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For a class of differential -algebraic equations arising for example in modelling electrical 
circuits conditions are derived which ensure the existence of a unique solution of the 
Cauchy problem on any finite interval and its computation by means of a wave -form re-
laxation algorithm in case of a large system. The solution concept is understood in the 
sense of CaratIiodory. 
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1. Introduction 

This paper is concerned with the initial value problem for differential-algebraic systems 
of the form 

dx - =F(x,z,-,t), z rrG(x,z,-,t), x(t0 ) x0 , t U : [to, to +T], (1.1)
dt

 where x is an n-vector, z is an rn-vector, and Tis a given positive number. We are in-
terested in conditions guaranteeing the existence of a unique solution (2,1) of (1.1) and in 
iterative procedures approaching (2,2) in case n m to be large. The problem formulated 
above arises for example in modelling non-linear electrical networks [6). By using Kirch-
hoff's laws, the underlying constitutive relations (voltage-current relations) and the cor-
responding dynamic equations we arrive at a system of the kind 

H ( dy/dt , y, t) = 0, (1.2) 

where the vector y of network variables consists of two components x and z and the deri-

vative of z does not occur in (1.2). Thus, without loss of generality we may represent the 
system (1.2) in the form (1.1). 

By applying traditional integration procedures to solve the initial value problem (1.1) 
the computing time growths rapidly when n +mbecomes large. From this reason, new me-
thods for numerical treatment of such problems has been developed basing on the decom-
position either of the corresponding large system of linear equations in the process of 
discretization or of the corresponding differential-algebraic system (1.1) itself. In the 
latter case this method is called wave-form relaxation method [1,3-5]. For a broad class 
of wave-form relaxation methods the canonical iteration scheme reads 

dx'/dt	(xk,x1,z11,dx11dt,t)
x'(to ) = x0 , t € J.	 (1.3) 

z & = G(x . , x k lzk'l,dxk'L/dt,t) 

The convergence of this scheme in some Banach space was proved in [3] under a cru-
cial assumption whcse verification is not obvious. In this paper we derive an explicite con 
dition on the Lipschitz constants of Fand Gwhich implies the convergence of (1.3).At the 
same time we give a new short proof of the convergence of (1.3) and introduce a solution 
concept. the so-called Caratheodoty solution which is more appropriate for applications.
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2. Notation and definitions 

Let 11 be the Euclidean norm, LP(J , R k ) the space of functions z: J R k such that IzIk 

is integrable in the sense of Lebesgue, and LO(J,Rk)the set of functions z: 3 - R k the 

essential supremum (ess sup) of which is bounded. Further, let C(J,R k )be the space of 

continuous functions z: J-+ plc, AC(J, R k ) the set of all functions z € C(J , R k ) which are 

absolutely continuous 

Definition 2.1: Let D be a set in pk . A function f: D x J - ft 1 is said to satisfy the 
Caratheodory condition if 

(i) I is defined for all x € Dand for almost all (f.a.a.) t € J, 
(ii) fis continuous in xf.a.a. t e Jand (Lebesgue) measurable in t for all X  D. 

Definition 2.2: The couple (2,2) is said to be a solution of (1.1) in the sense of Cam-
thtodory (Ca -solution) if 

(i)(2,2) € AC(J,R)xL1(J,Rm), 
(ii) (2,2) satisfies (1.1) f.a.a. t € J, 

(iii) 2(t0 ) = x0. 

To make our representation self-consistent we include some results on explicite or-
dinary differential equations. 

3. Global results for the Cauc1y problem of ordinary differential equations 

Consider the system of ordinary differential equations 

dx/dt f(x,t)	 (3.1)

under the following hypotheses: 

(3.1) i The function f: R1 x J - R° satisfies the Caratheodory condition. 
(3.1) ii There are a constant c and a function m € L 1 (J,R) such that 

If(x,t)I S m(t) +cIxI for all X  R' and f.a.a. t €3. 

The hypotheses (3.0 i and (3.2) ji imply the following important property for the Ne-

myzki operator Fdefined by(Fx)(t) f(x(t),t). 

Lemma 3.1[2]: Assume f satisfies the hypotheses (3.1) and (3.2) 12 . Then F is a conti-

nuous mapping from L1 (J,R")into itself. 

Further we suppose on f the following hypothesis: 

(3.1) 	any number q, 0 < q 1, there is a norm	in C(J,R")with the properties 

(a) C(J,R") equipped with the norm liii is a Banach space, 
(b) the operator : C( 3, R'1 ) - C( J, R") defined by 

(v)( t) = f(Fx)(s) ds = ff(x(s),$)ds 
to	 to 

is strictly contractive with respect to the norm II II with the contraction constant q. 

The hypothesis (3.0 iii can be fulfilled if  satisfies for instance a condition of the type
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If(x 1 ,t) - f(x 2 ,t)I s u(1x 1 - x 2 1,t)for all x 1 , x2 € R"and t € J,

where (:	x J - R obeys the Carathodory condition and the inequality 

Ji(lx(s)i,$)dsIl s qIixli for all x€ C(J,R")and t EJ. 

In case as, t) = s ](t )where I € L1(J,R) we can choose the norm 

lxii = max{exp[-afttI(s)ds]ix(t}, 

where a is any positive number satisfying a >1. Obviously, for x € C(J,R')we have 

IlJt(lx(s)I,$) ds 

= I'S 1x(s)lj(s)sIl = max Iexp[_afl(s)dsIJtl(S)lX(S)ldS} I t0	 t€J 	L 0	 i €0 

= max exp 
tci	

[-f,'l(s)ds]jftI(s)exp[af,Ido]expEaJIo)do]Ix(sIds} 

lix II max {exp[_aftnl(s)ds]f1(s)exp[aJtI(odo]ds}
SO tci 

ii max {exP[_af'I(s)ds][exP[aJ'l(s)ds] - 1] ^ xlIx 
t€J 

that is, q = 1/a is arbitrary small provided a is sufficiently large. 

Theorem 3.2: Assume the hypotheses (3.1) - (3.1) iii hold. Then the Cauchy problem 

dx/dt = f(x,t), x( to ) = x0 . t € J	 (3.2)

has a unique Ca -solution on J where T is any fixed positive number. 

Proof: Let X be the space C(J,R") equipped with the norm Ii Ii. We define the ope-
rator F. by 

(F0 x)(t) = x, +(v)(t) x, +J',f(x(s),$)ds. 
o 

By Lemma 3.1, the hypotheses (3.1) and (3.0 ii imply f(x( ), ) € L'(J,R") for x € X, thus 
we have Fx £ AC(J,R) C C(J,R'),that is F0 X CX. Using the hypothesis (3.0 we have 

11 1 ( x1) - !(x 2 )II :1 q 11x 1 - X211 for a" . x 1 ,x2 € X, 

where q can be assumed to be less than one. By BanacWs fixed point theorem, F. has a 
unique fixed point x in Xwhich is a Ca-solution of (3.2) I 

Next we study the case where fdepends on some functional parameter z and investi-
gate the dependence of x on z. The obtained result is used to establish an existence 
theorem for the Cauchy problem of some class of implicite differential equations. 

Let us consider the initial value problem 

d.v/dt	f1(x,z(t ),t ), X( to )	x0 . t € J	 (3.3) 

assuming the following hypotheses: 

(3.3) i The function f: R'1 x	x J -+ W+ satisfies the Carathodory condition. 

25	Analysis. Bd. 10. l'lcIi 3 (1991)
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(3.3) ii There are a constant c 1 > 0 and a function m 1 € L'(J,R) such that 

11(x,z,r )l :5 m 1(t ) c 1 (lxl	Izi) for all (x,z) E R" x R tm and f.a.a. t E J. 

(3.3) iii The function z belongs to the space L(J,R'"). 

(3.3) i , There are positive numbers q 1 and k 1 where q1 can be choosen arbitrarily small 
and a norm IlII in C(J,R")with the properties 
(a) C(J,R") equipped with the norm H ii is a Banach space, 
(b) the operator F: C(J,R+) x L1 (J,R m ) - L 1 (J,R") defined by 

(F;(x,z))(t) = 1(x(t),z(t),t)
 

(3.4) 

satisfies the relation 

lIIF;( x , z ) - F;(9,2)III S q 1 llx -.11 + k 1 Iliz -1111	 (3.5)

for x,.'' € C(J,R") and z,Z e L1 (J,R'1 ), where iii-ill is defined by 

J+t lz ( s )Ids II . (3.6) IIiziD = II  

In case that f fulfills the generalized Lipschitz condition 

1(x 1 ,z 1 ,t) - 11(x2,z2,t )I X 1(t)lx, - x 2 1 + x 1(f )1z 1 - z21 

forx 11 x2 R", z 1 , z2 € R, t € R, where ), ,E L'(J,R) and ; € L R)with ess supx1 s 

we can choose a norm in C( J, R'1 ) by 

lxii = max{exp_Jxi(s)ds1lx(t)I}, >l. 
rEj

Then we have according to (3.6) 

Ilizill = maxfexp[_aJttXj(s)ds]fIz(t)Idt}. 
rcj

Thus, (3.5) holds with 9 1 15 1/a and k1 s k1. 
By Lemma 3.1, the hypotheses (3.3) - (3.3) i,imply that f(x,t) : !1(x,z(t ),t )sa-

tisfies the assumptons (3.1) - Thus, to any z € L1 (J,R 11 ) the Cauchy problem (3.3) 
has a unique Ca-solution denoted by x. Concerning the dependence of x on z we have 
the following result. 

Theorem 3.3: Assume the hypotheses (3.3) - (3.3) i , are valid. Let	be the
Ca-solutions of (3.3) to Z,, Z 2 E L'(J,R"'), respectively. Then we have 

II Xzj - XZ2 11 :' k/(1-q j IIl	- Z 21111	 (3.7)

where q1 can be supposed to be less than one. 

Proof: The solutions xz , and x 2 satisfy the integral equation 

y(t) = x0 +jf(y(s),z(s),$)ds, f € J.	 (3.8) 

From (3.8) and (3.4) - (3.6) we get 

II	- XZ 2 II = II IF,(-. , , z. ) - F.(- 
2;2' 

Z 2 )I II ^, q1 lI x - + k1 IIIz, - 2 2111 . (3.9)

Since we may suppose q1 < 1 we obtain from (3.9) the inequality (3.7) 1
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Now we apply this result to prove a global existence theorem for the Cauchy problem 
of a class of implicit differential equations 

dx/dt	f1(x,dx/dt,t), X( t.) x0 , teJ.	 (3.10) 

Theorem 3.4: Suppose 1 satisfies the hypotheses (3.3), (3.3) and (3.3) i , . Under the 

additional assumption 
k1 < 1	 (3.11) 

the Cauchy problem (3.10) has a unique Ca -solution where T is any fixed positive number. 

Proof: Consider the Cauchy problem (3.3) in case m n. By Theorem 3.2, to any z € 

L1(J,R")the problem (3.3) has aunique solution x2 on J. We define the operatorF1 : Li(J,Rhi) 

-^ L1(J,R") by (?,z)(t) = f(x(t ),z(t ),t). By (3.4) - (3.6) we have for z 1 , z2 E L1(J,R") 

Il I(z) - f( Z )11 1 s q j jxz - XZ2II + k111 1z 1 - Z 2 1 11 :5 k141q ) 111  - Z2III. 

Hence, P, is strictly contractive iff k 1 + < 1. As we can choose q1 arbitrarily small, the 

validity of (3.11) implies f, to be strictly contractive on L1 (J,Rm ). Therefore, P. has a 

unique fixed point zsatisfying dx_/dt =f1(x.(t ),z(t ),t) z, that means (3.10) has 

a unique Ca-solution on J  

4. Global results for the Cauchy problem to a class of differential-algebraic equations 

Next we consider the Cauchy problem 
dx/dt =1(x,z(t),t) x(t0) = x0 , t E .1 (4.1)

z(t ) =g1(x(t ),z(t ),t) 
under the following hypotheses: 

(4.1) The functions f: R" x Rm x J- R', g1 : R' x Rm x J-+ R obey the Carathodory 

condition. 
(4.1) There are a constant e 1 > 0 and a function fii € L1(J, R) such that 

Ifj(x,z, t ) + g1(x,z,t )I	ni 1(t ) + ë 1(IxI +zl) V(x,z) € R" x R	and f.a.a. t € J. 

(4.1) iii The function f satisfies the hypothesis 
(4.1) j, The function g1 is such that the operator G1 : C(J,R") x Lt(J,Rm ) -+L t (J,Rm)de-

fined by G1(x,z)(t)=g1(x(t ),z(t ),t )fulfills for all elements x1 ,x2 € C(J,R')and 

z1 , z2 € L(J,R") the relation 

Ii G 1 ( x 1 , z 1 ) - G1 (x 2 ,z2)Ij	q 2 x,- X211	k2 z,- Z2111.	 (4.2) 

Theorem 4.1: Assume the hvpotheses(4.1) 1 - (4.1) i , hold. If we additionally suppose 

k 2 < 1,	 (4.3)

then the Cauchy problem (4.1) has a unique Ca -solution on J with any T > 0. 

Proof: By Theorem 3.3, the hypotheses (4.1) - (4.1) iii imply that the differential 

equation in (4.1) has to any z E L1 (J,R 171 ) a unique Ca-solution x satisfying x(to) = x0. 

We define the operator G 1 on L'(J. Rm ) by 

(d1 z)(t)	g 1 (x 2 (t ),z(t ),t)	 (4.4) 

25 -
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It is obvious that under our conditions ö maps from Ll(J,Rm) into L*(J,Rm).From the 
relations (4.4) and (4.2) we get 

II G 1 z 1 - ö1 z2111 2^ q 2 fix2 - X, 211 + k2 1h z1 - z 2 1 11 for all z 1 ,z2 ( L1 (J,R'71 ).	(4.5)

Taking into account (3.7) we obtain from (4.5) 

111 z 1 - Gl Z 2 111 s(12/1q) +k 2)lh iz	Z2111. 

Thus, for suffictentely small q 2 the condition (4.3) implies that a 1 is strictly contractive 
on L1(J,R" ) and has a unique fixed point z. Therefore, the couple (x 2 .,z) is a Ca-
solution of (4.1) on J  

In the next step we study the dependence of the solution (A,i) on some functional 
parameter. To this end we consider the problem 

dx/dt = F(x, z(t ),y(t ), t)	
,	.v(t) = x0 . t € J	 (4.6)

z(t) = G(x(t),z(t),y(t),t) 

and assume the following hypotheses: 

(4.6) i The function  belongs to the space L1(J,Rk). 

	

(4.6) ii The functions F: R1' x	x R k x J - R" and 0: R'1 x	x Rk x J - R satisfy
the Carathodory condition. 

(4.6) iii There are a constant ë > 0 and a function fi5 E L1 ( J, R) such that 

1F(x,z,.v,t)l + G(x,z,y, t )I s fii(t) + E(ixi	z  + y') 

	

for all (x,z,y) E R'1	i'." and f.a.a. t E J. 
(4.0 j, There are positive numbers q,, k,, 1, (1 = 1,2) where q, can be choosen arbitrarily 

small and a norm 11ll in C(J,R") such that the following conditions are satisfied: 
(a) C(J,R")equipped with the norm U- li is a Banach space. 
(b) The operator F: C(J,R") x L'(J, R") x L1 (J, Rk) - L 1(J,R°)defined by 

(F2(x,z,y))(t )	F(x( t ), z( t ), y(r ), t)	 (4.7)
satisfies the relation 

III F;(x, z,y) - F 	q 1 lix - .	fiiz -2111 +],Illy - y I 11.	(4.8) 

(c)The operator 02 : C(J,R 1') x L'(J, Rm ) x Li(J,Rk) -'L1 (J,Rm )defined by 

(G2(x,z,y))(t) G(x( t ), z ( t ), t)	 (4.9)
satisfies the relation 

Iii G2(x,z,y) - 02(,y,2)hlI f q2 fix -,VU • k2 filz - 211 + 12 Ill
y - yihi.	(4.10)

(d)The relation (4.3) holds. 

According to Theorem 4.1 the problem (4.6) has to any y€ Li(J, R k )a unique Ca-so-
lution (,,r,,). With respect to the dependence on y we have the following result. 

Theorem 4.2: Assume the hypotheses (4.6) i - (4.6). are valid. Then we have 

	

211. rhli	- Y2111,	 (4.11) 

-	
(4.12) lh lYyl	 - A2	

A-1!2 + l(1 - k2) 
-	ll	

{__	+

} "
	-
 Y2 III, where	

- (I - q 1 Xl - k2 ) - k1 q.
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Proof: Let y1 ,y2 E L 1 (J , Rk ) be given. The corresponding solutions 

of (4.6) satisfy the problem 

x(t) x0.j+,+I(x(s),z(s)y(s),$)ds z(t) rg(x(t),z(t),y(t),t). (4.13) 

Using (4.7) and (4.8) we get from (4.13) the estimate 

ll'Yi - "Yll	 -	(y2,7y2,Y2)i	
(4.14) 

q 1 jj .Vy1 - kjlYy	1y2 l11 + 1 liP" - 3+211i 

For q1 < 1 we obtain from (4.14) the estimate 

iiY1 - L Y2 ll ^ ' /(i q 1 ) IIYi - .5 2 l ii + /ii - q) lilY1 - 2iii.	 (4.15) 

Taking into account (4.9), (4.10) and (4.3) we get from (4.13) the estimate 

-	II	- k2 )iI XYj - y2 Il +	-	- Y2111 . (4.16)

Substituting (4.16) into (4.15) we obtain the estimate 

li - Y2il	1 - q1 { 
Y2l11} +	

i2 IlYi - Ay211 1 - k2 lilY1	j_t-;_ lil y1 -Y2111 .	(4.17) 

For sufficiently small q2 the inequality (4.11) follows immediately from (4.17). Using (4.11) 

we get from (4.16) the inequality (4.12) U 

Finally we consider the Cauchy problem for the class of differential-algebraic equa-

tions
dx/dt = F(x,z(t),dx/dt,t), X( to ) = x0 , t€J.	 (4.18) 
z(t) = G(x(t),z(t),dx/dt,t) 

Using Theorem 4.2 we can prove the existence and uniqueness of a solution to (4.18). 

Theorem 4.3: Assume the hypotheses (4.6) - (4.6) 1 with n = k are valid. Additionally 
we assume 

k2 <1, h + k1 12 /(1 - k2 ) <1.	 (4.19) 

Then the Cauchy problem (4.18) has a unique Ca-solution on J, where T is any positive 
number. 

Proof: Toy E L1 (J,P.+) given, by Theorem 4.1 the problem (4.6) has a unique solution 

We define the operator F3 on L1(J,R")by 
(F3 y)(t ) = F(.c(t ), Y,,(t ),y(t ),t).	 (4.20) 

Under the hypotheses above we have F3 : L1 (J,R+) -L'(J,R"). We shall prove that F3 is 

also strictly contractive under the same conditions. Let y 1 , y2 € L1 ( J, R' ). By (4.7), (4 .8)we 

get from (4.20) 

Il l1( .v1 ) - F(v2 )lll s 71II''y1 - V), Ii + kill11 Yy1	ZY I II + 11 1II y, -.Y21 II. 

By using (4.11) and (4.12) it follows 
1 q 2 y 12	1 

Ill (y1 ) -'( y2)lII S	^ 1-km + 1-k	
+ J j
 

III y1 - y21 II. 

Since q 1 and q2 may be choosen arbitrarily small and since y is uniformly bounded for
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decreasing q 1 and q2 the condition (4.19) implies that F3 is strictly contractive on L1(J.R") 
and has a unique fixed point y* in L1 (J, R").Then the couple _) is the unique Ca -
solution of (4.18) U 

S. Numerical approximation 

As mentioned in the introduction, an important tool for the numerical integration of a 
broad class of differential- algebraic equations (1.1) in case n - m to be large is the wave - 
form relaxation method. This approach represents an iteration method in some function 
space, the essential feature of which is to decompose the large system (1.1) into a set of 
subsystems each of which is integrated independently on J and taking into account inputs 
from other subsystems from their state on the previous iteration {3,51. This process is 
equivalent to rewrite the problem (1.1) as 

d/dt = I(d&/dt,t)
= x0 , t J,	 (5.1)

=j(E,rd/dt,t) 

where € E R'", and to choose an iteration scheme providing a sequence of approxi-
mations converging to the solution of (5.1). Theorem 4.3 can be easily extended to the 
Cauchy problem (5.1). 

Theorem 5.1: Assume the following hypotheses: 
(5.1) 1 The functions l: R"x R"x Rmx R'x J -+ R" and : R'7 x R"x Rm x R'x J - 

R'7' obey the Caratheodo,y condition. 
(5-1) U There are a constant e and a function fil € L'(J,R) such that 

IIw,x,z,y,t)I +	(w,X, Z,Y, t)I 5. in(t) +(IwI +IxI JzI +IyI) 

for all(w,x,z,y)€ R"x R"x R'73 x R" and f.a.a. t€J.	- 
(S.i) jjj There are positive numbers q,, k 1 ,13 (i = 1,2), where q 1 and q 2 can be choosen ar-

bitrarily small, and a norm in C(J,R") such that the following conditions are 
satisfied: 
(a) C(J,R') equipped with the norm II lisa Banach space. 
(b) The operator l: C(J,P..')x C(J,R') x L(J , R m )x L1(J,R'7)-+ Lt( J,R") defined 
by

((w,x,z,y,t))(t ) = i(w(t ),x(t ),z(t ),y(t ),t)	 (5.2)
satisfies the relation 

III(w,x,z,y) - JE(w,,y,y)jJ	
(5.3) 

-5 q( lw -	II + lx - V II) + k1 III z - Till	1,111y - Yl I 
(c) The operator G: C(J,R")x C(J,R")x L 1(J,R m )x L1(J,R")-#L1(J,R") defined 
b

(d2(w,x1z1y1 0)(t ) =	(w(t ),x(t ),z(t ),y(t ), t)	 (5.4)
satisfies the relation 

h i 2(w,x,z,y) - G2', x 1z1 y ) l1I	 (5.5) 

	

q 2(Iiw - ii-, 11 + lix - 3T 11) + k2 111Z- nfl + 12 lilY	Yiil.
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(5.1).., The relations (4.19) hold. 
Then the Cauchy problem (5.1) has a unique Ca-solution on J where T is any positive 

number. 

The Proof of this theorem proceeds in the same way as for Theorem 4.31 

In what follows we prove that the hypotheses of Theorem 5.1 guaranteeing the exi-
stence of a unique solution (. ( * )of (5.1) also ensures that this solution can be iteratively 
approximated by a wave - form relaxation algorithm.To this end we consider the iteration 

scheme 

	

(t ) =	+ J r T((s), k i(s)tk I(s)	'(s),$)ds 

	

=	(k(s)k-1(s),çk-i(s),.nk1(s),$),	 (5.6) 

= i(k(s)k-i(s),çk-i(s),71ki(s),$). 

Let us set S = C(J,R") x L'(J,F'71 )x L1(J,R). Under the assumptions of Theorem 5.1, the 
scheme (5.6) defines an operator Tmapping the space S into itself. We introduce a norm 

II I	II.b in Sby 

UI(, ' fl)IIIa , b	a IIII + b II I c I II +	
(5.7) 

where a and b are any positive numbers.The space S equipped with that norm is a Banach 
space. In the sequel we establish the existence of numbers a and b such that T is strictly 

contractive with respect to the norm Ill

 5.2: Assume the hypotheses of Theorem 5.1 are satisfied. Then there are 
positive numbers a and b such that the sequence {(k çk r)} defined by (5.6) converges 
with respect to the norm Ill IIb to the unique solution (F,',ç) of (5.1) for any initial 
guess in S. 

Proof: Using the abbreviation & 1 v = V l - V  we get from (5.6), (5.2), (5.3) and 

(4.2)

1k+t11 = 11(k+1,k,ç1_,k) -
(5.8) 

^ qj(flt.kFfl + ij&ii) + k1 11 JAkC111 
+ 1 III k I II. 

For q1 < 1 it follows from (5.8) 

sI 

q	 11 11k +S	______	-	+	IIcI + 1-q1	1-q	II.	 (5.9)
 

By a similar way we obtain 

Ill 
ak-1	'11	

, I 
__..L 

q1 
_III k cfl +	IIIIII I -	 -	 I - q1 

From (5.6), (5.4), (5.5) and (5.9) it follows 

11k+I111	q2 - k2(1 - q) + q2k1 11k(	-	
k2 (1 - q 1 ) + q2k1 11k111 

1-q 1	 1-q1	 2	I-q1 
Let us set w =	C, -q) and a = 2(b q, q2 ) in (5.7). Then we get from (5.7) - (5.9)
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(1 -
	

(2(bq1 q2 )q1 bq2 + qjflkj 

+(2(bq1 +q2 )k1 + b(k2 92 k1 - k2 q 1 ) + k1 )It 1d ltIJ
	

(5.10) 

From (5.10) it follows that if there exists a positive number b satisfying the inequalities 
bk2 +k < b and b12 + 11 < I

	
(5.11) 

then there are positive numbers q0 and x € (0,1) such that for 9 1 , q 2 < q0 the relations 

(2(b q1 +q2 )k1 + b(k2 (1 - q) q2 k1 ) + k1 ) ( 17 q1)xb 

(2(bq1 +q2 )k1 +b(J2 (1 - q j ) +q 2 I) + 11 s (i- q1)x 

hold. The inequalities (5.11) are equivalent to k110 -k2 ) < b < ( I - 11)/12. It is easy to 
show that the relations (4.19) holding accordingly to the hypothesis (5.1) iv imply k1 /( I - k2) 
<(1 - I1 )/12' Thus, there is a positive number bsatisfying (5.12). To such a number b there 
is a number q < q such that, for q1 , q 2 < q, the inequality 

(2(bqj +q2 )q1 +bq2 + q1 ) !, ( I -g1)x2(bq1+q2) 

holds. Therefore, we have 

II k u1II a,b S X I&WIfl5., for %, q 2 < q. 

Hence, the sequence {(c,cJc,ilc)} converges with respect to the norm II H JIab to an ele-
ment (,') € Sfor any initial guess in Swhere (',') is the unique solution of (5.1) I 

Remark 5.3: Theorem 5.2 generalizes similar results obtained in [3,51. 
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