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Existence and Approximation Results to the Cauchy Problem
for a Class of Differential-Algebraic Equations

K. R. SCHNEIDER

For a class of differential - algebraic equations arising for example in modelling electrical
circuits conditions are derived which ensure the existence of a unique solution of the
Cauchy problem on any finite interval and its computation by means of a wave -form re-
laxation algorithm in case of a large system. The solution concept is understood in the
sense of Carathéodory.

Key words: differential-algebraic equations, Carathe odory solution, wave - form relaxation
AMS subject classification: 34 A34, S58F 99, 6SL 0S

1. Introduction

This paper is concerned with the initial value problem for differential - algebraic systems
of the form

gx . (.\'zﬂt)z=6(xzﬂt) x(tg) =xq, t €J:=[to 1o +T] (1.1)

dt rerder ) *Crde ) ° o or’o !
where x is an n-vector, z is an m-vector, and T is a given positive number. We are in-
terested in conditions guaranteeing the existence of a unique solution (®,Z) of (1.1) and in
iterative procedures approaching (%,Z) in case n +m to be large. The problem formulated
above arises for example in modelling non-linear electrical networks (6). By using Kirch-
hoff’s laws, the underlying constitutive relations (voltage -current relations) and the cor-
responding dynamic equations we arrive at a system of the kind

H(dy/dt,y,t) =0, (1.2)
where the vector y of network variables consists of two components x and z and the deri-
vative of z does not occur in (1.2). Thus, without loss of generality we may represent the
system (1.2) in the form (1.1).

By applying traditional integration procedures to solve the initial value problem (1.1)
the computing time growths rapidly when n + m becomes large. From this reason, new me-
thods for numerical treatment of such problems has been developed basing on the decom-
position either of the corresponding large system of linear equations in the process of
discretization or of the corresponding differential-algebraic system (1.1) itself. In the
latter case this method is called wave - form relaxation method [1,3-5]. For a broad class
of wave - form relaxation methods the canonical iteration scheme reads

dx¥dt = F(xk xk 1,251 dxXYde, t)

2k = G(xk xk 2 2k dx ¥ Yde,t)

The convergence of this scheme in some Banach space was proved in [3] under a cru-
cial assumption whese verification is not obvious. In this paper we derive an explicite con-
dition on the Lipschitz constants of F and Gwhich implies the convergence of (1.3). At the

same time we give a new short proof of the convergence of (1.3) and introduce a solution
concept, the so-called Carathéodory solution which is more appropriate for applications.

xX(t,) = xqo, t € J. (1.3)
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2. Notation and definitions

Let || be the Euclidean norm, LP(J,R¥) the space of functions z: J — R¥ such that | z|*
is integrable in the sense of Lebesgue, and L™(J,R¥)the set of functions z:J = RX the
essential supremum (esssup) of which is bounded. Further, let C(J,R¥)be the space of
continuous functions z: J— R¥, AC(J,R¥) the set of all functions z ¢ C(J,R*) which are

absolutely continuous

Definition 2.1: Let D be a set in RX. A function f: D xJ — R! is said to satisfy the

Caratheodory condition if
(i) fis defined for all x € D and for almost all (f.a.a.) t € J,
(ii) fis continuous in x f.a.a. t ¢ J and (Lebesgue) measurable in t for all x € D.

Definition 2.2: The couple (%, Z) is said to be a solution of (1.1) in the sense of Cara-
théodory { Ca-solution) if
() (£,2) e AC(J,R") x L'(J,R™),
(i) (%, 2) satisfies (1.1) f.a.a. t e J,
(iii) ®(ty) = x4.
To make our representation self -consistent we include some results on explicite or-
dinary differential equations.

3. Global results for the Cauchy problem of ordinary differential equations

Consider the system of ordinary differential equations
dx/dt = f(x,t) (3.1)
under the following hypotheses:

(3.1); The function f: R® x J - R satisfies the Caratheodory condition.
(3.1);; There are a constant c and a function m e L'(J,R*) such that

if(x,t)) s m(t)+clx| forall x ¢ R"andf.a.a. telJ.

The hypotheses (3.1); and (3.2);; imply the following important property for the Ne-
myzki operator F defined by (Fx)(t) = f(x(¢),t).

Lemma 3.1(2]: Assume f satisfies the hypotheses (3.1); and (3.2);;. Then F is a conti-
nuous mapping from L'(J,R")into itself.

Further we suppose on f the following hypothesis:
(3.1);;; To any number ¢, 0 < g <1, there is a norm [I- llin C(J,R7)with the properties
(a) C(J,R") equipped with the norm |I- | is a Banach space,
(b) the operator F: C(J,R")—> C(J,R™) defined by

t t
(Fx)(t) = J(Fx)s)ds = [f(x(s),s)ds
fo fo
is strictly contractive with respect to the norm || [l with the contraction constant q.

The hypothesis (3.1);;; can be fulfilled if f satisfies for instance a condition of the type
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[Fxg.t) ~ Fx,t) s wllx, - x,l,t) forall x,,x, e R7and ¢ € J,

where w: R*x J = R* obeys the Caratheodory condition and the inequality

||f,:,m(|x(s)l,s)ds" s qlixll forall x e C(J,R™)and t ¢ J.

In case u{s,t) =s /(t ywhere / ¢ L'(J,R”) we can choose the norm
Ixll = max {exp[—afrl(s)ds:llx(t)l},
teJ o

where « is any positive number satisfying a > 1. Obviously, for x ¢ C(J,R”)we have
-t
I, «Xix(s),s)ds |
o

= "J;:l x(s)i(s)ds " = rtr:ajx {exp[— af‘:)l( s) ds:l }
max {exp[— aﬁll( s) ds:I ﬁ:]( s) exp[aL:l( o) do] expl:- aft:l(o ) do] Ix(s)lds
sfixdl max {exp[— afrll(s)ds] J;:l(s) exp[aﬁ:l(o)do:l ds }

= {Ixli max {exp[—af,;l(s)ds]-é[expl:af,:l(s)ds:l - 1]} < };"X Il

that is, ¢ = 1/« is arbitrary small provided « is sufficiently large.

L;l(s)lx(s)l ds

}

Theorem 3.2: Assume the hypotheses (3.1); - (3.1),;; hold. Then the Cauchy problem
dx/dt = f(x,t), x(ty) = xq. t € J (3.2)

has a unique Ca-solution on J where T is any fixed positive number.

Proof: Let X be the space C(J,R") equipped with the norm ||+ |l. We define the ope-

rator F, by
— t .

(Fox)t)=xo +(Fx)t)=x,+ J;of(x(s),s)ds.
By Lemma 3.1, the hypotheses (3.1); and (3.1);; imply f(x(- ),- ) ¢ L*(J,R") for x € X, thus
we have Fx ¢ AC(J,R") C C(J,R™), that is F, X C X. Using the hypothesis (3.1);;; we have

IR (x,) - B(x,)|| s qlix, - x, 1l forall x;,x,€X,
where g can be assumed to be less than one. By Banach’s fixed point theorem, £, has a

unique fixed point X * in X which is a Ca-solution of (3.2) B

Next we study the case where f depends on some functional parameter z and investi-
gate the dependence of x* on z. The obtained result is used to establish an existence
theorem for the Cauchy problem of some class of implicite differential equations.

Let us consider the initial value problem

dx/dt = fi{x,z(t),t), x(t,) = x5, t€J : (3.3)
assuming the following hypotheses:

(3.3), The function £,;: R” x R™ x J — R" satisfies the Caratheodory condition.

25  Analysis. Bd. 10, Helt 3 (1991)
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(3.3);; There are a constant ¢, > 0 and a function m, ¢ L*(J,R*) such that
If(x,z,¢ )l s m(t)+c,(Ix|+]z]|) forall(x,z) e R” x R™ and f.a.a. t ¢ J.
(3.3);;; The function z belongs to the space L(J,R™).

(3.3),,, There are positive numbers q, and k, where q, can be choosen arbitrarily small
and a norm |- [l in C(J,R"”) with the properties
(a) C(J,R™) equipped with the norm || || is a Banach space,
(b) the operator F,: C(J,R™) x L(J,R™) = L*(J,R") defined by

(R(x,z)(t) = fi(x(t),z(1)¢) (3.4)
. satisfies the relation
A(x,z) - F(x, 20 s q llx -x1l « k,ihz - z1ll (3.5)
for x,X ¢ C(J,R™) and z,z ¢ L*(J,R"), where ||| -1]l is defined by
t
lzilh = |, 12(s)as . (3.6)

In case that f, fulfills the generalized Lipschitz condition
[filxgz0t) = flx,,z,,0)] s X ()x, - x,) +2(t)z, - 2,]

forx,,x, e R% z,,z, e R™, t ¢ R, where X, ¢ L*(J,R*) and %, ¢ L TR*)with ess supx, < k,,
we can choose a norm in C(J,R”) by

Ixl = max {exp[—af,:k,(s)ds:’lx(t)I}. a>l.

Then we have according to (3.6)

lizill = max {exp[-af,:)\,(s) ds] _f,:lz( el dt} .

Thus, (3.5) holds with g, s 1/a and &, s &,.

By Lemma 3.1, the hypotheses (3.3); - (3.3);, imply that f(x,t) = f(x,z(t),t)sa-
tisfies the assumptons (3.1); - (3.1);;;. Thus, to any z € L(J,R™) the Cauchy problem (3.3)
has a unique Ca-solution denoted by x . Concerning the dependence of x_, on z we have
the following result.

Theorem 3.3: Assume the hypotheses (3.3); - (3.3);, are valid. Let x, ,x,, be the
Ca-solutions of (3.3) to z,,z, ¢ L'(J,R™), respectively. Then we have

Xz, - Xz, 0l s }A1-gp 12, - 2l (3.7
where q, can be supposed to be less than one.
Proof: The solutions Xz, and x,, satisfy the integral equation
y(t) = x, *J;tf(y(s),z(s),s)ds,t(.l. (3.8)
]

From (3.8) and (3.4) - (3.6) we get
"'\'zg T Nz, " = ”lFl('\'z,'zx) - Fx(xzz'zz)l " £q I'xz‘ - x22" + Ky I“zl - 22'"‘ (3.9)

Since we may suppose g, <1 we obtain from (3.9) the inequality (3.7) B
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Now we apply this result to prove a global existence theorem for the Cauchy problem
of a class of implicit differential equations

dx/dt = f{x,dx/det), x(1,) = xq. ted. (3.10)

Theorem 3.4: Suppose f, satisfies the hypotheses (3.3);,(3.3);; and (3.3);y - Under the
additional assumption
K, <1 ~ (3.11)

the Cauchy problem (3.10) has a unique Ca-solution where T is any fixed positive number.

Proof: Consider the Cauchy problem (3.3) in case m =n. By Theorem 3.2, to any z €
LY J,R")the problem (3.3) has aunique solution x, on J. We define the operator FN',: 1LY (J,R™)
> [MJ,R") by (Ez)(t) = fi(x(t),2(t).t). By (3.4) - (3.6) we have for z,,2, € LY(J,R7)

WECz) - Bzl s aulixe, - %z, illlzy - 2l € S3-gp iz - 22l

Hence, F, is strictly contractive iff k, +q, < 1. As we can choose g, arbitrarily small, the

validity of (3.11) implies F, to be strictly contractive on L(J,R™). Therefore, F, has a
unique fixed point z * satisfying dx =/dt = f,(x,«(£),z*(t ),t) = z* that means (3.10) has
a unique Ca-solutionon J @

4. Global results for the Cauchy problem to a class of differential - algebraic equations

Next we consider the Cauchy problem
dx/dt = f(x,z{t)¢t)
2(t) = g(x(t),z(e),t)

under the following hypotheses:

(4.1); . The functions f,:R” x R™ x J-> R”, g,: R” x R™ x J—> R™ obey the Carathéodory

condition.
(4.1),, There are a constant &, > 0 and a function i, € LY J, R*) such that

[flx,z,t) + g(x,z,t) s mle)+ Ellxl+1z1) ¥(x,z)e R"xR™ and f.a.a. t e J.

x(ty) = xo. t€d (4.1)

" (4.1),;; The function £, satisfies the hypothesis (3.3);,.

1
(4.1),, The function g, is such that the operator G;: C(J,R7) x LMJ,R™) = L(J,R™) de-
fined by G,(x,z)(¢)=g(x(t) z(t )¢ )fulfills for all elements x,,~, ¢ C(J,R")and
z,,2, € L'(J,R™) the relation

|||G,(.\',.z,) - G‘(xz,zz)ln s gullx, - X2l * kafllzy - 200 (4.2)

Theorem 4.1: Assume the hypotheses (4.1); - (4.1);, hold. If we additionally suppose
k, <1, (4.3)
then the Cauchy problem (4.1) has a unique Ca-solution on J with any T>0.

Proof: By Theorem 3.3, the hypotheses (4.1); - (4.1);;; imply that the differential
equation in (4.1) has to any z ¢ L'(J,R™) a unique Ca -solution x, satisfying x,{ts) = Xo-
We define the operator G, on L'(J.R™) by

(G, 2)(t) = glx,(t)z(e)t) (4.4)

25*
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It is obvious that under our conditions G, maps from L!J.R™) into L*(J,R™).From the
relations (4.4) and (4.2) we get

16,2, - G.zal| s qaixs, = Xzl * Kallizy - 2al] for all 2,2, € LOAR™). (4.5
Taking into account (3.7) we obtain from (4.5)

l1Gi2, - Gozalll s (M592/41- g,y + ko)llz, - 22l
Thus, for sufficientely small g, the condition (4.3) implies that GNl is strictly contractive
on LY(J,R"™)and has a unique fixed point z*. Therefore, the couple {x,=,2*) is a Ca-
solution of (4.1) on J B

In the next step we study the dependence of the solution (%,Z) on some functional
parameter. To this end we consider the problem

dx/dt = F(x,z(t),y(t),t) ’ x(tg) = xg. teJ (4.6)
z(t) = G(x(r),z(¢t), y(t),t)
and assume the following hypotheses:
(4.6), The function y belongs to the space L*(J,RX).
(4.6);; The functions F: R"x R™x R¥xJ — R” and G:R"x R™ x RXx J - R™ satisfy
the Carathéodory condition.
(4.6),;; There are a constant & > 0 and a function m ¢ L}(J,R*) such that
[F(x,z,y,t ) + |G(x,2,y,t) s m(e)+&,(Ixl + izl +1yl)

for all(x,z,y) e R x R™x R"and f.a.a. t ¢ J.

(4.6);, There are positive numbers q;, k;,/; (i =1,2) where g; can be choosen arbitrarily
small and a norm ||- |l in C(J,R™) such that the following conditions are satisfied:
(a) C(J,R") equipped with the norm - |l is a Banach space.
(b) The operator F,: C(J,R™) x L*(J,R™) x L} J,R¥) = L}(J R") defined by

(Rlx,z,y)t) = F(x(e),z(t ), y(t),t) (4.7)
satisfies the relation

&z - Bx 72| s alx -Sl < klliz-Zl 4y -7 4.8
(c) The operator G,: C(J,R?) x L*(J,R™) x L}(J,R¥) - L}(J,R™) defined by

(Gx,z,y)(t) = G(x(t), z(t),) (4.9)
satisfies the relation

Gatx.2.9) - Gz 7. 20| 5 qullx 51| + kylllz - 21| * LIy - ¥I. (4.10)

(d) The relation (4.3) holds.

According to Theorem 4.1 the problem (4.6) has to any y ¢ L*(J,RX)a unique Ca-so-
lution (X,,Z;,). With respect to the dependence on y we have the following resuit.

Theorem 4.2: Assume the hypotheses (4.6), - (4.6),.. are valid. Then we have

155, = Syl < ¥l - el (a1

> _ = Y * ;- = k‘l""l'(]-kz)
12y, - Tl < {W}HI}, Y2||l, where v o XI- k) kg, (4.12) '
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Proof : Let y,,y, ¢ L*(J,R¥) be given. The corresponding solutions (%, , 7,.).(%y, ?yz)
of (4.6) satisfy the problem

x(t) = x4 *fr;f(x(s),z(s),y(s),s)ds cz(r) = g(x(1),2(e), y(e),1). (4.13)
Using (4.7) and (4.8) we get from (4.13) the estimate

155 = Sull = 1E(S5, % 30) - B(Sy, T 7 )|

(4.14)
s 4,15, ~ Sl kllZy, - Bl + Ll el
For g, < 1 we obtain from (4.14) the estimate
1%~ Sl 5 /0 a5~ Bl gl =22l (419
Taking into account (4.9), (4.10) and (4.3) we get from (4.13) the estimate
1%, = Zlll S 9o i) 1% = Fopll* 2ol = 2211 (4.16)
Substituting (4.16) into (4.15) we obtain the estimate

- & 92 - - L - 4 -
1%~ Sl = 725, {1 o 1% Sl T Iys - rally+ 2 @ 132 =yl (427)

For sufficiently small g, the inequality (4.11) follows immediately from (4.17). Using (4.11)
we get from (4.16) the inequality (4.12)

Finally we consider the Cauchy probiem for the class of differential-algebraic equa-
tions

dx/dt = F(x,z(t),dx/dt,t), ' x(ty) = xg. ted. (4.18)

z(t) = G(x(t),z(r), dx/dt,t)

Using Theorem 4.2 we can prove the existence and uniqueness of a solution to (4.18).

" Theorem 4.3: Assume the hypotheses (4.6);; - (4.6);, with n = k are valid. Additionally
we assume

Ky <1, L +kdy/(1-ky) <1 (4.19)
Then the Cauchy problem (4.18) has a unique Ca-solution on J, where T is any positive

number.

Proof: To y ¢ L'(J,R?) given, by Theorem 4.1 the problem (4.6) has a unique solution
(x,,Z,). We define the operator F; on LY(J,R”) by

(Ry)t) = F(5,(0), Z,(e ) y(e)t). (4.20)
Under the hypotheses above we have Fy: L'(J,R”) = L'(J,R"). We shall prove that £ is
also strictly contractive under the same conditions. Let y,,y, € LY J,R™).By (4.7),(4.8)we
get from (4.20)

ECARAEA I ERN LSS A RYN (e RN MRS AL
By using (4.11) and (4.12) it follows

k,q,Y kL
IA(y,) - Byl s {‘71Y * ]l_ 2;\»2 M T_l_:z_ * lt}l“.}'x Al

Since g, and g, may ‘be choosen arbitrarily small and since y is uniformly bounded for
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decreasing g, and g, the condition (4.19) implies that F; is strictly contractive on L*(J.R")
and has a unique fixed point y* in L'(J,R").Then the couple (%, ., fy.) is the unique Ca-
solution of (4.18) B

S. Numerical approximation

As mentioned in the introduction, an important tool for the numerical integration of a
broad class of differential-algebraic equations (1.1) in case n +m to be large is the wave -
form relaxation method. This approach represents an iteration method in some function
space, the essential feature of which is to decompose the large system (1.1) into a set of
subsystems each of which is integrated independently on J and taking into account inputs
from other subsystems from their state on the previous iteration [3,5]). This process is
equivalent to rewrite the problem (1.1) as

dE/dr = F(EEL, dE/dL, t)
T = 2(EEL, dE/dt,t)

where £ € R”, L ¢ R™, and to choose an iteration scheme providing a sequence of approxi-
mations converging to the solution of (5.1). Theorem 4.3 can be easily extended to the
Cauchy problem (5.1).

E(ty) = xq, t €J, (5.1)

Theorem S.1: Assume the following hypotheses:
(5.1); The functions f: R" x R” x R™ x R" x J - R" and E:R"xR?x RMxR"x J -
R™ obey the Carathe odory condition.
(S.1)y There are a constant & and a function /i ¢ L J,R") such that
IFw,x,2,y,0)] + |&w,x,z,y,0)| s #i(t) +&(lwl +Ix[ +|z] +|yl)

for all{w,x,z,y)e R"x R" x R™ x R"” and f.a.a. t ¢ J.

(5.1) 44y There are positive numbers q;, k;,1; (i = 1,2), where q, and q, can be choosen ar-
bitrarily small, and a norm ||- I} in C(J,R™) such that the following conditions are
satisfied:

(a) C(J,R™) equipped with the norm || || is a Banach space.
(b) The operator F,: C(J,R™)x C(J,R") x L{J,R™)x LY J,R™) - L{ J,R") detined

by

(Flw.x,z,y,6))(t) = F(w(e ), x(t)z(e), y(t ) 1) (5.2)
satisfies the relation

"If:'.;,(w,x,z,y) - FZ(W,X",?,Y)[” (5.3)

s qllw -®l+lx -xl) + k,|lz - ZI|| + 4, )1y - 7).
(¢) The operator G~2: C(L,R")x C(J,R") x LY J,R™)x LN J.R"?)—> LY J,R") defined
by
(Colw,x,z,y, t)(2) = g(w(t)x(t),z(t),y(t)1) (5.4)
satisfies the relation
"I&z(w,.\',z,y) - 52(W,Y,7,7)|" (5.5)
s qllw - @l +lix -x ) + ko fllz - ZI|| + L ||ly - Fi]|.
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(5.1)4, The relations (4.19) hold.
Then the Cauchy problem (5.1) has a unique Ca -solution on J where T is any positive

number.

The Proof of this theorem proceeds in the same way as for Theorem 431

In what follows we prove that the hypotheses of Theorem S.1 guaranteeing the exi-
stence of a unique solution (E°,T*)of (5.1) also ensures that this solution can be iteratively
approximated by awave - form relaxation algorithm.To this end we consider the iteration

scheme
EX(E) = o + f,. F(EK()ER M)LK Hshn¥ M(s)s)ds,
gk(e) = §(E“(s),E“"(s),C"‘(s),n“ Ys),s), (5.6)

nk(e) = F(E"(s),ik"(s),Ck"(s),nk"(s).s).
Let us set S = C(J,R™) x L{(J,R™)x L{J,R™). Under the assumptions of Theorem 5.1, the
scheme (5.6) defines an operator T mapping the space S into itself. We introduce a norm
1" a b in Sby

NCE TN a s = allEN + &[T + linl], (5.7)
where a and b are any positive numbers. The space S equipped with that norm is a Banach

space. In the sequel we establish the existence of numbers a and b such that T is strictly
contractive with respect to the norm ||l I]l, 5

Theorem 5.2: Assume the hypotheses of Theorem S.\ are satisfied. Then there are
positive numbers a and b such that the sequence {(E C“ ")} defiped by (5.6) converges
with respect to the norm |1 1|, » to the unique solution (E ,U*)of (5.1) for any initial
guess in S.

Proof: Using the abbreviation pk*1y =y k*1 K e get from (5.6), (5.2), (5.3) and
(4.2)

"AknE" = |“f:”-2(§kn,5k,ck’nk) _ ,};(Ek'gk—x'ck—n'nk—x)l "

(5.8)
s g la%X =g ||+ |XEN) + K, la*TI] + [l a*nl].
For g, < 1 it follows from (5.8)
q, 3 k, 1,
|ak+sgl|| s akE| + lakgll + [a®ql]. (5.9)
okl s T2 fake] « = kel « 370 lla*al

By a similar way we obtain

ak=eql} s ||A g + ||IA gl + ‘q la*al|.
1

From (5.6), (5.4), (5.5) and (5.9) it follows

ky(1- q,) a2k,
- q

ak=ail s - hakel -

)+ q
l1a* C'll’l——‘—‘—‘l 2 {lla k.
q,

Let us set w = (E,C,n)_and a=2bg, *qz) in (5.7). Then we get from (5.7) - (5.9)
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(1-glak*tal|l, p = (2(bg, +q,)q, + bg, +q,)[|A%E]|
+(2(bg, +q,)k, + bk, + g, k, - kyq,) + K, )18 %TI| (5.10)
+(2(bg, +9,)1, +b(1, +qy1, - I,q,) 1, )[|a%n]].

From (5.10) it follows that if there exists a positive number b satisfying the inequalities

bk, +k, <b and bl + 1 <1 (5.11)
then there are positive numbers g, and x € (0, 1) such that for 9,, 9, < Qo the relations
(2(bg, +g2)k, + b(ky(1 - q,) +q, k) + k,) < (1 - g,)xb (5.12)

(2060, + )k, +b(1,(1- q) +qu 1) +1,) s (1 - g)x
hold. The inequalities (5.11) are equivalent to k, /(1 -k,) < b < (1 - 1,)/I,.1It is easy to
show that the relations (4.19) holding accordingly to the hypothesis (5.1);,, imply k, /(1 -k,)
<(1 - 1)/1,. Thus, there is a positive number b satisfying (5.12). To such a number b there
is a number g* < g, such that, for q,,q, < ¢, the inequality

(Z(be 44209, +bg, + ‘71) s(1- q,)%2(bgq, *q;)
holds. Therefore, we have
lTa%=20l|l, 5 < xla%wl|l, 5 for g, q, < q".

Hence, the sequence {(EXTX %)} converges with respect to the norm H-1]la 5 to an ele-
ment (£°.0°%,n°) € S for any initial guess in S where (E*(") is the unique solution of (5.1) #

Remark 5.3: Theorem 5.2 generalizes similar results obtained in [3,5].
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