence A, C C, C C, C A;. It follows that U’ satisfi.
not only U’ C Y, but also U’ C W. Thus, we have shown that W/ C Y ¢ W which forc
Y = W', because W' is a component of W, and Y is connected. So Y C W' must hold.

We have proved that Y is a component of W = Int(A;) N Int(B,;) as desired. Now w
can prove (a), (b) and (c) from Lemma 4.3:

(a) The same as in Lemma 4.3(a).

(b) We have 8Y C X \ (M UN). Since X is locally connected, so is W. Henc
9Y Cc 8W = H, U H, because Y is a component of W. Similarly as in Lemma 4.3(b) w
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conclude that _Y is an open subset of fil, and 3, Y is an open subset of i]z, whereas
Fr(Y) =08Y N H, N H; is closed in X.

(c) The sets Y and X \ Y are invariant by Theorem 4.6. The invariance of J_Y, 94}
and FY(Y) is proved exactly as in Lemma 4.3((:). This completes the proof. ]

Our last result in this section is a consequence of Theorems 4.2 and 4.6. It provides
valuable information about the domain of attraction of the w-limit sets and fibres obtained
in Theorems 4.2 and 4.6(a,b):

Theorem 4.8. Let X and @ satisfy (X) and (®), and let X be locally connected,
strongly ordered and order-connected. Assume that ® 3s w-compact in every ssmply ordered,
compact arc J C X. Define K C X by one of the following three alternatives:

(i) K = {p}, for some p€ EN Ay 2,

(ii) K = P*, where P* is a mazimal subset of £ with the following property: P* is
the smage of a strictly increasing continuous path P: T — X defined in a ncndegenerate
snterval T C RY;

(i) K = w(zo), for some zo € Ay/2 such that w(zo) C EN (U UO-U UL U).

Finally, let T' be any snvariant order resolution of X. Then there ezist (A, B,),
(A2,B2) € T U {(0,X),(X,0)} such that A; C A3, D(K) C A; N B, and Int(D(K)) is
a nonempty union of some of the components of the set W = Int(A;)NInt(B,;). In particu-
lar, D(K) is order-convez, 0_-D(K) C Hy, 8;D(K) C H; and Fr(D(K)) C Hy N Hy, where
H; = A;N B, s = 1,2. Furthermore, for each of the three alternatives above, respectively,
we have:.

Alt. i) pe A= KCW,pe AL\N\A_ =K CO_W,andpe A_\A, = K C
04+ W; in all these cases Int(D(K)) is connected.

Alt. (it): K C WUO_W U W; the set Int(D(K)) is connected.

Alt. (iii): K C Fy(W).

PROOF. Since a < z < b in X implies w(a) < w(z) < w(b), we obtain that D(K) is
order-convex in X, cf. Takaé¢ {43, Thm. 1.3] or {45, Theorem 2.5(a)] for Alt.(ii). It is easy
to deduce from Theorems 4.2 and 4.6(a,b) that there exist a, b € D(K) satisfying a < b.
Consequently, [a,b] C D(K) entails Int(D(K)) # 0. Next we denote I' = T'U {(0, X), (X, )}
and

Tk ={(4,B)eT: ANBND(K) # 8}.

Observe that our choice of K combined with Def. 2.1 imply K C (X \ M) N D(K) where
X\ M =U{H =ANB: (A,B) €T} In particular, T'x # 0, and so we may define

Ci=n{A: (A,B) €Tk},
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D', = U{Int(B) : (A,B) €Tk}, Di=CYD}),
Ch = U{Int(A): (4,B) €Tk}, C2=CICy),
D, =n{B: (A,B) € Tk}

and set U = Int(C>) N Int(D,) = C2 ND, and U = C; N D,. Usmg the same arguments
as in the proof of Theorem 2.2 we arrive at (C;,D;) € ', i = 1,2. It is obvious that
Kc(X\MNDK)CU.

As far as M N D(K) is concerned, we combine Theorem 4.2 with Lemma 4.3 to obtain
the following results for each of the alternatives (i), (i) and (iii), resp.:

Alt. (i): There exist (C11,D11), (C12,D12) € T such that C;, C Cy2 C C, and
M, ND(K) Cc Uy =Int(Ci2) NInt(Dyy) T M,

and similarly, there exist (Cz1, D21), (Cz2, D22) € T such that C; C C2; C Cz2 and
M_ND(K) C Up = Int(Cy2) N Int(Dz) C M.

More precisely, if p € A = A_ N Ay then My ND(K) # @ and M_nN D(K) # @, and
consequently K = {p} C 8;U; N3_U,. If p € Ay \ A_ then My ND(K) = 0 (we take
Ci = Ci2 = C,) and M_ND(K) # 8, and consequently K C 8_U,. The casep € A_\A;
is analogous. Thus, in all these cases we have (C\2, D12), (C21,D21) € Tk which forces
C12 = C, and C3, = C;. We set (A.',B.') = (C.‘.’,D.'.') for1 =1,2.

Alt. (ii): If P* is an open arc, then M N D(K) = @, and we set (Ci;,Dij) =
(Ci, Dy), i,j = 1,2. If P* possesses a minimal and/or a maximal element ¢ and d, resp., we
can handle it in the same way as p in Alt (i). For instance, if M4y ND(K) # @ then c € P*
and M4 ND(K) = M4 ND(c), where c € A_ \ A4, and we choose (C1i, D1i) exactly as in
Alt. (i) with C;, = C, as a consequence. In any case, we set (A;, B;) = (Ci;, Di:) again.

Alt. (iii): We must have M N D(K) = @ since w(zo) C X \ Ayy2. We set (C;j, Di;) =
(C.’, D.) for i,j = 1,2, and (A.',B,') = (C.‘,D.’).

For all alternatives (i), (ii) and (iii) we obtain D(K) C W = A, N B, as desired. Now
consider any component Y of W such that Y* =Y N D(K) # 8. We claim that Y* =Y.
It suffices to show that Y* is open and closed in Y. Similarly as in the proof of Theorem
4.2(b) we only need to prove that Y* is both lower and upper closed in Y. Both proofs
being analogous, we prove only

Y* is lower closed in Y. Proof: Fixanyz €Y andy e Y” such that = < y. Hence,
w(z) € w(y) € K and w(z) C W = A, N B;. Suppose w(z) ¢ K; hence w(z) < w(y) by
Prop. 3.3, and also w(z) N K = § by our choice of K. It is obvious that z g U = C, N Dy,
see our definition of T'x. So we must have z € C;. Thus, w(z) C C, together with K C
U =C,ND,. But also z € W = Int(Cy;) N Int(Dy,), and therefore € C; NInt(D,,) # 0.
This is possible only if C;y # C;. Hence, Alt. (iii) is excluded right away, and in Alt. (ii)
the set P* possesses a minimal element c. In Alt. (i) we set ¢ = p. So in Alt. (i) and (ii)
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we arrive at ¢ € £ and {c} = K N C), whence w(z) C Int(C)) by w(z) < ¢ < w(y). This
forces z € U; = Int(C;) N Int(Dy,) C M, and so z € M_ and ¢ € U_ by Theorem 4.2(b)
and Lemma 4.3. We conclude that M, N D(K) = M4 N D(c) = 8 in which case we have
defined C,; = C;. In particular, U, = @ contradicts z € Uy, and consequently, also Alt. (i)
and (ii) are excluded. We have proved w(z) C K, and so Y* is lower closed in Y.

We have verified also Y = Y* C D(K). This implies that D(K) N W is a nonempty
union of some of the components of W which, in turn, shows that this union coincides with
Int(D(K)). In particular, we have _D(K) C H,, 3, D(K) C H, and Fr(D(K)) C H,NH,.
In Alt. (i) and (ii) we have even K C Yo U O_Y, U 0,Y, where Y; is a component of
Int(D(K)). We need to show Yy = Int(D(K)). So fix any z € Int(D(K)). Observe that
O*(z) is connected, O*(z) C Int(D(K)) and there exists T € R} such that either .z < 2
and p < z for some p € K and z € Yy, or else ®.z > y and ¢ > y for some ¢ € K and
y € Y. Hence, &,z € Yy, which forces z € Yy, i.e., Yo = Int(D(K)). We have proved that
Int(D(K)) is connected in Alt (i), (ii). All remaining claims have already been proved. §

Remark. Our hypotheses imposed on X in all results of this section, except for Corol-
lary 4.7, are easily satisfied when, for instance, X is a nonempty, order-convex and open
subset of a strongly ordered vector space V satisfying (V). If X = [[a,b]]v, for some
—00 € a € b < 0, is an open order interval in V, then X satisfies also the hypotheses of
Corollary 4.7 with Y order-quasibounded, an arbitrary component of A = Arcint(X \ M),
whenever a, b € Cly(M). Observe that a € Cly(M), and analogously for b, means that
precisely one of the following three alternatives must occur:

(1) There exists by € V, a < by < b, such that, for all z € {[a, bo]]v with Cly(O*(z))
compact, we have ®,2 — b in V as t — oo. If bp = b we may set ,b=105, t € R‘+, thus
extending ®, to X U {b}.

(2) There exists ap € V, a < ag < b, such that, for all z € [[a,a0]]v with Cly(O*(z))
compact, we have &,z — a in V as t — co. We may set $.a =a, t € R_l‘,.

(3) There exists a sequence a, € X \ M such that a,4; < a, and [[@n41,8a]JvOM # D
for each n € N, and an — a in V as n — oo. Again, we may set $a =a, t € R}. If, in
addition, O*(z) is relatively compact in X for each z € X, then we can choose each a,, € £
by induction on n, cf. Theorem 4.2(b).

The case a = —o0 and a, < na; € 0 € V for some a, € M, n € N, can be treated
similarly as @ € V, except for (2) which cannot occur. The case b = oo is analogous. We write
shortly a, b € Clye(M) if these cases occur, where V# = V U {—00, 00} has the topology
defined by all open subsets of V' and all sets [[—o0, d]]v U {—00c} and [[c, o0]]v U{oco} together
with their unions and finite intersections, for ¢, d € V. Thus, Y is order-quasibounded in

X = [[a,8]]v whenever a, b € Clya(M).

Throughout the remaining part of this section we denote by d a metric for X and by
d a metric for X, the space X with the order topology. We assume that d is an ordered
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metric: If u < a € b<vin X then J(a, b) < J(u,v). For instance, when X is an open
subset in a strongly ordered topological vector space V and e € Int(V,), then the metric
d(z,y) = |z — y|. derived from the ordered norm |- |, on V, of. Section 1, is an ordered
metric for X.

We say that two points z,y € X are asymptotic if d(®.z, ®y) — 0 ast — oo;
shortly z ~ y. Clearly w(z) = w(y) whenever z, y € Xp and z ~ y.

Making use of the ordered metric d for X we can state the following trivial result which,
however, is very useful for alternatives (i) and (iii) in Theorem 4.8.

Corollary 4.9. Let X and & satisfy (X) and (@), and let X be strongly ordered.
Assume that 7, y € X have relatively compact orbits in X and satisfy z < y and w(z) = w(y).
Then z ~ y and also J(@,u,‘l"v) —— 0 as t —> oo uniformly for all u, v € [z,y].

“In particular, if either Alt.(i) or Alt.(iii) occurs in Theorem 4.8, then we can take any
z,y € D(K) withz < y.

5. Some convergence results

Throughout this entire section we assume that X and & satisfy (X) and (®), X is locally
connected, strongly ordered and order-connected, and ¢ is w-compact in every simply or-
dered, compact arc J C X. In particular, we have X = S_ UU_ = S; U U, disjoint
unions. The set & = U_ Ul of all w-unstable points was described in Proposition 4.4 and
its Corollary 4.5. It turned out that U is, roughly speaking, by one dimension smaller than
X. _

The main purpose of this section is to investigate the w-limit sets of w-semistable points,
ie, w(z) for z € Syy2 = S- US;. Namely, very little can be said about w(z) when
z € U_ NU, as it is shown by an example of Smale [37]. This example is constructed for
competitive systems of autonomous ordinary differential equations; it provides an attractor
of codimension one with arbitrary dynamics. A time reversal yields an irreducible coop-
erative system of autonomous ordinary differential equations with arbitrary dynamics in
Us.

Now we can state our result which was proved already in Takaé [45, Thm. 7.1] with a
slightly weaker conclusion.

Theorem 5.1. Let X and ® satisfy (X) and (®), and let X be locally connected,
strongly ordered and order-connected. Assume that ® is w-compact in every simply ordered,
compact arc J C X. Then, given any z € S,, precisely one of the following two alternatives
is vald:

(i) w(z) C Syy2 in which case w(z) = {p} for some p€ &;
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(ii) w(z) C Uz in which case w(z) C £ and z € A, ;.

In particular, every z € Sy, is quasiconvergent, i.e., w(z) C £. :

If, in addition, X and V, X C V, are as in Corollary 4.5, then every nonquasiconvergent
point z € X satisfies z € U, where the set Uy = U_ NU,4 has been described in Corollary
4.5; 1ts Gaussian measure is zero if V is a separable strongly ordered Banach space.

PROOF. Fix any z € S); and z € w(z). We will inspect the following two alternatives:

(i) z € S1j2 = S- U S,; we will assume z € S_ since the case z € S, is analogous.

(zela=U_NU,.

From now on we treat each alternative individually:

Alt. (i): Let z € S_. By our hypotheses on X, there exists a simply ordered, compact
arc J C X with endpoints 2z’ and z such that 2z’ < z. Since w(z) is totally invariant and ®,
strongly increasing, we may assume that J is ordered by <, i.e., a < b in J implies a < b.
It is also easy to see that we can choose 2’ so close to z that either

(a) J\ {z} C S, or else

(b) there exists a sequence yy € y; € y3 <€ --- in J NU such that y', — 2.

Case (a): By Prop. 4.4, there are only two possibilities left:

(a1) z € A_ in which case we can choose 2’ so close to z that w(z') = w(z).

(82) z € S_ \ A_ in which case J has an w-limit fibre F, of. Lemma 3.8.

Suppose (a;) holds. Since 2’ < z € w(z), we can find t € R} such that z' « &,z.
Consequently w(z) = w(2') < w(z), and obviously w(z) C w(z). But w(z) is unordered
forces w(z') = w(z) = w(z). Next 2z’ € z € w(z') shows that 2 « &,z' for some s > 0,
ie., z' € M4. Hence, w(z') is a smgle ethbnum by Prop. 3.1. In pa.rtncula.r we obtain
w(z) =w(z')€ A_andz € A_.

Suppose (a2) holds. The same argument as in (a;) yields w(z') < w(z), and also
w(z) Cw(z). By Prop. 3.10, the set ’LGJJw(y) = F C £ is the only w-limit fibre of J. We set

M ={w € F: w <w(z)}. Observe that p' € M where p' < p are the endpoints of F; also
w(z') = p' and w(z) = p. The compactness of w(z) shows that ¢ = max(M) exists in M. We
must have ¢ = p € w(z), since otherwise ¢ < w(z) would force ¢ = &,9 < ¢ 1w(z) = w(z),
thus contradicting the maximality of q in M. We arrive at w(zx) = p since w(z) is unordered.
In particular, we obtain w(z) = p € S_ \ A_. Thus, we are done with Case {(a).

Case (b): By Prop. 4.4 we have / C - M U 8, M. Hence, given n € N, we can find
Yn € JN M such that y;_, < yn < y,,,; hence y, — 2. Passmg to a subsequence of
{yn} C J, if necessary, we may assume y; < y2 < --- < z and either {yn: ne N} c M_
or else {y, : n € N} C M. Similarly as in (a;) and (32) we obtain w(y.) < w(z), n € N,
and also w(z) C w(z). Since z € §_, we have

w(z) = w-(2) = NZL,CLUZL; w(ya)

by Corollary 3.5. It follows that w(z) < w(z), and also w(z) C w(z). Thus, w(z) = w(x)
because w(z) is unordered. Furthermore, each w(y,) = {pa} CENA )z and y, € A, by
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Theorem 4.2. Obviously p < p; < --- is a relatively compact sequence with the limit
p=w_(2z) € ENS_. We obtain w(z) = p € S_ \ A_. We are done also with Case (b).

Alt. (ii): By Alt. (i) we have not only z € U,, but also w(z) C U, since z € w(z) is fixed,
but still arbitrary. Finally, z € A_ follows from z € S_ combined with w(y) £ w(z) C Uz,
for all y € X, y < z. Hence, w(z) C £ by Prop. 3.3(b). Our theorem is proved. |

Remark. Alternative (ii) in Theorem 5.1 seems to be impossible to investigate on
a computer since computer errors will cause the convergence of the iterates z, ®,z, ---,
®,..xz, --- to one of the equilibria p and ¢, by Prop. 4.4 combined with Prop. 3.1. Here,
7 > 0 is a fixed time-step, and p (g, resp.A) attracts the component Y of M_ (Z of M)
satisfying w(z) C 83Y NJ_Z. Fortunately we know that w(z) C £. But not only that, even
w(z) = {p} C £, for every z € S, /,, was proved recently by Smith & Thieme [42, Prop. 2.2]
under the following additional C!-differentiability and spectral hypotheses on &:

(D) X C V where (V, || -||) is & strongly ordered Banach space, and there exists 7 > 0
such that ¥, : X — V is continuously Fréchet differentiable on X, i.e., there exists a
continuous mapping ¢, : X — £,(V), valued in the cone of all positive continuous linear
operators on V, such that

D2 — P20 = L(z0)(z — z0) + n(x, z0)||z — zo|

for z, zo € X, with ||n(z,z0)|] — 0 as 2 — z,.

() For any p € £ satisfying o(p) = spr(®,(p)) = 1, o(p) is a pole of the resolvent of
&' (p) with finite rank and with geometric multiplicity one, and (o(p)I — ®’.(p))v = O for
some v € Int(V,). Here * > 0 is as in (D).

Here spr(L) denotes the spectral radius of L € L(V). If an isolated point A € C of
the spectrum of L € L(V) is a pole of the resolvent of L with finite order, we define the
rank of A by m,(A) = dim :L,le Kernel((AI — L)), and the geometric multiplicity of \ by
mgy(A) = dim(Kernel(AI — L)); thus my(A) < m()A) € oo.

Observe that (I) is satisfied if, for instance, for any p € £ satisfying o(p) > 1, ®.(p) is
compact (i.e., completely continuous) and strongly positive, by the Krein-Rutman theorem
{(cf. Deimling [10, Thm. 19.3]). This is a standard situation for irreducible cooperative
systems of ordinary differential equations and semilinear parabolic partial differential equa-
tions, cf. Smith & Thieme [42, Sec. 3]. Also notice that if p € £ satisfies o(p) < 1, then
p€E A

The following result is a direct consequence of our Theorem 5.1 combined with Smith

& Thieme [42, Prop. 2.2]:

Theorem 5.2. Let X be an open and order-convez subset of a strongly ordered Banach
space V which is also normally ordered, i.e., V = V also topologically. Assume that ¢

21 Analysis, Bd. 10. Hett 3 (1991
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satisfies (®) and is w-compact in every compact subset of X. Finally, suppose that both (D)
and (X) hold. Then w(z) is a single equilibrium for every z € Syy2. Furthermore, we have

Uy = X\ 82 CU-UVU COM C H(Int(A))

and, in particular, Int(S) is dense in X, cf. Proposition 4.4.

If, in addition, V is separable, then Uy C U = U_ U U4 where both U_ and Uy are
the unions of at most countably many Lipschitz manifolds of codimension one in 'V, cf
Corollary 4.5.

The density of Int(S) in X was proved also in Smith & Thieme [42, Thm. 2.6] by
different methods inspired by the work of Poldgik [32] who found sufficient conditions for
semilinear parabolic partial differential equations to have a dense open set of convergent
points, i.e., z € X with &,z — p € £ as t — co. Except for our results in this article and
those in Hirsch [21) and Polégik [33), the structure of the Lipschitz manifolds forming the
sets U_ and U as well as convergence properties of & on them still remain unknown. The
following information about the semiflow ¢ on I; is easily obtained by combining Theorem
4.2 with Prop. 4.4

Proposition 5.3. Let X, ® and T be as in Theorem 4.2. Assume that every z € X
has relatively compact orbit. Fiz any u € Uy =U_ NU,. Then there ezist ¢ component Y
of M_ and a component Z of My such that Ot (u)Uw(u) C 04Y NO_-Z CU,. Moreover,
we have 8,Y C H, = A, NB, and 8-Z C Hy = A; N By for some (Ai,B))eT, t=1,2,
with Ay C Az, and p € w(u) < q where {p} = ENIY C A, attracts Y UO_Y, and
{¢g} =€NBLZ C A_ attracts ZU 9, Z. Finally,

H, ﬂ[p,q] C8+Y and H, ﬂ[p,q] co-2

If, in addition, X is an order-convez, open subset of V where V satisfies (V), and if
®,[p, q] is relatively compact in V for every t > 0, then there ezist also p € ENH, and
¢ € ENH, such that p € p' < ¢' € q. For any such p' and ¢’ satisfying also p' # ¢, we
have

(0% (w) Uw(w)) N[p',q'] = 0.

PROOF. All claims follow from Theorem 4.2 and Prop. 4.4, except for the existence of
p' and ¢' which follows directly from Hirsch {20, Proof of Thm. 10.5] or Také¢ {43, Lemma
3.1] or [45, Prop. 2.3]. (]
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