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On the Structure of the Solutions of the Jabotinsky Equations in Banach Spaces
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Dedicated in gratitude to Professor Janos Aczel on the occasion of his 65 th pirthday

The differential - functional equations of Jabotinsky are closely related to the translation
equation. They are of importance in the iteration theory. In this paper we will give an ex-
plicit representation of the solutions of each of these equations in Banach spaces.
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The so-called Jabotinsky-equations are the three differential equations

OF(x,t) _ oF(x,t) .

ot ox Gx), M
—"—Féfll = G(F(x.t)), @)
‘)—F(%ﬁ o G(x) = G(F(x,t)) (3)

connected with the differential-initial condition

(OF(x,t)/ot ) p=0 = G(x) (4)
which allows us to call them a system of differential - functional equations (see Targonski
[16]). They were derived, in the one -dimensional analytic case, by Jabotinsky [9,10] from
the translation equation

F(F(x,t),s) = F(x,t +s) (s)
and the initial condition
F(x,0) = x. (6)

This can be generalized to solutions of (5) in more abstract spaces, €.8. in real or complex
Banach spaces (see Aczéland Gronau [2)). Equation (1) can be derived for every differen-
tiable solution of (5) by differentiating both sides of (5) with respect to the variable ¢,
putting r = 0 afterwards and using (6). Equation (2) is derived from (S) by differentiating
(5) with respect to the variable s and then putting s =0 (without using (6)). Equation (3) is
a combination of (1) and (2). The o in (1) and (3) means composition of 9F/dx with G.

The Jabotinsky equations can be used to determine the set S of numbers ¢ such that a
given function

F(x)=ax +a,x2+... (a;¢Rora;eC,a, +0)

has a t-th iterate, that is, there exists a family of functions {F, },;¢s such that F|, -, = F
and F(x.t) = F,(x) satisfies equation (S) whenever t,s and ¢ +s are in S. This was done in
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the one -dimensional analytic case by Erdos and Jabotinsky [8]. In view of this, the Jabo-
tinsky equations may also be of advantage for the embedding problem in the higher dimen-
sional case (see,e.g., Targonski [15] or Reich {12]).

In Aczeél and Gronau [2] the following problem was treated: Do the Jabotinsky equa-
tions imply the translation equation? We there gave explicit representations of the general
local solutions of each of the three Jabotinsky equations, without and with the initial con-
ditions (6) and /or (4), in the real one-dimensional case (see also the condensed version
Aczel and Gronau [3]).

It seems to be desirable to have also similar representation theorems for the solutions
of equations (1)~(3) in the higher dimensional case, say R” or C” or in abstract Banach
spaces.This will be given in the present paper in the case where F and x take values in a
real or complex Banach space X, and t is a real or complex variable. It should be empha-
sized that we can give existence, uniqueness and explicit representation theorems on all
of the three Jabotinsky equations, without using standard existence theorems, except the
one well-known theorem of the existence of a local flow, that is, the existence of a
solution of the autonomous equation dy/dt = G(y), with the initial condition y(0) = x. The
solution y = y(t,x) depending on the initial value x exists, and is of class C? if the func-
tion Gis of class C* (see Cartan (6] or Dieudonneé [7]). The presented results include of
course the case that X is one of the spaces R” or €” (n 2 1). In this case oF(x,t)/ox is
the Jacobian matrix (0F;(x,t)/dx;); j=,, ... n Of the function F(x,t) = {(F(x,t),...,F(x,t))
written as a column vector, and the symbol © in (1) and (3) is the matrix multiplication
with the column vector function G(x) = Y(G(x),...,G(x)), where x = Y(x,,...,x,,) is a
column vector variable in R” or C”. The real one-dimensional case is included herein in
an obvious way.

Firstly, we will state three lemmas, which are important for the sequel. They are stan-
dard results from the theory of first order differential equations. But the first lemma is
crucial for what follows. We will use an idea of L.Berg who gave an explicit representation
of the soluticns of an autonomous system of ordinary differential equations in R”, using the
method of rectification. As a matter of fact, equation (2) is such an autonomous system.
For so, we can apply the result of Berg [5] (see also Acz€1[1]) to this equation.

The contents and the proofs of the following lemmas are standard (see,e.g.,Lang [11]
or Arnold [4]). The first lemma is the lemma of straithtening, the others give a characte-
rization of functions with prescribed constant directional derivative. But, we will give the
proofs here for the sake of completeness. We use some standard facts of functional ana-
lysis, for example the one, that every finite - dimensional subspace Vof a Banach space X
has a closed complementary space X. This means that there is a closed subspace X of X,
such that X =V & X.

In what follows, with X will always be denoted a real or complex Banach space and
by K the field of real or complex numbers, according as X is real or compiex.

Lemmal: Let G: U< X — X be continuously differentiable (U an open neighbourhood
of a fixed point x, ¢ X) and suppose G(x,) * 0 (0 is the zero in X). Further let be given
acX,a* 0. Then there exists a C*-diffeomorphism f, from a (possibly smaller) neigh-
bourhood of x, onto a neighbourhood of 0, such that f(x) o G(x) = a, this means

G(x) = (£(x) ¥a). (7
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Proof:Set g = G(x,) and {a)> = {tal t ¢ K}.Then there exists a closed complementary
subspace X of <a) in X with X = {a) @ X. This subspace can be chosen in such a kind
that g « X. Therefore we also have X = {g> @ X . Let now @ = @(r,%') be a solution of the
differential equation d@/dt = G() with the initial condition P(0,%) = x, +X, X € X. The
function @ is defined on a suitable neighbourhood I x U ¢ K x X of (0,0). For x = ta +% ¢ X
we may define ¢(x) = @(¢, %), supposed that {¢,¥ )¢ 1 xU. We have §(0) = x, and we will
prove that § is a C*- diffeomorphism and f =" is the claimed diffeomorphism.

a) ¢ is of class C*!(see, e.g., Cartan [6]).

b) $(0)| g = id g, since $(®) = @(0,%) = & for X ¢ X and $(0)],,(h,8) = Glxo)h, =
gh,. Therefore, ¢'(0): (a)#X—> (g) @ X, bemg the direct sum of two isomorphisms, is
itself an isomorphism. By the inverse mapping theorem, ¢ is invertible in a suitable neigh-
bourhood U, € X of 0. The inverse map f =¢™"is defined in a neighbourhood U, = $(U},),
where ¢(0) = x ¢ U,.

¢) For h= ha+h,, hy ¢ X we have

$x)n) = 22ERD -y ST (4 = G(a(e,X)h, + 22(LZ) (),

Hence for h = a = 1-a + 0 the following calculations will hold:
P(x)a) = G(P(x D P(F(x))Na) = GIx )£ V(F(x)(a) = G{x)f(x)"*(a) = G(x).

Therefore f is the claimed diffeomorphism Wl

Remark 1: If X = R”, then f(x) is the Jacobian matrix of f. That is, if f;(x) are the
components of f(x) and x = (x veeesXp), then £(x) = (ofj(xVox )11 =1,..., ifa -‘(a‘ .ap)
¢ R, then (7) means f(x)G(x) = & and there exist n mdependent real valued functions f;,
which satisfy the inhomogeneous partial differential equations 21 yofi(x)/ox; - G; (x) = a;
fori=1,...,n.

Lemma 2: A differentiable function H: UxJ] ¢ X xK—=> X (le open in X x K) is a
differentiable solution of
OH(y,t), OH(y,t) (8)
oy ot ’
where a is a fixed element of X, if and only if there exists a differentiable function ¢: U+
I-a - Xwith
H(y,t) = ¢(y +ta). 9

(a) =

Proof: Every function of the form (9) satisfies equation (8). Contrary, suppose that
H(y,t)is a solution of equation (8), and put H(y,t)=H(y - ta,t). Then
oH(y,t) _ oH(y -tat) (_,y, oH(y -ta,1) _
ot ¢ Sy (-a) St =0.
Hence H(y,t)is independent of t, say H(y,t)= H(y - ta,t) = @(y), thatis H(y,t) = Ay
+ta,t)=@(y+ta)l

Lemma 3: Let U< X be openin X. Further, let a ¢ X, a #+ 0, and X a closed comple-
mentary subspace of {a) in X, that is X ={a) X.Denote by ng the (continuous) linear
projection from X onto X.Then a function H: U € X = X, being differentiable in U, satisfies

H1{x)a)=0, (10)
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if and only if there exists a differentiable function y: ne(U) — X such that
H(x) = x o ng(x), for x € U. (1)
Proof : Every function H of the form (11) is a solution of equation (10):
H'(x)(a) = Y (ngp(x)) o mgp(x)a) = x(ng(x)) o ng(x)(a) =0

because ng,(a) = 0. Contrary, in view of X = (a) & X, we have the following unique repre-
sentations for x, H(x) and he X:

X =X, *x, (x,e<a>, x, e X)
H(x) = H(x,,x,) +H(x,,x,) (H{x,, x,)e<a>, Hix,,x,)e X)
h=h,+h, (hye<ad, hye X).
H'(x) is therefore of the form
" _OH(x,,x,) aH‘(x‘,x ) OH,(x,,x,) c)H,(x,,x2
H{xXh)= ox, (h,)+ I (hy )+ ox, (hy)+ Y {h,)
For h = a, that is, h, = a and h, = O this ylelds
Hixxa) = X)) QRN )

1 l

This has as a consequence that al-!,(xl,xz)/z)xl =0 and 9 H,(x,, x,)/9x, = 0 as a scalar or
rector, respectively. Hence H,(x,,x,) and Hy(x,,x,) are independent of x, therefore H(x)
s a function depending on x, = mg(x)only, this reads as H(x) = y(ng(x)) 8

Romark2:in the case X = R”we have a ="(al ..... a,)e R7and the vector-valued function
f(x) =t(H‘(x),...,H"(x)) depends on x =t(x‘ vees ,xn). In this way, equation (10) is of the form
':j___laj 6H(x)/r)xj =0.The condition a *+ 0 implies that one of the a;’s is non-zero say,for the
ake of simplicity, a, = 1. Therefore we get by formula (11) as solution of (10)

H(x) = x(x‘ T B Xpe-sXp-g T anflxn)

wccordingly, in the case n = 1 we get the solution H(x) = const.

Now we can state the main results. In what follows we will assume the following sup-
ositions:

The function G = G{x) has to satisfy the conditions of Lemma 1, i.e. G is continuously
ifferentiable and non-zero at a fixed point x, ¢ X. Furthermore, let us denote in the sequel
y a a fixed non-zero element of X and, by f the invertible function, given by Lemma 1
ich that G(x) =(f(x))”*(a) holds. Finally, let X be a closed complementary subspace of
a> in X such that X = {a)> ® X, and let ng: X—> X be the linear continuous projection
om Xonto X .

Theorem 1: The following statements hold.
a) A function f is a solution of the Jabotinsky equation (1),

OF(x,t) _ OF(X.t) | oty
Y = s G(x),

a neighbourhood of (x,,0)e X x K if and only if there exists a differentiable function
- Ve X— X, where Vis a neighbourhood of f(x) such that '

F(x,t)=o(f(x)+1ta). (1."2)
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b) This function F satisfies the initial condition (6) ifandonly if o =f 7', i.e., if

F(x,t)=f(f(x) +ta). (13)
In this case F satisfies also the differential - initial condition (4) and equation (s).

¢) The solution (12) of equation (1) satisfies the condition(4) if and only if there exists
a function x: ng(f(U)) > X such that

F(x,t)=f"(f(x)+la)*xonQOf(x). (14)

In general, the function (14) is not a solution of equation (s).

Proof : a) An easy computation, using (7}, shows that every function F, defined by (12),
is a solution of equation (1). We will prove that every solution F of equation (1) is of the
form (12). For this, one could use existence and uniqueness theorems in the sense of Cau-
chy. But these are hard to find in the standard literature. Thus we may proceed as follows.
We have

OF(f yhth(q) = GBI o (7 ~4(y)) Ha)
L AU | Gip iy = AEE D).

ox ot

Hence we can apply Lemma 2, that is, there exists a differentiable function ¢ such that
F(f “(y),t) = @(y +ta). This yields to the representation (12) of F(x,¢).

b) F(x,0) = x implies @(f (x)) = x hence @ =f . An easy computation shows that the
function (13) satisfies also condition (4) and equation (5).

¢) With respect to (12) we get oF(x,t)/ot = @(f (x) +taXa). Hence condition (4)
implies, in view of (7), @’ (f (x)Xa) = (F(x)%a). Taking y =f(x), i.e.x =f "y), we
get o(yXa) = F(f *(y))*(a). This is o(yXa) = (f(y)*)(a). Therefore @(y) -f Yy)is
a solution of equation (10), which yields @(y) = £ (y) +x © ng(y) due to (11). In this way
we get the representation (14) il

Theorem 2: The following statements hold.
a) A function F is a solution of the second Jabotinsky equation (2),

G—F%Q = G(F(x,t)),

in a neighbourhood of (x4,0) € X x K if and only if there exists a functionk: U ¢ X > X
(where U’ is a neighbourhood of x, and k(U’) is contained in the domain of definition of f)
such that

F(x,t)=f*(k(x) +ta). (15)
b) This function F satisfies the condition (6) if and only if k =f, i.e., if
F(x,t)=f"*(f(x) +ta). (16)

In this case the function (16) is also a solution of the equations (4) and (s).
¢) The solution (15) of equation (2) satisfies the condition (4), if and only if

G(f "(k(x)) = G(x). (17)
Thus, if G is injective, we have k = f, hence
F(x,t)=f "} (f(x)+ta) , (18)

In general, the function F even if it satisfies (17), is not a solution of equation (s).
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Proof: a) Every function given by (15) is a solution of equation (2). Since G is suppo-
sed to be continuously differentiable, the Cauchy problem for equation (2) (see Dieudonne
{7D), F(x.t)|¢=o = $(x), for any given function ¢, has a unique solution which is given by
(15), taking k = fo .

Another way to prove that every solution of equation (2) has the form (15) is the fol-
lowing. Let F be a sotution of equation (2). Then from (2) and property (7) there follows
that OF(x.,t)/ot = f(F(x,t))"(a). Thus f(F(x,t)) o dF(x,t)/0t = aor of (F(x,t))/ot = a.
This yields f(F(x,t)) = ta + k, where k is depending on x, say k = k(x). From this we get
the stated representation of the solution of equation (2).

b) The initial condition (6) implies f "{ k(x)) = x hence k(x) = f(x). The function (16)
satisfies also condition (4) and equation (5).

c) Inview of (15) we get 9 F(x,t)/ot = £'(f "*(k(x) +ta))"*(a), hence, by condition (4),
£(f M k(x))™a) =f"(x)"*(a). Thus, in view of (7), G(f "(k(x))) =G(x) @

Theorem 3: The following statements hold.
a) A function F is a solution of the third Jabotinsky equation (3),

MFO%JJ o G(x)= G(F(x;f))

in a neighbourhood of (x4,0)e X x K if and only if there exists a function A: g o f(U)xK
—> X, differentiable in its first variable, such that f(x)+A(mg o f(x),t ) lies in the domain
of definition of f ~*, and F has the form

F(x,t)=f(f(x) + A(rg o f(x),1)). (19)

b) This function Fsatisfies condition (6) if and only if A|,_, = 0. But generally F, even
with condition (6), is not a solution of equation (5).

¢) The solution (19) of equation (3) satisfies both conditions (4) and (6) if and only if
A is differentiable with respectto t, att =0, and Al;-o = 0 and (0A/dt )|, -, = 8. Even in
the case that both conditions (4) and-(6) are satisfied the solution F of equation (3) is in
general not a solution of equation (5).

Proof: a) Let F be given by (19). Thus

0 A(vrg of(x),t) o G(x)
ox

A(ngof(x),t)o n'ug(f(x)of(x)e G(x)
A(rg of(x),t) o ng o f(x) o G(x)
A'(nk of(x),t)o o, of{x)o(f(x) *(a)

"

A (g of(x),t) o ng(a) =0.

Now
ma"_\xﬂ °G(x)= (f’((f"(f(x)'/\(nx, ot‘(x),t))))_l°(f'(x)*?A—(n%:ﬁm%G(X)
= (f'(F(x,r)))“ o f(x)o(f(x))*a)
=(F(F(x,1)™(a) = G(F(x,1).

Therefore every function F given by (19) satisfies equation (3). Conversly, given any so-
lution F of equation (3). To show that this solution has to be of the form (19), one cannot
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apply the standard existence and uniqueness theorems for the Cauchy problem, since it
may be happen that (3) is a differential equation of singular type. One may proceed as
follows. Equation (3) yields with respect to relation 7

fﬁﬁﬂo(mx» Ya) = (F(F(x,0) a).
Putting x = f () and multiplying by f'(F(x,¢ ), one gets

F(FU ) o LEE W) o (£ 2y Ha) = o

Since (£ (f "(y))™ = df "(y)/dy, the chain rule yields (c)f(F(f"(y),t))/c)y)(a) = a.
Therefore, H(y) = y being a particular solution of (9H(y)/oy)(a)= a, Lemma 3 yields
FF(f My)t)=y+ A(mg(y),t), where the function A depends also upon the parameter ¢.
Therefore F(f “*(y),t) =f "y + A(ng(y),1)), and the substitution y = f(x) gives the re-
presentation (19).

b) The initial condition (6) implies f(x)+A(rg © f(x),0) = f(x), hence A(mg of(x),0)
= 0. But fbeing invertible and ng surjective yield A|, = = 0.

c) Condition (4) yields

[0 Mg o0 o PRGN

Since A(mg © f(x),1)]r=o = 0, one gets due to condition (6)

(f(x)te a_A(erao_rf(_\_M)_ oo T (f(x))*(a),

thus (()A('n:k of(x), t)/c)t)|,=° = a. Again, finvertible and ng surjective yields (OA/3t )¢ =0
= a. Examples of solutions of (3),(4) and (6) which are not solutions of (5) were given in
Aczél and Gronau (2110

Next we will take a second look at an example of the third Jabotinsky equation,which
has been treated in Aczel and Gronau [2], with regard to "commuting mappings”. In con-
nection with this subject we refer also to Reich [14]. A family {F:} of mappings Fr(x)
= F(x,t) is said to be commuting, if it satisfies the equation

F(F(x,s)t) = F(F(x,t)s) (20)

for all parameters s and t. As one can easily see, equation (3) together with initial condi-
tion (4) can be obtained from equation (20) and condition (6) by differentiating (20) with
respect to s, putting s = 0 afterwards. Of course, every solution of equation (5) satisfies
(20). The question in Aczél and Gronau [2] was, whether a function satisfying equation (3)
with condition (4) and equation (6) would also fulfil equation (20). As a counter-example
in R?we there gave G(x) =x and F(x,t)=A(t)x,where A(t)is an n xn matrix with
functions of t,satisfying at least for one pair(s,t)the inequality A(s)A(t) + A(t)A(s).

Example:Let G(x)=x.We may take & = t(1,...,1)and U={x e R"| x; >0 for i=1,..,n}
hence f(x)="(Inx,....,Inx)and f (x) ="(expX, ,...,expx,, ). Every solution of equation
(3) has. in view of (19) and Remark 2, a representation of the form

F(.\',1)=(exp(]n.\'i +A{Inx, - Inx,dnxg o - lnx,,,r))), (21)
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where A; is the j-th component of A.
a) If A is independent of the y;’s,for example A; = Ing;( t ),where the g;’s are arbitrary
functions, one gets

F(x,t) =(g,~(r )xi)iﬂr“m = diag(g,(t),...,g,,(t))x.

This function satisfies equation (20) even if the g;’s are chosen in that way that F does not

satisfy (4) and (6). Generally, one can say that a solution (19) of equation (3) satisfies

equation (20) if (but not only if) the function A is independent of the first n-1 arguments.
b) Choosing A = (A;);=,... .p as

n-
Ai( Vi Yo t) = ln( ki a;,(t)expy, + ain(t)-yi) fori=1,..,n-1
=1
and
An(yl""'.yn-x’.t) = ln(g ank(t)expyk * ann(t ))
one gets from (21)
n- x -1
Fx,t) = x;(Zf a,(t)xy/x, + a,-,,(t))—" = E a,(t)x, fori=1,...,n-1
k=1 X; k=1 .
and

f‘;,(.\’.t) = xn(lz;; ank(t)xk/xn + ann(t ))'

hence F(x,t)= Z:;:aik(t‘)xk for i = 1,...,n, that is F(x,t)=A(t)x, where A =(a,~j) is
an n x n matrix of functions a;; . If one choses A(0) = E and (dA(t)/dt)|,., = E (the iden-
tity matrix) but A(t)A(s) # A(s)A(t), then this yields a solution of equation (3) together
with conditions (4) and (6), but this solution does not commute.

As a further statement we can give the following remark.

Remark 3 (on the uniqueness): &) The supposition of continuous differentiability of the
function G in Lemma 1 is a sufficient condition to guarantee the existence of a C*!-diffeo-
morphism £, such that (7) holds. For all what follows to Lemma 1, only the existence of an
invertible function fis necessary, where fand f ! are differentiable and (7) holds. So, it is
casy to see that the following statement on existence and uniqueness in the sense of Cau-
chy holds for equations (1) and (2).

Corollary: Suppose that f: Uy = f(U,) € X (U, open connected in X) is invertible, f
and f ! are differentiable and (7) holds for x € U,. Then, equation (1) (resp. equation (2))
admits one and only one differentiable solution F which satisfies the initial condition F(x,0)
= ¢(x) for any given (in case of equation (1) differentiable) function ¢.

®b) For equation (3) a uniqueness condition in the sense of Cauchy cannot be given.This
means that a solution F of equation (3) is not uniquely determined by the value F(x,0), and
/or, for a fixed x, ¢ U,, by the value F(xgq.t). But we can state that for a given solution F
of equation (3), the function A: ne o f(U) x X in the representation (19) is uniquely deter-

mined by this solution.

It should be pointed out that the above representation theorems may give some insight
in the structure of the analytic iteration problem (as mentioned in the introduction).
Especially equation (3) can be of advantage, since in this case no regularity of the solution
F with respect to t is-required. We give here an example for the one-dimensional real or

complex case.
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Example 2: Let X be R or C. In this case the solution F of equation (3) is given by

F(x,t) = £7(F(x) + At)). (22)

where the real or complex function A is only depending on t. The so defined function Fis a
solution of equation (5), if and only if A is additive, that is Als +t)= A(s) +A(t). The so-
lution F of equation (5}, given by (22), is continuous in t too, if and only if the one involved
additive function A is continuous, that is, a linear function of the form A(t )= Xt, where A
is an arbitrary non-zero scalar.
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