A Note on Benford's Law for Second Order Linear Recurrences with Perodical Coefficients

P. **SCHATTE** and K. **NAGASAKA**

The solutions of second order linear recurrences with periodical coefficients are shown to obey Benford's law.

Key words: Benford's law, linear recurrences, uniform distribution of se*q ^u ences*

AMS subject classification 11K06

1. Let (u_n) be a sequence of real numbers which satisfy a *second order linear recurrence*

$$
u_{n+2} = a_{n+2} u_{n+1} + b_{n+2} u_n, n \ge 0,
$$
 (1)

1
 u *u i* **o** *b s c <i>cond* **order** linear recurrences with periodical coefficients:
 u n b *u**n n* *****i s e <i>quences*
 u *p u**n b* **a** *sequence* of real numbers which where subject classification: 11 K 06

(u_n) be a sequence of real numbers which satisfy a second order li-

ecurrence
 $u_{n+2} = a_{n+2} u_{n+1} + b_{n+2} u_n$, $n \ge 0$, (1)

(a_n) and (b_n) are given real sequences with a common *pe i.e.*, $a_{n+r} = a_n$ and $b_{n+r} = b_n$.

Linear recurrences of such type arise,e.g.,in the theory of continued $fractions.$ If ω is a quadratic irrational, then the numerators and the denominators of the n-th convergent p_n/q_n of the continued fraction of ω fulfil the relation (1) with $b_n = 1$ and a periodic positive integer sequence (a_n) $(cf.,e.g., [4:Satz 1/p.5 and Satz 28 /p.52]).$ Linear recurrences with periodical coefficients are also treated in [lip.148-ISO]. i.e., $a_{n+r} = a_n$ and $b_{n+r} = b_n$.

Linear recurrences of such type arise, e.g., in the the

fractions. If ω is a quadratic irrational, then the numerate

minators of the n-th convergent p_n/q_n of the contine

fulfil the

The sequence *(u ⁿ)* is said to obey *Benford's law i* f

 N^{-1} **#** $\{n: 1 \le n \le N, 1 \le \text{mantissa of } u \le x \} \rightarrow \lg x \quad (N \rightarrow \infty)$

for $1 \le x \le 10$. Here $\lg x = \log_{10} x$ and $\#A$ is the number of the elements of A.

 N^{-1} **a**{ $n : 1 \le n \le N$, u_n has leading digit k } \rightarrow $lg(k + 1) - lg k$,

for *k* = 1,...,9 (cf.,e.g.,191 for a survey on Benford's law).The sequence *(un)* obeys Benford's law if and only if the sequence $(|g|u_n|)$ is uniformly distributed mod 1, put $\lg 0 = 1$ in this connection. For the uniform distribution mod I of sequences cf.,e.g.,[6].

In case of $r = 1$, i.e., $a_n = a$ and $b_n = b$, the solutions (u_n) of (1) obey Benford's law under weak suppositions.This case was extensively treated in the literature (cf.,e.g.,[31 for a survey and [81).ln the following we shall show that the solutions (u_n) of (1) obey Benford's law also in the case $r > 1$ by reducing this case to that of $r = 1$ As a corollary we obtain

 $17*$

that the numerators (p_n) and the denominators (q_n) of the *n*-th convergent p_n/q_n of the continued fraction of a quadratic irrational ω obey Benford's law. Previous proofs of this fact can be found in [2], where a result from [5] is applied and in [l0].Our result generalizes this assertion on continued fractions. the continued fraction of a quadratic irrational ω of
the continued fraction of a quadratic irrational ω of
Previous proofs of this fact can be found in [2], where
is applied, and in [10]. Our result generalizes thi

2. We put $z_{n,i}$ = $u_{n r + i}$ for 0 s *i* s r-1.Furthermore we introduce the shift operator S and write $z_{n+1,i} = Sz_{n,i}$. Then the linear recurrence (1) is equivalent to the system

that the numerators
$$
(p_n)
$$
 and the denominators (q_n) of the *n*-th convergent p_n/q_n of the continued fraction of a quadratic irrational ω obey
Benford's law. Previous proofs of this fact can be found in [2], where a
result from [5] is applied, and in [10]. Our result generalizes this assertion
on continued fractions.
2. We put $z_{n,i} = u_{nr+i}$ for $0 \le i \le r-1$. Furthermore we introduce the shift
operator S and write $z_{n+1,i} = Sz_{n,i}$. Then the linear recurrence (1) is equi-
valent to the system
 $c_1z_{n,0} + a_2z_{n,1} - z_{n,2}$
 $c_2z_{n,0} + b_3z_{n,1} + a_3z_{n,2} - z_{n,3}$
 $c_1z_{n,0} + b_3z_{n,1} + a_3z_{n,2} - z_{n,3}$
 \vdots
 $c_{r-2}z_{n,0} - z_{n,1}$
 \vdots
 $c_{r-1}z_{n,0}$
 $c_{r-2}z_{n,0} - Sz_{n,1}$
 \vdots
 $c_rz_{n,0} - Sz_{n,1}$
 \vdots
 $c_rz_{n,0} - Sz_{n,1}$
 \vdots
 \vdots
 $c_rz_{n,0} - Sz_{n,1}$
 \vdots
 \vdots

where $c_1 = b_2, c_2 = ... = c_{r-2} = 0, c_{r-1} = -S, c_r = a_1 S$. Now we multiply the r-th equation in this system by the signed minor of the element c_r of the matrix of coefficients of this system.After summing up all the arising equations we arrive at

^b2 a2 -1 b_3 a_3 -1 e^{2n} , 0
 e^{-2n}
 e^{-2n}
 e^{-2n}
 e^{-2n}
 h_3
 a_3
 b_{r-1}
 b_{r-2}
 b_{r-3}
 s
 s
 s
 s $z_{n,0} = 0$. $a_3 -1$ 0
 *b*_{r-1} a_{r-1} -1
 *b*_{r-1} a_{r-1} $c_1 = b_2, c_2 = ... = c_{r-2}$
 n in this system by

coefficients of this

re arrive at
 b_2 a_2 -1
 b_3 a_3 -1

0
 b_{r-1} a_{r-1} -1

-S
 b_r a_r
 b_r
 a_r
 b_1 $c_1 = b_2, c_2 = ... = c_{r-2}$

on in this system by

coefficients of this

we arrive at
 b_2 a_2 -1
 b_3 a_3 -1

0
 b_{r-1} a_{r-1} -1
 $- S$
 b_r a_r
 $a_1 S$ -S
 b_1

anding the determina

$$
z_{n+2,0} = D_r \dot{z}_{n+1,0} + E_r z_{n,0} \tag{3}
$$

where

By expanding the determinant with respect to powers of S we obtain finally
\n
$$
z_{n+2,0} = D_r \dot{z}_{n+1,0} + E_r \dot{z}_{n,0}.
$$
\n(3)
\nwhere
\n
$$
E_r = (-1)^{r-1} b_1 \cdots b_r \text{ and } D_r = a_1 A_r + b_1 A_{r-1} + B_r.
$$
\nwith

with

$$
\begin{vmatrix} a_1S - S & b_1 \\ a_1S - S & b_1 \end{vmatrix}
$$

anding the determinant with respect to powers of S we obtain finally

$$
z_{n+2,0} = D_r z_{n+1,0} + E_r z_{n,0}.
$$

(3)

$$
E_r = (-1)^{r-1} b_1 \cdots b_r \text{ and } D_r = a_1 A_r + b_1 A_{r-1} + B_r.
$$

$$
\begin{vmatrix} a_2 & -1 \\ b_3 & a_3 - 1 \\ \vdots & \vdots & \vdots \\ b_{r-1} & a_{r-1} - 1 \\ b_r & a_r \end{vmatrix}, \qquad B_r = \begin{vmatrix} b_2 & 0 & & 0 \\ b_3 & a_3 & -1 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ b_{r-1} & a_{r-1} - 1 \\ 0 & b_r & a_r \end{vmatrix}.
$$

(4)

The determinants *Ar* and *Br* are so-called *continuants* (cf.[7 *:p.8]),If* we multiply the equations of (2) with the signed minors of the i-th column of the matrix of coefficients of (2) and after that sum up,then we obtain

$$
z_{n+2,i} = D_r z_{n+1,i} + E_r z_{n,i}
$$
 (5)

for $0 \le i \le r-1$ in generalization of (3).

3. Now we are in a position to formulate our main result.

Theorem 1: Let λ_i , λ_j be real roots of the common characteristic equation

$$
\lambda^2 = D_r \lambda + E_r \tag{6}
$$

For $0 \le i \le r - 1$ in generalization of (3).

3. Now we are in a position to formulate our main result.

Theorem 1: Let λ_1, λ_2 be real roots of the common characteristic equation
 $\lambda^2 = D_r \lambda + E_r$ (6)

of the linear recu u_n ^{$*$} 0 for $n \ge n_0$, then the sequence (u_n) obeys Benford's law.

Proof: Since the sequences $(z_{n,i})$ fulfil (5), they all obey Benford's law as well-known (cf.,e.g.,[3]).But then the sequence (u_n) obeys Benford's

law, likewise **i**
 Remarks: 1.If we set $A_0 = 0, A_1 = 1, B_0 = 1, B_1 = 0$, then we get from (4)
 $A_i = a_i A_{i-1} + b_i A_{i-2}$, $B_i = a_i B_{i-1} + b_i B_{i-2}$ (7) law, likewise **I** *sume* $|\lambda_1| \ge |\lambda_2|$. If $|g|$
 nce (u_n) *obeys Benforc*
 $z_{n,i}$ \rangle fulfil (5), they al
 t then the sequence (
 $\frac{1}{2} = 1, B_0 = 1, B_1 = 0,$ then
 $a_i B_{i-1} + b_i B_{i-2}$
 $B_i \ge 1, D_i \ge 3$ if a_i, b_j are

expression fo

Remarks: 1. If we set
$$
A_0 = 0
$$
, $A_1 = 1$, $B_0 = 1$, $B_1 = 0$, then we get from (4)

$$
A_{i} = a_{i}A_{i-1} + b_{i}A_{i-2} , B_{i} = a_{i}B_{i-1} + b_{i}B_{i-2}
$$
 (7)

for *i* \ge 2. Thus we find that $A_j, B_j \ge 1, D_j \ge 3$ if a_j, b_j are positive integers. **2.In order to derive yet another expression for** D **, we rewrite (7) in the form**

Remarks: 1. If we set
$$
A_0 = 0, A_i = a_i A_{i-1} + b_i A_{i-2}
$$
, $B_i = i \geq 2$. Thus we find that A_i , i order to derive yet another $\left(\begin{array}{cc} A_i & A_{i-1} \\ B_j & B_{i-1} \end{array}\right) = \left(\begin{array}{cc} A_{i-1} & A_{i-2} \\ B_{i-1} & B_{i-2} \end{array}\right) \left(\begin{array}{cc} a_i & 1 \\ b_i & 0 \end{array}\right)$ [7:p.13]). Then we obtain $D_r = \text{trace}\left(\begin{array}{cc} a_1 & 1 \\ b_1 & 0 \end{array}\right) \left(\begin{array}{cc} A_r & A_{r-1} \\ B_r & B_{r-1} \end{array}\right) = [2 : \text{Equality } (2 : 7)]). 3. The p.$

(cf.[7 p.13]).Then we obtain

$$
A_{i} = a_{i}A_{i-1} + b_{i}A_{i-2} , B_{i} = a_{i}B_{i-1} + b_{i}B_{i-2}
$$

\n $i \ge 2$. Thus we find that $A_{i}, B_{i} \ge 1, D_{i} \ge 3$ if
\ni order to derive yet another expression for \underline{L}
\n
$$
\begin{pmatrix} A_{i} & A_{i-1} \\ B_{i} & B_{i-1} \end{pmatrix} = \begin{pmatrix} A_{i-1} & A_{i-2} \\ B_{i-1} & B_{i-2} \end{pmatrix} \begin{pmatrix} a_{i} & 1 \\ b_{i} & 0 \end{pmatrix}
$$

\n[7:p.13]). Then we obtain
\n
$$
D_{r} = \text{trace} \begin{pmatrix} a_{1} & 1 \\ b_{1} & 0 \end{pmatrix} \begin{pmatrix} A_{r} & A_{r-1} \\ B_{r} & B_{r-1} \end{pmatrix} = \text{trace} \prod_{i=1}^{r} \begin{pmatrix} a_{i} & 1 \\ b_{i} & 0 \end{pmatrix}
$$

\n[2:Equality (2.7)]. Since $\underline{L} = 0$. In this case $D_{r} = 0$ must be

(cf.[2 :Equality (2 .7)]). **3.**The proof of Theorem 1 works also if some \bm{b}_i = 0 $D_r = \text{trace} \left(\frac{a_1}{b_1} 1 \right) \left(\frac{A_r}{B_r} \frac{A_{r-1}}{B_{r-1}} \right) = \text{trace} \prod_{i=1}^r \left(\frac{a_i}{b_i} 1 \right)$

(cf.[2 : Equality (2 .7)]). **3.** The proof of Theorem 1 works also if some $b_l = 0$

and therefore $E_r = 0$. In this case $D_r \neq$ and therefore $E_r = 0$ in this case $D_r = 0$ must hold since otherwise $u_n = 0$ for $n \ge 2r$. 4.The line of reasoning can easily be generalized to linear re**currences of higher order.**

4. From the main result we conclude the following

Corollary : Let p_n / q_n be the n-th convergent of the continued fraction of a quadratic irrational ω . Then the sequences (p_n) and (q_n) obey Ben*ford's law.*

Proof: The sequences (p_n) and (q_n) satisfy recurrences of type (1) with *b*_{*n*} = 1 and positive integers *a*_n. The case *r* = 1 being treated in [3: Theorem 3.1] we can restrict to that of $r > 1$. But then $D_r \geq 3$ according to Remark 1. Therefore the roots

$$
\lambda_1 = \left(D_r + \sqrt{D_r^2 - 4(-1)^r}\right) \Big| 2 \quad , \quad \lambda_2 = \left(D_r - \sqrt{D_r - 4(-1)^r}\right) \Big| 2
$$

of (6) are real and irrational. If $\lambda_1 = 10^{P/q}$ with integers p and q, then λ_1^q $= 10^p$ must be an integer which is an obvious contradiction, apply the binomial theorem

5. Finally we shortly treat the case of complex conjugate roots of (6), i.e., $D_r^2 - 4E_r \le 0$. Let $\beta = \sqrt{E_r}$, cos $2\pi\gamma = D_r/2\beta$.

Theorem $2: If 1, lg \beta, and \gamma are linearly independent over the rationals$ and $u_n \neq 0$ for $n \geq n_0$, then the sequence (u_n) obeys Benford's law.

Proof: Apply Corollary 2 in [8] or Theorem 2.1 in [3]

REFERENCES

- [1] Berg, L.: Lineare Gleichungssysteme mit Bandstruktur. Berlin: Dt. Verlag Wiss. 1986.
- [2] Jager, H., and P.Liardet: Distributions arithmetiques des denominators de convergents de fractions continues.Indag.Math. 91 (1988), 181-197.
- [3] Kanemitsu,S.,Nagasaka,K.,Rauzy,G.,and J.-S.Shiue: On Benford's law: The first digit problem. Lect. Notes Math. 1299 (1988), 158-169.
- [4] Khintchine, A.: Kettenbrüche.Leipzig: B.G.Teubner Verlagsges. 1956.
- [5] Kiss, P.: On second order recurrences and continued fractions. Bull. Malaysian Math Soc.(2) 5 (1982), 33-41.
- [6] Kuipers, L., and H. Niederreiter: Uniform distribution of sequences. New York: J. Wiley & Sons 1974.
- [7] Perron, O.: Die Lehre von den Kettenbrüchen, Bd. I. Stuttgart: B. G. Teubner Verlagsges. 1954.
- [8] Schatte, P.: On the uniform distribution of certain sequences and Benford's law. Math. Nachr. 136 (1988). 271-273.
- [9] Schatte, P.: On mantissa distributions in computing and Benford's law. J.Inf.Process.Cybern. EIK 24 (1988), 443-455.
- [10] Schatte, P.: On Benford's law for continued fractions. Math. Nachr. 148 (1990) $($ to appear $).$

Received 21.06.1989

Author's address:

Doz.Dr.Peter Schatte Sektion Mathematik der Bergakademie Freiberg Bernhard-von-Cotta-Str. 2 $D(Ost) - 9200$ Freiberg

Dr. Kenji Nagasaka The University of the Air $2-11$, Wakaba Chiba City 260 Japan