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Multidimensional nonlinear systems with periodically nonstationary linear part are considered. It is supposed
that nonlinear blocks satisfy some integral quadratic constraint. The necessary and sufficient condition of
absolute stability with respect to output for such systems are established in terms of certain properties of
solutions of a linear Hamiltonian system with periodic coefficients. In the case of constant coefficients this
condition transforms into a well-known frequency criterion of absolute stability.
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Introduction

Frequency domain absolute stability criteria for nonlinear systems with stationary linear part have
been known for a long time, — see, for example, (1, 3, 5, 8, 9] and references there. First sufficient
criteria of absolute stability for systems with periodically nonstationary linear part were obtained,
as it seems, in [6, 7). These criteria have the form of positive definiteness of an infinite Hermitian
matrix depending on a frequency parameter. In [10}, the absolute stability criterion was obtained in
another form characterized by the properties of the solutions of a linear Hamiltonian system. Unlike
(10] this paper presents the absolute stability criterion for arbitrary given output. As it is known,
[3-9 and others], this makes possible a more detailed study of the nonlinear system. The obtained
criterion has a form similar to [10], and in contrast to {6, 7] it is shown to be not only sufficient
but necessary for absolute stability. If the ”"complete output” (state and output of nonlinear blocks)
is taken as the system’s output, then this criterion coincides with the criterion [10]. In the case of
stationary linear part it reduces to the frequency "quadratic” criterion (3,9, 16].

1. Problem Formulation

First let us agree upon the following notations:

(1) - space of complex (real) k-vectors
‘ - Hermitian conjugation (transposition for real vectors and matrices)
I, - the identity & x k matrix, 1= v/—1

W {(0,t5) — X} - vector Sobolev space (Hilbert space of absolutely continuous functions
f(:): (0,to) — X with inner product {f, f2) = ‘fo{h(i)’fl(t) + f;(t)'fl(t)} dt
and the norm ||f( ) = (/. f): here tg < +oo,°X = CF or R*)
The symbols L3 {(0,to) — 2.} and others have similar sense.
Consider the system whose linear part is described by the vector equation
dz/dt = A(t)z(t) + b(t)u(t). (1.1)

Here z(t) € F™, u(t) € B™, A(t+T) = A(t), b(t + T) = b(t) are real, T-periodic, n x m matrix
functions with measurable bounded elements. The nonlinear part of the system may be described
by the equations

u(t) = ¢y lt, z(t)].  wu(t

=2 [t.f(‘)ll]

~—
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and others. Below, the equation of the nonlinear part is not used explicitely. Instead of this we
assume that input z(2) and output u(t) of the nonlinear part satisfy the following integral quadratic
constraint:

%

3y >0, 3kj —o00: / G (t,z(t), u(t)) dt > —. (1.2)
1]

Here k; are integers, ((t,z, u) is a given real quadratic form

G(t,z,€) = % [z°G(t)z + 2z°g(t) + E'T(t)f] (z €F", ue ™) (1.3)
with T-periodic (measurable, bounded) coefficients

G(t+T)=G(t) = G(t)", g(t+T)=g(t), T(+T)=T()=T()".

The numbers k; and 7 in {1.2) may depend on the process z(:), u() and usually vy = 7[z(0)] — 0 as
j2(0)] — 0.

Various examples of nonlinearities and corresponding quadratic constraints (1.2) can be found in {1, 3-
9]. Often instead of (1.2) the stronger "local” quadratic constraint G(t.z(t), u(t)) > O is satisfied (then
obviously (1.2) holds). If, for example, m = 1, ¥ = ¢(t,0) is a scalar nonlineasity satisfying the usual
"sector condition” u; < ¢(t,0)/o < 4z and 0 = c(t)°z,c(t + T) = c(t), then the quadratic constraint
G(t,z,u) = (p20 — u)(u — pyo) > 0 is valid.

fm =1, u=y(c)and the same sector condition is valid, then (1.2) holds with the form G(t,z,u) =
(820 — u)(u = p10) + O(u — p10)°d, where & = ¢()°z + ¢(1)°(A(t)z + b(t)u),© > 0.

Ifm=2 u=col [u,u2), wy = o, uz3 = o and as above 0 = ¢(t)°z, c(t + T) = ¢(t), © > 0, then the
integral constraint (1.2) with the form ¢(t,z,v) = (ou2 — u?) 4 Buzo is fulfilled.

Special kinds of hysteresis functions, pulse modulators with various types of modulation satisfy the
conatraints (1.2) with some forms G (see {3, 9]). As a matter of fact all papers on absolute stability use the
constraints (1.2), although often this is not formulated explicitely.

Consider the system {1.1), (1.2). In this system the processes z(-), u(-) are determined on (0, c0)
and are locally quadratically summable (then the integral in (1.2) makes sense), z(t) is absolutely
continuous and (1.1) is valid almost everywhere.

Let d(t + T) = d(t), do(t + T) = do(t) be real (bounded, measurable) n x [ and | x m matrix
functions, |d(t)| + {do(t)| # 0 and

n(t) = d(t)"=(t) + do(t)u(t) (1.4)

be a given system’s output. An output nc = col [z, u] is called the complete output (then [d°,do) =
In#m)~ ‘

The system (1.1), (1.2) is calied absolutely stable with respect to the output n if there exists a
constant C > 0 such that |n(-)| € L2(0, oo} for any of its solutions z(-), u(-) and

O = /I'l(t)lzdi < C(1=(0)1* +7) : (1.5)
[}

is fullfilled. If the system (1.1), (1.2) is absolutely stable with respect to the complete output nc (and
consequently to any output (1.4)) it will be called absolutely stable. For an absolutely stable system it

follows from (1.1) that |z(-)| € L3(0, 00) and, therefore |z(t)] — O ast — co. Let 9N = {(p(t,z(~)) L}

be a set of nonlinear blocks. If for any solution of (1.1) with u = cp(t,z(<))|; € M (1.5) holds with
a common constant C = Cy,, then we say that the system (1.1) is absolutely stable in class N with
respect to the output n. If n = nc = col [z, u).then we shall speak of absolute stability in class 9.

The system (1.1), (1.2) is called strongly minimally stable if there exists a feedback u(t) =
c(t) z(t) (le(-)} € Leo, c(t + T) = ¢(t)) such that G(t,z,¢(t)"z) > 0 for any ¢, z and |z(t)| — 0 as
't — oo for any solution of (1.1) with u(t) = c(t) =z(t).
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The system (1.1), (1.2) is called minimally stable if for any a € P" a solution z™(-), u™(.) of
(1.1), (1.2) exists (with numbers v* = 7”(«),k}w in (1.2)) such that

M(0) = a, =M (kIMT) —0 as k,‘-" — 00 and ix;t;) [r"‘y“(ra)] <o.

Obviously, a strongly minimally stable system is also minimally stable. (Indeed, in this case take
2™ uM to be a solution of (1.1), uM = c(t)'z™, +¥ = 0,and k’” — oo are arbitrary.)

It is assumed below that (1.1) is stabilisable in the following sense: ‘there exist n x m matrices
¢;(t) = ¢;(t+T)(j = 1,2),l¢(-)] € Loo, such that the system (1.1) with u = ¢, (t)* z is asymptotically
stable as t — oo and the system (1.1) with u = c(t)"z is asymptotically stable as ¢t — —oo. The
criteria for this condition can be found, for example, in [2}.

It will be shown below that for absolute stability with respect to an output 7 it is necessary that

3e>0: G(t,0,u) + e|do(t)ul* <O (Vt, Vue R™). (1.6)

Hence it follows that ['(t) = I'(t)* < 0in (1.3).

The essential difference from {10) is that here we consider the cases when the matrix ['(t) may
be singular. (In [10] it was assumed that I'(t) < —YoIm < 0; in view of (1.6) this is a necessary
condition for the absolute stability with respect to the complete output.) There are many practically
important examples with the singular matrix I'(t) [9].

2. Formulation of the result
Consider the adjoint Hamiltonsan system

dz/dt = (8K /3¢)*, dy/dt=—(8M/3z)*, IH/B8u=0, (2.1)
where

H = ¢ (At)z + b(t)u) + Gs

Gs = G(t.z,u) = 6 (|27 + [ul?) +eln)?
and 6§ > 0, ¢ > 0. This system will play an important role below. The last equation (2.1) has
the form [[(t) — 61, + edo*do]u + ... = 0, where dots denote an expression independent of u.
From (1.6) it follows that T'(t) — 61, + edo(t) do(t) < —6In for € > O sufficiently small. Hence for
§ > 0 the last equation (2.1) implies that u = a(t)z + B(t)¥, where |a(t)], |3(t)i € Loo. Denoting
Ho(t,z,¥) = H(t,z,¥,u) for u = a(t)z + B(t)¥, we transform (2.1) into the usual Hamiltonian
system _

dz/dt = (8Hy/8%)", dy/dt = —(3H/dz)". (2.3)
Indeed, 8Ho/3¢ = IH [3Y+(3H[u)(8u/OY) = dH /B¢ since IH/Bu = 0. Similatly, OHo/8z =
M /8z. The system (2.3) may be rewritten as a vector equation

(2.2)

dz _ . _|= _{0 -1,
J i H(t)z, where z= [d)] , J= [,ﬂ o |’ (2.4)
Go-9ol5'9s (A-8T5%g)
H(t) = o 9o o 90 )
®) A-bT5tgs —bTg e ' (25)
go=9+¢eddy, Go=G-6l,+¢edd”, To=T-8l,+ edody” . (2.6)

From (1.6) we have I'o(t) < =8Iy < 0, therefore T3] € Ly if € > 0 is sufficiently small.

Let Z(t) be the evolution matrix of (2.4) (i. . dZ/dt = JYHZ, Z(0) = I,). 2(T) is the
monodromy matrix of (2.4). The system (2.4) (the system (2.1) and (2.3)) is called completely
unstable if it has no solution that is bounded on (—00,00), i. ¢. (see {11, Ch. 1I]} if the following
frequency condition is satisfied:

det [Z(T) ~ e I3]) #0 (Vw: 0 <w < 27). (2.7)
Let {2.7) be satisfied. Then n linear independent solutions z;(t) = col [z;(t), w;(t)] of (2.4) may be
constructed such that |z;(t)] — 0 as t — co. Consider n x n matrices

X(0) = 1), - 2a(0), ¥(0) = [92(0). - V() ) (28)
The completely unstable equation (2.4) is called nonoscillatory if
det X(t) £0 (¥t €[0,T}). (2.9)

Other equivalent nonoscillatory criteria may be found in [12].

23~
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Theorem 1. Let the system (1.1), (1.2) be minimally stable. For absolute stability of the system
(1.1), (1.2) with respect to the output n it is necessary and sufficient that one of the following
equivalent conditions hold.

(3) T(t) + edo(t)"do(t) < O for some &€ > 0 and for this ¢ and for all sufficiently smallé > 0 (2.7)
and (2.9) hold (i. e. the system (2.1) is completely unstable and nonoscillatory).

(i1) For somee > 0 and for any z(-) € Wy {[0,T) — "}, u(-) € L {[0,T) = "}, e € T, lo| = 1,
such that dz/dt = A(t)z(t) + b(t)u(t), =(T) = oz(0) the inequality .

T T '
/g(t,z(z).u(t))dz < -s/|n(t)|’dt (2.10)
(o] 0

holds.

We note that in (2.10) and below if z, u are complex, then ¢ = %(x'Gz + 2Re(z°gu) + u'T'u) is
the Hermitian extension of the real form (1.3).

Corollaries. Let the system (1.1), (1.2) be minimally stable.

1. IfT(t) 4 edo(t) do(t) < —voIm < O for some ¢ > 0 and if for 6§ =0 (2.7) and (2.9) hold, then
the system (1.1), (1.2) is absolutely stable with respect to the output 7.

2. Absolute stability with respect to the complete output nc = col [z, u] is equivalent to the con-
ditions:

(a) 310 >0:T(t) < —7ln <0,
(b) (2.7), (2.9) ave satisfied for § =0, ¢ = 0.

(This criterion supplements the result in [10].)

Proof of the corollaries. 1. Since (2.7) and (2.9) hold for § = 0, these conditions will also'hold
for small § > 0. (Matrices Z(t) and X(t) are continuous with respect to §.)

2.The sufficiency follows from (i) and from the continuity with respect to €,§ of the matrices
Z(t), X(t). By Theorem 1 the necessity is equivalent to I'(t) < —yol,, < 0 and (ii) with |n|® =
[n¢|?® = Jz|* + |u|®. According to Theorem 2 of [14], the last condition is equivalent to (2.7) and
(29) withé6=0,6e=0 B

The condition (ii) is close to the criterion of SHILMAN [6, 7]; efficient methods of its verification
may be found in [7}. In many cases (i) seems to be more convenient to apply. In general cases both
conditions are used only together with computer devices. Note however that conditions (2.7), (2.9)
refer to a certain linear system (2.3) and they characterize behaviour of all solutions of nonlinear
systems belonging to an infinite set.

Example 1. Consider the system (1.1) form = 1, u = ¢(t,0),0 = c(t)°z, ¢(t+T) = ¢(t), |¢(-)| € Loo. Let
Mo be the class of functions ¢(t, o) satisfying the inequality u,(2) < ¢(t,0)/0 < pa(t), where u,(¢+T) = u,(t)
are fixed functions from Lo,. Let us find the absolute stability conditions in the class 9ip with respect to
the complete output. In our case the local quadratic constraint

CG==(u—pmo)(pr0—u)>0, o=c(t)z (2.11)

1
2
is satisfied; hence T' = —1. According to Corollary 2 we set § = ¢ = 0 in (2.2), therefore
. 1
H =9 (Az + bu) + E(u - mo)(p20 — u).
The system (2.1) in our case reduces to (2.4) with the matrix Hamiltonian

1 2 . . 1 .
Hy= | Gl = m2)) e A% 4 S+ a)eb '
=1 4% Hps + pa)be” bb* (2.12)

(see (2.5); the formulae (2.1), (2.2) may also be used). The strong minimal stability takes place if equation
(1.1) is asymptotically stable with u = (4, + p2)o/2. Suppose that this condition is satisfied. By Corollary
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2 the absolute stability in the class 9o takes place if the Hamiltonian equation (2.4) with the Hamiltonian
(2.12) is completely unstable and nonoscillatory, i. e. (2.7) and (2.9) hold.

This condition is similar to the circle criterion for stationary systems and transforms to the circle criterion
if the system (1.1) and p,, p2 are stationary. This condition is necessary and sufficient for (1.1) to be
absolutely stable in the class of nonlinearities such that their input o(t) and output u(t) satis{y the integral
quadratic constraint:

X T

3y>0,3k, - o0: /(u—p,a)(p;o—u)dtz -. (2.13)
o

Some pulse and frequency modulators satisfy (2.13). (See [9].) Note that the system (1.1), (2.13) is strongly
minimally stable if the equation (1.1) with some feedback u = po(t)o, 0 = c(t)’z, u1(t) < po(t) € ma(t). is
asymptotically stable. Obviously this condition is also necessary for absolute stability in the class 91o.

Example 2. Consider the system (1.1) for m = 1, u = p(0),0 = c(t)’z, c(t+ T) = c(t), le(-)] € Loo-
Suppose that we know only that op(o) > 0 and we have to find the absolute stability conditions for all such
nonlinear systems. More precisely: Let M, be the class of functions ¢(o) (they may be discontinuous or
muitivalued) which satisfy the existence theorem (3, Ch. 2] and o9(c) 2 0 (examples: ¢,(0) = a°, wa(0) =
sign o, w3(o) = (1 4+ 0%)sign o if o # 0, 93(0) = [-4,4]), & > 1). We want to find the absolute stability
conditions in the class 9,. Consider at first the complete output. It is simple to verify that the integral
quadratic constraint (1.2) is fulfilled with the form ¢ = rou+ Odu, where v > 0, © > 0 are the parameters.
As p(0) = 0 € 91,, we have to suppose that the equation dz/dt = A(t)z is asymptotically stable. Then the
system (1.1), (1.2) is strongly minimally stable (the corresponding feedback is u = 0). AsG=z"(rc+Oc+
©A°c)u + Ob°cu? in our case we have G =0, I(t) = ©(t)°¢(t). According to Theorem 1, (i) the inequality
I'(t) € 0 must hold.

Assume at first for simplicity that a(t) = ~b(t)°c(t) > 6o > 0. Without loss of generality we can put
@ = 1. Consequently g(t) = 1/2(rc+ ¢ + A°c). Using formulae (2.5), (2.6) from Theoerem 1, (i) we have
that system (1.1) is absolutely stable in class 91, if (2.7), (2.9) are fulfilled for the system (2.1) with the
Hamiltonian .

_[ 99'/a (A+dg°/a)
H() = [A +b9°/a b ja )

Now suppose that a(t) = —bt)"c(t) > 0. Consider the absolute stability problem with respect to an
output n = z. We have d = I,, do = 0, Go = (¢ — 6)Jn, g0 = g, o = ~(a(t) + §), § > 0. According to

Theorem 1, (i) the system (1.1) is absolutely stable with respect to the output 7 in the class N, if (2.7),
(2.9) are fulfilled for the system (2.1) with the Hamiltonian

~8)n —g9°/(a+6) (A+bg*/a)’

_|(e
”(‘)'[ A+bg[(a+8) B [(a+8)

for some ¢ > 0 and for all § > 0.

Return to the general case. The proof of Theorem 1 (given later in Section 4) uses essentially
the following proposition which is itself of considerable interest and is an "integral” variant of the
frequency theorem for periodic systems [14, 15].

Theorem 2. Let equation (1.1) be stabilizable (in the sense mentioned above) and G be the form

(1.8). The following conditions are equivalent:
(i) There exists a real n x n matriz H = H* such that for any z(-) € W {(0,T) — "], u(’) €
L, [(0,T) — B™). satisfying (1.1) on 0 < t < T, the inequality

T
/g[t,z(t),u(t)] dt < z(T)"Hz(t) — =(0)" Hz(0) (2.14)
0

holds.
(ii) For any z(-) € W [(0,T) — "), u(:) € L2((0,T) = C™], ¢ € T, lol = 1 satisfying (1.1)
and z(T) = pz(0) the tnequalsty

T

/g}[!,z(t),u(t)] dt <0 (2.15)

o]
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holds.

Any of these conditions being satisfied, there exist a real nxn matriz H = H°, a real n xm matriz-
function h(t) unth entries from L2(0,T) and a bounded linear operator x = x* : L {[0,T) — B™} —
Ly {[0,T] — F™} such that for any functions z(-), u(-) satisfying (1.1) on (0, T), the identity

T T
/g[t,z(t), u(t)) dt = z(T)" H=z(T) - z(0)" Hz(0) - / |ku — h*z(0)}? dt (2.16)
) °

holds.

Remark. The theorem remains valid if the stabilizability condition of equation (1.1) is replaced by the
following less strong (but less effective) condition: the pair {A(-),5(-)} is exponentially stabilizable as t — oo
and for any a € F:™ the functional

#lz().u()) = [ lez(0).(0)de

is bounded from below on the set of processes z(-) € W5 {(0,00) — B"}, u(-) € L; {(0,00) — E™} satisfying
(1.1) and z(0) = a.

3. Proof of Theorem 2
Obviously, (i)=(ii). (Indeed (2.14) for real z(-), u(-) implies (2.14) for complex z(-), u(-); if z(T) =
0z(0), |o] = 1, then (2.14) implies (2.15).) Thus it is necessary to prove that (i) and (2.16) follow
from (ii).

Let (ii) hold. Apply Theorem 2 of [4]. For this let

U=L{[0,T}=»C"}={u(-)}, X=C", % = W, {[0,T] = "} = {y()}

be the spaces of controls, states and outputs [4]. Define linear bounded operators

A:X—=Z bU—=X C:X-V, D:U-7T,
assuming that for zo € Z, u(-) € UJ the relations

Yo =Axg+5u(-)€x, z(~)=ézo+bu(~)€1" (3.1)
are equivalent to

dz(t)/dt = A(t)z(t) + b(t)u(t) (0 <t < T), z(0) = zo, =(T) = yo. (3.2)

4

Define the Hermitian form F(zg, u(-)] on i x J by

T

Flzo.u()) = - /s;[t,z(t),u(z)] dt, (3.3)

]

where ¢ i1s a form (1.3) and z(t) is defined by (3.2). Now let us show that the conditions of Theorem
2 of [4] are satisfied As noted in {4, p. 70], l,-controllability of the pair (A,8) follows from its
exponential stabilizability. The pair (A, 5) is exponentially stabilizable according to the assumption
made at the end of Section 1. Indeed, the first of the equations (3.2) is asymptotically stable for
u(t) = ¢y (t) z(t), ci(t + T) = ¢;(t) as t — +oo. Therefore, all [A;(K,)| < 1, where K, is the
operator defined by dz(t)/dt = [A(t) + b(t)e,(t) ]z(t), 2(0) = zo, z(T) = Kizo. The feedback
u(t) = c¢,(t)"z(t) defines a bounded operator C; : 7. — W, u(-) = Cizo and from (3.1) we have
K, = A+ bC. Thus, the pair (1@, 5) is exponentially stabilizable and therefore {;-controllable.
Similarly, existence of the feedback u(t) = ca(t)'z(t), ca(t + T) = ca(t) such that the equation
dz(t)/dt = [A(t) + b(t)ca(t)"]z is asymptotically stable as t — —co means that a bounded operator
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C:'z . ¥ — 1 exists such that the spectrum of the operator (matrix) K, = A +i>é; lies strictly outside
the unit circle. According to the remark to Theorem 2 of [4] the condition b) of this theorem is
satisfied. The last condition also follows from the assumption made in the remark just mentioned.
Condition a) of Theorem 2 of (4]

Flzo,u(-)] >0 (Yzo,u(-),0:lel = 1,020 = Az + bu("))

also holds since it coincides with (ii). According to this theorem, there exist such bounded linear
operators H = H* : 2 — %, h* . X — 1, x: U — U that the identity (1.11) from {4] holds 1.

F(zo.u(")) + (/izo + Eu()). H (Azo + im(~)) ~zo'Hzg
= |xu(’) = A°zol*  (Vzo € X,Vu(-) € V).

Obviously, A* = h*(t) is an m x n matrix with entries from L3(0,T). By (3.1)-(3.3) the identity
(3.4) coincides with (2.16).

The inequality (2.14) follows from (2.16). ‘Let us show that H = H", h, « are real. According
to Remark 2 to Theorem 1 in [4], the operators H, h, « in that theorem are real in the case of real
Hilbert spaces ¥, . From the proof of Theorem 2 of [4] it follows that in this case the operators
H = H*", R, « in this theorem are also real. Thus (i1)=>(2.16), (i) ®

(3.4)

4. Proof of Theorem 1

Consider the Hilbert space W = Wy} {(0,00) — P:"} x L {(0, 0c0) — ™} of processes w = [z(:), u()]
and the affine manifold M(zo) C W of processes satisfying (1.1} and z(0) = zqo. Clearly m(o) is a
linear space. Let §(¢, z, u) be a form of the type (1.3) (or its Hermitian extension if z, u are complex
vectors).

Lemma 1. Let (A(-), b(-)) be a T-periodic ezponentially stabilizable pair as t — co (there exists
a feedback u(t) = c,(t)"z(t), c1(t + T) = c1(t), such that the equation dz/dt = [A(t) + b(t)cy(t)°] s
asymptotically stable as t — 00). The following conditions are equivalent:

(A) ¢ = /Q[t,z(t),u(t)]dt >0 _for all [z(-), u(-)] € M(0).
)

T
(B) &r = /g[t.i(z),ﬁ(t)] dt >0
0

for all

#(-) e W {[0.T) =T}, a() € L {[0,.T) ~ <"}, e €C, Jel =1
satisfying the equation
dz/dt = A(t)z + b(t)a, (T) = e%(0). (4.1)

Proof. A similar statement with strong inequalities is contained in [14]. By [14], the following

conditions (A, ) and (B, ) are equivalent:

(Ay) 36 >0 & 26 (=)l + llu(-)If?) for all [z(), u(")} € M(0).

(By) 36 >0 &r > §(IIZ()IF + [1G(-)I1F) for allZ(-), 4(-), e lel = 1satisfying(4.1).
Here || - || and || - ||z are L3(0, 00)- and Ly(0, T)-norms.

Let {A) hold. Then obviously (A.) is satisfied for ¢, = G +e(lz)? +|u|?), € > 0. Therefore, (By)
also holds: 36 = 6(¢) > 0, &z +e (IIZ(MIF + 1ECIIF) 2 & (IECOIF + IGC)iIF) > 0 for all £(), 4(), @
denoted. Since ¢ > 0 is an arbitrary number (B) holds. Thus, (A) implies (B). Similarly, (B} implies
(A} ®

1 Notice that in formula (1.11) of {4] there is a misprint: in the right part instead of |xo(u — ho*z)]* must stand
|xou — ho°z|?. (Indeed, according to the proof on p. 74 of [4] the right part in (1.11) of [4] is the Limit of the right
part of (3.5)in {4].i. ¢. of {x4u ~ hs*zl? as 6§ =8, —0.)
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Lemma 2. Let (A(-), b(-)) be a T-periodic exponentially stabilizable pair, p € C be fized, o] = 1,
and let &7 > 0 for all 3(-), u(-) satisfying the equations (4.1). Then G(t,0,4) > 0 for alit €
[0.T), &6 € L™ In particular, both (A) and (B) imply ¢(t,0,u) > 0.

Proof. Suppose the contrary: there exist up € C™ and A C [0, T) of measure §; = mesA > 0
such that ual(t)up < ~99 < O fort € A. For arbitrary §, 8§ > 6 > O define a subset A; of
A, mesA; = 8. Let X(t,s) be the evolution matrix of the equation dz/dt = A(t)z and X(T,0)
be its monodromy matrix. Without loss of generality assume that all 1%;[X (T, 0)]] < 1; otherwise
a substitution u = u; + ¢;(t)"z can be made. Then for any u(-) € L, {[0,T) — C™} the boundary
problem dz/dt = A(t)Z + b(t)a, #(T) = pZ(0) is solvable and has a solution of the form Z(t) =
f: Q(t, s)i(s) ds, where |Q(2,s)| < const. Take ii(t) = uq for ¢ € Ay, u(t) =0fort € [0,T)\ As.
Then |£(2)] < Cymes Ay = C6,

T

/i(t)'G(t)z':(t)dt = 0(6%), _ (4.2)
0

T

/5(:)'9(0&(:)4: = /i(t)'g(t)ﬁ(t)dt = 0(8%). (4.3)
0 o

On the other side,

T
/ (1)  T(t)a(t) dt = [ ugT(t)up dt < —o6. (4.4)
0

e
From (4.2)-(4.4) we have &1 < 0 for small §. Thus we obtained the contradiction Tit)>0 =

Lemma 3. Suppose that the pair (A(-), b(-)) is stabilizable (this assumption was made at the
end of section 1). Then there ezist to > 0 and a function u on [0, to) such that fo‘" inl?dt > 0 for a
solution of (1.1) with z(0) = 0 and for an output (1.4). . -

Proof. If d(t) = 0 (i. e: d(t) = 0 almost everywhere), then do(t) Z 0 and the statement is
obvious. Let d(t) # 0. Suppose the contrary: for all u(-) almost everywhere

n(t) = d(2) ] X(2, 3)b(s)u(s) ds + do(t)u(t) = 0.

Here X(t,s) is an evolution matrix of equation dz/dt = A(t)z. Then for any z(0) = a # 0
the output 5(t) does not depend on u(-). Putting u(t) = ¢;(t)°z(t) (j = 1, 2) we obtain n(t) =
d(t)"X,(t)a = d(t)*X3(t)a, where X;(t) = X;(t,0) and X;(t,s) is the evolution matrix of the
equation dz/dt = (A+bc;)z. Here a is an arbitrary vector, therefore O(t) = d(t)° X, (t) = d(t)* Xa(t)
almost everywhere. Moreover |d(t)] # O for t € E, mesE # 0. There exists a to, dy = d(to) # 0.
Then ©(to + kT) = di X\(to + kT) = d} X1 (to) - X,(T)* and O(to + £T) = d}X1(to) - Xo(T)*. By
supposition all |\;[X,(T))| < 1 and all |A;[X(T)]] > 1. Thus simultaneously |8(ty + £T)| — 0 and
[©(to + £T)| — +00 as k — co. The contradiction proves the lemma &

Lemma 4. Let W, = {w} be a real linear space and let S, & be quadratic functionals on Wy and
G(wp) > O for some wo € W,. Then

sup  §(w) = inf sup[J(w) + r&(w)] (4.5)
wit(w)>0 720 w, .

(here we assume that inf (1) = +oo if ¥(7T) = 00).

The proof is given in [16] (it is only necessary to change 3 to (-3)) ®
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Let us prove the necessity of (ii) in Theorem 1. Let M(a,vo) be the set of process
[z(-), u(-)] € M(a) such that

®(w) = /G(t,z(t),u(l))d( +9 > 0.
)

By the property of exponential stabilizability of the pair (A(:),4(:)) the set M(a) is not en
any a € ™. Hence there exist 7o = 7vo(a) > 0 such that M(a, 7o) is not empty and &(wq)
some wo € M(a,v0). Suppose (ii) does not hold. It is sufficient to show that

sup |inlf* = +oo.
M(a.v0)

Indeed, this contradicts the definition (1.5) of absolute stability. (Indeed, (4.6) implies (1.
v = 0 + €0, €0 > 0, and from (1.5) we have ||5]|? < C[¥o + €0 + |2(0){?] instead of (4.7).)

For w € M(a) we have Aw = w — wo € M(0). Clearly, F(w) = |In]|* and B(w) may be cor
as quadratic functionals of Aw = w — wp on the linear space Wy = M(0) = {Aw}. By Lemr
have

sup  J(w)= inf sup [F(w)+ TS (w)].
w€M(a,70) 720w eM(a)

Remind that the right part is equal to +oo if sup[...] = +oo for all + > 0.
Obviously, supa,)[§(w) + T&(w)] = +oo if

$(w1) + 76(w,) > 0 for some w, € M(0).

(It suffices to put w = wg + (w;, { — +00.) By Lemma 1, (ii) is equivalent to conditi
B(w) + €§(w) < 0 for some € > 0 and for all w = [z(-), u(-)] € M(0). According to the assur
(11) does not hold. Therefore, (A’) is also not satisfied, i. e. for any € > 0 there exists w, ¢
such that B(w,) + ¢3(w,) > 0. We have obtained (4.9) for any 7 = ¢~! > 0. Let us shc
(4.9) holds also for 1 = 0. Let z(-), u(-) be the process on 0 < t < t; defined by Lemma
u(t) = ¢, (t)"z(t) for t > to. Then wy = [z(-), u(-)] € M(0) and [|n|P = F(w,) > 0. Thus,
satisfied for all 7 > 0. Hence, (4.7) holds @

Let us prove the equivalence of (i) and (ii) in Theorem 1.
(i)=>(ii): By Theorem 2 of {14] (viz., by equivalence of the conditions (C) and (G) of this th
it follows that fulfilment of conditions (2.9) and (2.7) (with fixed § > 0) implies that

T T
&= [l-Gattzae2 6o [(12r +uP)at
° )
for some 8o > 0 and for all {z(-), u(-), o] mentioned in (ii). Therefore,

T T
&, = -/(g +s|r]|2)dt+6/(|z:|2+ ul?)dt > 0.
0 0

Here § > 0 is an arbitrarily small number. Hence $¢ > 0 for all [z(-), u(-), ], (ii) holds.

(i1)=>(i): Let (ii) hold. By Lemma 2, T(t) + edo(t)*do(t) < 0. Therefore ¢4(¢,0,u) = u°T
—6luj? for § > 0, where G; is the form from (2.2). By Theorem 2 of [14] (vis., by the equivak
(C) and (G)) it follows that the system (2.1) is completely unstable and nonoscillatory. (W
to substitute in {14] ¢ by (~¢5).) Thus, (i) holds ®
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Let us prove the sufficiency of (ii). Let (ii) of Theorem 1 hold. By Theorem 2 there exists a
matrix H = H* such that (2.14) holds for G, = G + ¢|n|*: ‘

T
/(g + elnf?) dt < =(T)" Hz(T) - =(0)° Hz(0). (4.10)

0

Let z(-), u(-) be an arbitrary solution of (1.1), (1.2). Since A, b and the coefficients of ¢ are T-
periodic we have from (4.10)

£T
/(g +¢|n)®) dt < z(kT)* Hz(kT) — z(0)* Hz(0) (4.11)
1]
for any integer k. Let us show that # < 0. Substituting zM (), uM () from the definition of minimal
stability in (4.11) and using (1.2), we obtain
—vM(a) < M (EMT)y HzM(k}T) - o’ Ha.

If kM — oo, then |z”(ij)| — 0 and therefore a*Ha < v™(a). Here a is an arbitrary vector.
Substituting a by ra, we obtain

a*Ha< v~ 24M(ra), a"Hag ir;t;r'z-y”(ra) <o
T2

Thus, H < 0. For any solution z(-), u(-) of (1.1), (1.2) from (4.11) we have

E,T kT
e [inPats [ +elnl®)de < (0 H2(0).
o 4]

Here k; — +oo. Hence ||n|| < 0o, (1.5) holds, and the system (1.1), (1.2) is absolutely stable with
respect to the output n @
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Book reviews

JOHN B. CONwWAY: A Course in Functional Analysis (Graduate Texts in Mathematics:
Vol. 96). Second Edition. XVI + 399 pp., 1 fig. Berlin - Heidelberg - New York: Springer-
Verlag 1990.

Functional analysis has developed to a vast field of mathematics such that connections
between its different parts are rather loose now. (One should think perhaps of locally con-
vex spaces, partially ordered vector spaces, operators in Hilbert spaces, or C*- and W™*-
algebras.) Therefore it strongly depends on the author, where and how emphasis is shifted
concerning the selection of topics for a book about functional analysis.

The approach of John Conway in his book meets completely the taste and the point of
view of the reviewer: The basic methods of functional analysis as well as operators in
Hilbert space are treated extensively.

The book begins with Hilbert spaces and operators in it in the first two chapters. The
following four chapters represent the fundamental techniques and notations of functional
analysis with increasing abstraction (closed graph theorem, Hahn-Banach theorem, weak
topologies, dual space etc.). The author gives many applications and cross connections to
other fields of analysis, contained in star-marked sections. Such topics are €.g. the Banach
limit, Runge’s theorem, and extension of positiv linear forms as applications of the Hahn-
Banach theorem, and the Stone-Woeierstrafl theorem as application of the Krein-Milman

theorem.



