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Sufficient Conditions for Local Optimality
in Multidimensional Control Problems with State Restrictions

S. PICKENHAIN and K. TAMMER

New sufficient conditions for strong local minimality in multidimensional control pro-
blems with state restrictions are presented. The results are obtained by applying duality
theory and second order sufficient optimality conditions for optimization problems with
functions having a locally Lipschitzian gradient mapping.

Key words : Sufficient optimality conditions, multidimensional control problems, parame-
tric optimization
AMS subject classification: 49 B 22, 49 ASS

1. Introduction

We consider the following optimal control problem:
(P) Minimize J(x,u) =f0 r(t,x(t)u(t)dt (QCR™, m21),
subject to the state equation
x,u( t)=go(t,x(t ),u(t)) a.e.onl (¢=1,....m), (1.1,

the state restrictions

x(t)e G(t) = [Ee R £(£,8)20 (i=1,.., D} on 1L, (.1,
the control restrictions
u(t)eUae.on (UCR’,rzl), (1.1),

and the boundary conditions
x(s)=b(s)onoQ, (1.1),

where Q1 is the closure of 01, 9Q) is the boundary of 2, x is an n-dimensional vector func-
tion with components in D*({1), x ¢ D*"(Q1), and u is an r - dimensional vector function
with components in D%(Q), u e Do 7((1). Here D°({}) is the space of all continuous
functions on {1/ for j = 1, ... ,v, where [Q‘,..., Q"] is a finite decomposition of () into do-
mains )7 with piecewise smooth boundary, and D*(€)) is the space of all continuous func-
tions on () having continuous first partial derivatives in QJforj=1,...,v. We assume that
the boundary 9() is piecewise smooth and all given functions, r, g, f; and b are continuo-
us. A pair (x,u) ¢ D*({1) x D (Q) satisfying (1.1), - (1.1) is called admissible to (P)
and the set of all admissible pairs is denoted by Z.

The aim of our paper is to develope sufficient conditions for a strong local minimum
of the problem (P). The result is obtained by applying the duality theory of R. Klstzler [7]
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as well as by using the strong second order sufficient optimality condition for optimizati-
on problems described by C'-functions having a locally Lipschitzian gradient mapping
{5,6]. Our main theorem contains the result of V. Zeidan [9] for the special case of
one - dimensional problems (m = 1) without state restrictions. The very restrictive as-
sumption in her paper, effecting that the optimal x has to be smooth, is omitted. Our
proofs differ essentially from the rather complicated approaches used in [9]. A special
result for multidimensional problems comparable with our main theorem was obtained by
B. V. Krotov and V. I. Gurman [8). Some incorrectness in their proofs is omitted here
and, moreover, we avoid the very restrictive asssumption that the Hamiltonian to (P) is
twice differentiable.

2. A dual problem to (P) and the generalized maximum principle

In a general sense we call a problem
(D) maximize L(s) subjectto S¢S
a dual problem to (P) if the weak duality relation
L(S) s J(x,u) ¥))]

holds for all S ¢ S and all admissible pairs (x,u)e Z. This relation implies that the exi-
stence of an element S ¢ S satisfying the strong duality relation L(S) = J(x,u)is a suffi-
cient optimality condition for a given admissible pair (x,u) of (P).

Using the Hamiltonian H of (P) given by

HLEp) = sup (Bt Evoy)] v U) 3)
with
MeEvy) = -r(LEv)+ B y=g(rgv) , (4)

a dual problem to (P) can be defined in the following way (see [1]):

maximize L(S) = inf i fS(s.C(s))nj(s)do(s)subjecttoSeS,
EcQ J=1 y0i

where
Q ={(eC°'"’((-))| Ut)eGlt), teQl and{ = b on o0 }

nf=(n/,...,nZ) denotes the exterior normal unit vector to-00)/, and S the set of all vec-
tor functions S = (S*,..., S ™) possessing the following properties:

1. There exists a decomposition of () into a finite number of domains 2/ (depending
on S) with piecewise smooth boundary such that

Sectm(xi), xi={(t,0)|EcG(t) rei} (j=1,.,v)

where C! ™(XJ) is the space of all m-dimensional continuously differentiable vector
functions on XJ.
2. S fulfils the Hamilton - Jacobi inequality

div, S(r,E)+ H(t,{.gradES(t,E)) $0 on N/ (j=1,...,v)
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Assertion 1(Generalized maximum principle): An admissible ps:- {x °,u*) is a global
minimum of (P) if there exists an S "€ S satisfying the maximum condition

(M) H(r,.«(:),gfadzs4(r.x'(r)))=h(z,x'(z),u'(z),gradzv(:,x'(:)))
on QJ (j =1, ...,v), the Hamilton - Jacobi equation

(HI)  div, S*(t,x () + H(l,,\' “(r),gradg S ~(¢, x *(r ))) =0

on O/ (j =1, ...,v) and the boundary condition

(B) LS =3 [ S*(s.x(s)ni(s)do(s).

ERr-Ye ¥

- Proof:For arbitrary elements (x,u) ¢ Zand S ¢ S we can deduce using (3) and (4) with
y(t) = gradg S(t, x(1)) and Gauss’ Theorem that

Joew) = 3 [ {- (e x(ule)gradg S(e, x(2)))

J=1 nJ

. ’Z:'gradES“(t,x(r))ga(t,.\‘(!),u(l))} dt

2- 3 [ {H(t.x(t).gradgS(r. x(£))) +div, S(¢t,x(1)} dt
J=1 qJ

+ i f S(s.x(s))ni(s)do(s) 2z L(S).
AR YoV)
The conditions (M), (HJ) and (B) effect that especially the equality J(x*,u ") = L(S *) holds
for(x"u®)e Z and S "¢ S. Thus (x °,u")is a global minimizer of (P) B

Generally, it is a very hard problem to find an element S € S satisfying the generali-
zed maximum principle for an (x,u)e Z. Nevertheless it was done for some interesting
geometrical problems, see [1,2]. For this reason it is also helpful to give sufficient crite-

rions for a strong local minimum of (P).

Definition 1: An admissible pair (x*,u")is a strong local minimum for (P) if there
exists an £ > 0 such that (x°,u") minimizes J(x,u)over all admissible pairs(x,u)e 2

with lix - & ’Ilco_,, <s.

In a similar way as in Assertion | we can develop conditions for local optimality of a

pair (x,u)e Z.

Assertion 2: A pair (x,u)e Z is a strong local minimizer of (P) if there exists an € >0
and an S ¢ S, satisfying the conditions (M), (HJ) and (B), where S_ is the set of all

functions satisfying the following conditions:
1¢. There exists a decomposition of () ( depending on S) into a finite number of de-
mains Q1 with piecewise smooth boundary such that ’
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Se Cl.ln(A’ij)’ /\,:j= {(t,E)EX‘HEE Kc('\'(r))}v

where K (x(t)) = {Ee R"| IE - x ()l < s} and |- || is the Euclidean norm.
2,. S fulfils the Hamilton - Jacobi inequality

div, S(£,6) + H(t,E,gradg S(£,£)) s00on X7 (j=1,...,v).

Proof: The proof follows immediately from the fact that (x,u)e Z is a strong local
minimizer of (P) if and only if there is an £ > 0 such that (x.u) is a global minimizer of
(P.). Here (P,) and the dual problem (D) are defined in the same way as (P) and (D), re-
spectively, where only G(t)in (1), is replaced by G(t)n K (x(1)) 8

3. An auxiliary result on strongly stable local maximizers of parametric optimization pro-
blems

In this section we study a general parametric optimization problem of the type
P(t) maximize f,(t,E)subjecttoEe G(t), t €Q, (5)

where (1 is compact. Throughout this section let x be a given continuous vector function
with x(t)e G(t), te Q. Inwhat follows we develop sufficient conditions for the existence
of a positive ¢ (independent on t € ) such that

fo(t,x(t) 2 £,(t,E) for all ¢ €0 and Ee G(t)n K (x(t)) (6)

holds. This relation means not only that x(t ) is a local maximizer of P(t) for all ¢ ¢ 6,
but also the existence of a uniform {with respect to the compact set (1) positive radius ¢
such that x(r)is even a global maximizer with respect to the restricted feasible set
G{(t)n K (x(t)). Our considerations are motivated by the fact that for the special choice
of the objective function in (5),

fo(t,E) =div, S(t,E) + H(t,E,grad g S(1,E)), 7)

relation (6) is obviously a consequence of the assumption (HJ) for an S ¢ S, in Assertion 2.
Moreover, the aspired result will be used in the next section to form sufficient conditions
for the assumption that an S € S_ satifies (HJ) in Assertion 2 and hence for the strong local
minimality of an (x, u) to (P). This will be exactly our main result.

For the case of C?-functions in (5) the announced sufficient conditions for (6) are
. just the well - known strong second order sufficient conditions for local optimality. How-
ever, since the Hamiltonian H is defined in (3) as an optimal value function of a parame-
tric optimization problem it is generally not realistic to suppose that H in (7) belongs to
C 2 even if all functions appearing in (P) are in C2 or even analytic. Under certain condi-
tions it is pertinent to assume that H belongs locally to the subclass C!'“of those C!-
functions for which the gradient mapping is locally Lipschitzian. More exactly, we assume
that for a given ¢ > 0 and i = 0,...,/ the following assumptions are satisfied:

f;(t,-) belongs to CY( K (x(t)))for each ¢ 66. (8),
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(-,-)and gradg fi(-,) are continuous on Y, = {(t,8)l te 6, Ee K (x(t))} (8),
gradgfi(1, ) is locally Lipschitzian on K (x(r)) foreach t ¢ Q. (8),
(£,£)—> og(gradg f( t,£)) is closed and locally bounded on Y. (8),

Recall that each function f satisfying (8), - (8), is almost everywhere twice differentiable
with respect to £ in a neighbourhood of x (). In the following we will use the generalized
Hessian in the sense of J. B. Hiriart - Urruty el al [4]:

02h(t,E) := conv {M(t ) 3{eX} € Exlt) with EX>E, dé h(t,EX) - M(t )},

where E(t )is the set of all £ for which h(¢,-) is twice continuously differentiable with
the Hessian dé h(t,£) and conv denotes the convex hull.
Further on we assume that for each t € () the point x(t ) satisfies the Linear Inde-

pendent Constraint Qualification

(LICQ) For each t ¢ Q) the vectors gradg £;(6,x (), ielo(t):={ie{1,..., .} £fi(t,x(t))=0 }
are linearly independent.

If x( ¢ ) satisfies (6), then ,\(t) is a local maximizer of (P(t)). Hence, (LICQ) has the con-
sequence that for each t ¢ Q there is a unique multiplier A(t ) ¢ R? such that (x{(z ),A(t))
is a stationary point of (P(t)), i.e.

gradg fo(¢,x(t)) + =Zl Xi(t)gradg f;(1,x(2)) =0

9
) (e, x(e)) =0, X(t) 20 forteQ (i=1,..,0.
With
17e)=[ie{t,... i 2 ;()>0]
and

W)= {heR!| higradg £;(1,x(1)) =0, icl(r))

we can formulate the following sufficient optimality condition (S) for (6) which is just a
natural generalization of the well - known strong second order sufficient optimality condi-
tion for the C 2 - case to the C** " one:

(S) EachM(t)e ofg fo(t,x(8))+ T, wpy Ni1)ge fi(2,x(t)) is negative definite on
W (t),i.e.for eachvector h(t)e W *(£)\{0} the inequality h"(¢ )M(t) k() < 0 holds.

Now we can show the following

Assertion 3: Assume that the function f, in (S) and the functions f,,....f; in the state
restriction (1), belong to the class described in (8), - (8),. For each t ¢ (1, let x be a sta-
tionary solution of P(1) such that (LICQ) and (S) are satisfied. Then there is a positive ¢
such that (6) holds.

Proof : According to (S) for each r¢ Q) there exists a maximal value €(t ) > 0 (possible
g(t) = +) with
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Fot,x(t))> F,(t,E) foreachEe G(t)n Ko(py(x(r)), &+ x(t).

Let be £ := inf {e( )] 1 ¢ 6} Then there is a sequence {f,}.t; = t, with e(1,) > &. We
denote E = x(f). According to [S, Theorem 1] for some real number r > 0 and each p ¢
{0.r], there exists a real 8(p) > 0 such that for t ¢ V(7 ) the set UO(E)contains a local
maximizer ¥(t ) of P(t) which is the only stationary point of (P(t)) in U := U(E)and ¥
is continuous in ¢ . Because of the uniqueness of the stationary point x(¢ ) in U and the
continuity of ¥ the number r can be chosen in such way that 0 < r s €(f ) and

8) x(t)=x(r) for each t € V := Vg (1),
b) (LICQ) holds forall te VandEe U n G(t).

Following the line in the proof of Theorem 1in [S] let us now consider the following auxi-

liary problem
P(t) Maximize f,(t,E) subjecttoEe U n G(t), t eV,

which possesses for all t ¢ V at least one global maximizer. On the other hand let be ®(t)
= sup{f (t ENEeoUn G(t)} (- if dUn G(t) = Q). Note that ® is upper semicontinu-
ous in f . To show this let us consider any sequence {tk} with t, —> . For any k either oU
n G(t)) = ® and hence O(t;) = - or there is an element §;, € OUn G(1,). If ®(1,)> -

only for a finite number of k, then lim g, oo ®( ;) = - s ®(7). In the other case we have
an infinite number of elements &, as above and each accumulation point of this sequence
belongs to U n G(t ) from which again ®(f)2 lim_,e0 f(£4,E5) = limg_ oo (1, ) fol-
lows. The relation r < €(t ) implies f,(t ,x(¢)) > ®( ). Thus, because of the continuity
of f, and x and the upper semicontinuity of @, there is a neighbourhood V' C V of t with
£,(t,x(t)) > ®(t)for te V'. Therefore any global maximizer X (¢ ) of P(t)for t ¢V can-
not be situated on the boundary of U and hence X (t )is even a local maximizer of P(t).
Property b) now implies that £(t ) is also a stationary solution of P(t). Thus because of the
uniqueness of the stationary solution x (t ) in U, we conclude ¥(t) = x(t)fort e V' ie.

(e, x(t))>f,(t,E) foreach t e V'andEe U n G(¢t), £=x(t). (10)

If we now suppose that € = 0, then (because of the maximality of €(¢,)) there is a se-
quence {g,}, €, € G(t,), such that &, - E and (., x(t,)) > £,(t,,E ) for all k what
is a contradiction to (10), hence §>0B

Remark 1: Our assumptions in Assertion 3 guarantee even the strict inequality in (6)
for £ = x(t).

Remark 2: In Assertion 3 the condition (LICQ) can be replaced by the weaker Man-
gasarian-Fromovitz Constraint Qualification (MFCQ) which means that there is a z(t )¢
R™ such that grad £;(¢t,x(t))"z(¢) <0 forall ie I,(t). Then the multipliers A(¢ ) are not
necessary unique and the sets /*(t) and W () are to be replaced by the sets/(t)= {i¢
(Lo} X(2)> 0} and W(A(t) = {he RI| hrgradg £, x ()= 0 i¢ 17(M(t N}, re-
respectively. Condition (S) must be fulfilled for each multiplier X ;(r).
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4. Statement of the sufficiency theorem

To prove the announced theorem we use the following assumptions (a) - (¢) to (P).

(a) Let be given an admissible pair (x.u) to (P) and let x indicate a decomposition of )
in domains 02/ with piecewise smooth boundary, where x ¢ cra(d) (j=1,..,v).

Moreover, with the quadratic statement of S in the dual problem,
S*(t,E) = a%(t) + p(e)7(E - x(t))
Y (€ - x(e )T O )(E - x(¢)),

(11)

Q™ e M"="(Q1), where M"*(Q)is the set of all symmetric n xn-matrix functions with
components in CH{O/)nC °N), p™e c+(d)a € 2"(N) and a™ ¢ cHOY) (a =
1,...,m) let be
N(t.e.8) = {(E.y)e G(e) x R IE - x(e)l < e lly - p(t)ll <8} 50
£,8>0).
Ni(e,8) = {(!,S,S)I teQ,(e,y)¢ N(t,s,S)}

(b) Let H(t, -, -)e C{N(t,e,8))for eachte QJ, H( -,-, ) and gradE_yH(- ., ) be
continuous on NJ(¢,8), grad £y H(t, -, - )be locally Lipschitzian on N(t,¢,8), H(t,
x(t), p(¢)) < @ for each t € {1/, and let the mapping (,, y) = dg(grad g H ( t.Ey)be
locally bounded and closed on Ni(e,8).

:(c) Letf;(i=1,..,1)belong to the class of functions described in (8), - (8), and (LICQ)
be fulfilled with respect to G(t) and (2 instead of Q.

Than we can finally show the sufficient locally optimality condition for (P).

Theorem: Let (x,u) be an admissible pair to (P) satisfying the assumptions (a) - (c).

Let be chosen A,(t) (i =1,...,1) in such way that for j = 1,...,v the conditions
-8 pex(t) = gradg {H(r,x(£), p(+)) 4él)\i(t)f,-(t,x(r))}, (12)
A {20, A(e)f(e,x(e))=00n QJ (i=1..,1), (13)
x,a(r) = gradyaH(r,x(r), plt)on Q¥ (a=1,...,m), (14)
H(e,x(t),p(#))= h(e,x(t)ult), p(t)) on Q (15)

are fulfilled and each M(1t),
M) = £ 0,300+ o Hiex() pte)

¢<)2

£yo H(t,x(t), p(e)Q*(t) + Ot )c);aEH(r.x(r )p(t) (16)

£ 00 a0 AP0+ S A 0F A5,

cl

is negative definite on W “(1 ). Then the pair(x, u)provides a strong local minimum for (P).
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Proof : The idea of the proof is to apply Assertion 2 by using the quadratic statement
of Sin (11). First we show that the conditions (HJ),(M) and (B) of Assertion 2 are satisfied.
Indeed, we can choose Za::x( t) in such a way that (HJ) is fulfilled on O (because of (b)
this expression is well defined), namely '

ac(t)=p™(t)'x, (1)- y H(t,x(t),p(t)) and a% e CHOJ).

Further, (M) is true according to (15). To show that (B) is true for S in (11} we note only that

inf{ zf _s<s,c(s))nf(s)do(s)}
o0t

eeQ | j=1
= ij ~a(s)nd(s)do(s) = if S(s,UsNnd(s)do(s)
j=1 JonJ ji=1 Joqd

since p%e C°7(01) and Q= M7=7(Q2).

Now we shall prove that for some ¢ > 0, S belongs to S .. Condition 1, of Assertion 2
holds because of assumption (a) of the theorem. In order to verify condition 2. of Asser-
tion 2 we define f, by

fn0= Elaio piiore-xey
- p(e)xe (1) + /(8 - x(£) Qi (e NE - x (1))
- (g XN Ox (D] + H{t,8.p(0) + OLOE - x(0)).
Hence by the special form of a® it follows '

)= B {peteor-xe)

+ 108 - x(1))T QX(E - x(£)) - (E- x(£)) Qe )x,a(t)} (17
« H(6,8,p(t) + O(e)(E - x(£)) - H(t,x(¢), p(t ).

Obviously, S fulfils the Hamilton-Jacobi inequality on X/ if x maximizes f(t,-)on X/
for some £ > 0. Moreover, this is so if the inequality f(t,E) s f,(t,x(t)) holds for £ ¢ G(t)
n K (x(t)), te3J. We want to use Assertion 3. Therefore we have to ensure that for A=
1/ the functions £, and f,,..., f; belong to the class defined in (8), - (8), (j=1,...,v). This
is true if the assumptions (b) and (c) are satisfied.

We now choose p in such way that x(t) is a stationary point of the problem

P(t) maximize £ (t,E)subjectto Ee G(t), e D1/ (j=1,..,v).

Therefore grad g [£f,(7,E) + S L2 (8)£;(8,E])e - (¢ ) must be vanish and (13) must be sa-
tisfied on Q7 (j=1,...,v). According to (17) we obtain

gradg £(1,8)+ 3 XA 0)]eencr
- ¥ pne gradE[H(t,.\'(l).p(I)) . x,(:)f,.(z,x(r))}

'aZ::lO“(r)[.\',a(t) - grad o H(t,x(r),p(t)):l =0
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if the canonical differential equations (12) and (14) are fulfilled on 0)J. Further on w
to verify that the condition (S) for x(t ) remains true. From (3, p. 55), the inclusi

=1

AR [O,:(r) ¢ 0ZgH(1,x(1),p(1)

+9 H(t,x(e), ple NQ=(t) + c)yaEO“(r)H(r,x(t),p(r))

Ey™

8 010 a0t x(e )10 Q8(1)]

holds. If we denote the set on the right - hand side of (18) by N(t ) and if for each A
N+ S, ooy Milt)odefi(t,x(2)) it follows h™M(t)h <0 on W (£ )\{0}, then :
ding to {18) for each M(t) with

M(t) e oFe £t x(1)) + T, pupyXi(8)ogefil e, x(2))

it follows A™M(t )h <0 on W*(t)\{0}. By assumption, the inclusion (16) is true, :
condition (S) before Assertion 3 is fulfilled. Taking assumption (c) into account, As:
3 can be applied to our situation, which completes the proof B

REFERENCES

(1]

(23

(31
[4)

ANDREJEWA, E. A., and R. KLOTZLER: Zur analytischen L&sung geomet:
Optimierungsaufgaben mittels Dualitat bei Steuerungsproblemen 1. ZAMM 64
35 - 44.

ANDREJEWA, E. A., and R. KLOTZLER: Zur analytischen Losung geomet:
Optimierungsaufgaben mittels Dualitit bei Steuerungsproblemen I1. ZAMM 64
147 - 1583,

CLARKE, F. H.: Generalized gradients of Lipschitz functionals (Techn. Rep
Mathematics Research Center, Madison W 1). Adv. Math. 40 (1981), 52 - 67.
HIRIART - URRUTI, J.-B., STRODIOT, J. J., and V. HIEN NGUYEN: Gene:
Hessian matrix and second - order optimality conditions for Cc''! data. Appl.
Optim. 11 (1984), 43 - S6.

(s] KLATTE, D.: On strongly stable local minimizers in nonlinear programs. In: Ad

Lel
t7)
R:3}
€91

in Math. Optimization (Ed.: J.Guddat). Berlin: Akademie - Verlag 1988, 104 - 11]
KLATTE. D., and K. TAMMER: On second order sufficient optimality conditi.
cti. optimization problems. Optimization 19 (1988), 169 - 179.

KLOTZLER, R.: On a general conception of duality in optimal control. Lect.
Math. 703 (1979), 189 - 196.

KPOTOB. B. ®.. n B.U. [VYPMAH : MeToxnn 3 3axaws ONTHMansHoro yrnpas
Mocxsa : Haa-»no Hayxa 1973.

ZEIDAN, V.: Sufficient conditions for the generalized problem of Bolza.Trans
Math. Soc. 275 (1983), 561 - 586.

Received 13. 07. 1989; in revised form 10. 01. 1990

Authors” addresses:

Dr. Sabine Pickenhain Prof. Dr. Klaus Tammer
Sektion Mathematik Sektion Mathematik /Informatik
der Karl-Marx -Universitat der Technischen Hochschule
Augustusplatz ’ Karl-Liebknecht - Str. 122

D(Ost) - 7010 Leipzig D (Ost) - 7030 Leipzig



