On an Application of a Modification of the Zincenko Method to the Approximation of Implicit Functions

JOANNIS K. ARGYROS

We use the Zincenko iteration to approximate implicit functions in a Banach space by solving a linear algebraic system of finite order. The non-linear equations involved contain a non-differentiable term. Our hypotheses are more general than Zabrejko and Nguen's [10], in this case.

Key words: Implicit function, Banach space AMS subject classification: 47 D 15, 47 H 17, 65 J 15, 65 B 05

1. Introduction

Let E, A be Banach spaces and denote by $U(x_0, R)$ the closed ball with center $x_0 \in E$ and of radius R in E. We will use the same symbol for the norm $\|\cdot\|$ in both spaces. Let P be a linear projection operator ($P^2 = P$) which projects E on its subspace E_P and set $Q = I - P$. Suppose that the non-linear operators $F(x, \lambda)$ and $G(x, \lambda)$ with values in E are defined for $x \in D$, where D is some convex subset of E containing $U(x_0, R)$ and $\lambda \in U(\lambda_0, S)$. For each fixed $\lambda \in U(\lambda_0, S)$ the operator $PF(z, \lambda)$ will be assumed to be Frechet differentiable for all $z \in D$. Then $PF'(x, \lambda)$ will denote the Frechet derivative of the operator $PF(z, \lambda)$ with respect to the argument z at $z = x$. Moreover, we assume that $(PF'(x_0, \lambda_0))^{-1}$ exists and

$$
\left\| \left(PF'(x_0, \lambda_0) \right)^{-1} \left(PF'(x, \lambda) - PF'(y, \lambda) \right) \right\| \le k_1(r, s) \|x - y\|,
$$
 (1)

$$
\left\| \left(PF(x_0, \lambda_0) \right)^{-1} \left(PF'(x_0, \lambda) - PF'(x_0, \lambda_0) \right) \right\| \le k_2(s) \|\lambda - \lambda_0\|,
$$
 (2)

$$
\left\| \left(PF'(x_0, \lambda_0) \right)^{-1} \left[\left(QF(x, \lambda) + G(x, \lambda) \right) - \left(QF(y, \lambda) + G(y, \lambda) \right) \right] \right\| \le k_3(r, s) \|x - y\|,
$$
 (3)

for all $x, y \in U(x_0, r) \subset U(x_0, R)$ and $\lambda \in U(\lambda_0, s) \subset U(\lambda_0, S)$. Here k_1, k_2 and k_3 are nondecreasing functions on the intervals $[0, R] \times [0, S]$, $[0, R]$ and $[0, R] \times [0, S]$, respectively. We use a modification of the Zincenko iteration [11]

$$
X_{n+1}(\lambda) = X_n(\lambda) - (PF'(X_n(\lambda), \lambda))^{-1} (F(X_n(\lambda), \lambda) + G(X_n(\lambda), \lambda))
$$
 (n ≥ 0) (4)

to approximate a solution $x^* = x^*(\lambda)$ of the equation

$$
F(x,\lambda) + G(x,\lambda) = 0.
$$
 (5)

By x_0 we mean $x_0(\lambda)$. That is x_0 depends on the λ used in (4).

It can easily be shown by induction on *n* that under the above hypotheses $F(x_n(\lambda), \lambda)$ + $G(x_n(\lambda), \lambda)$ belongs to the domain of $PF'(x_n(\lambda), \lambda)^{-1}$ for all $n \ge 0$. Therefore, if the inverses exist (at it will be shown later in Theorem 1), then the iterates x_n can be computed for all $n \geq 0$.

Our assumptions (1) - (3) generalize the ones made by Zabrejko and Nguen [10], Yamamoto [9] and (for $G = 0$) Potra and Ptak [6]. The iterates generated by the above authors cannot be easily computed in infinite dimensional spaces since the inverses of the linear operators involved *(P* = *1,* then) may be to difficult or impossible to find. It is easy to see, however, that the solution of equations (4) reduces to solving certain operator equations in the space E_P . If, moreover, E_P is a finite-dimensional space of dimension N, we obtain a system of linear algebraic equations of at most order *N.* Furthermore, several authors have treated the case when $G = 0$, $P * I$ provided that k_1 and k_2 are constants (or not) [1,2,4 -6].

We provide sufficient conditions for the convergence of iteration (4) to a locally unique solution $x^*(\lambda)$ of equation (5) as well as several error bounds on the distances $||x_{n+1}(\lambda)||$ $-x_n(\lambda)$ and $||x_n(\lambda) - x^{\bullet}(\lambda)||$.

We need to define the functions

We need to define the functions
\n
$$
a_s = k(s) \left\| (PF'(x_o, \lambda_o))^{-1} (F(x_o, \lambda) + G(x_o, \lambda)) \right\| (s = 0 \text{ if } \lambda = \lambda_o),
$$
\n
$$
\omega_s(r) = \int_0^r k_1(t, s) ds, \quad k_4(s) = \int_0^s k_2(t) dt, \quad k(s) = (1 - k_4(s))^{-1}
$$
\n
$$
k_4(s) < 1, \quad \varphi_s(r) = a_s + k(s) \int_0^r \omega_s(t) dt - r,
$$
\n
$$
\psi_s(r) = k(s) \int_0^r k_3(t, s) dt, \quad \chi_s(r) = \varphi_s(r) + \psi_s(r)
$$
\nthe iteration $(y_o = x_o, n \ge 0)$

\n
$$
y_{n+1}(\lambda) = y_n(\lambda) - (PF'(x_o, \lambda_o))^{-1} (F(y_n(\lambda), \lambda) + G(y_n(\lambda), \lambda)).
$$
\nconvergence results

provided that

$$
k_4(S) < 1, \ \varphi_s(r) = a_s + k(s) \int_0^r \omega_s(t) \, dt - r,
$$
\n
$$
\psi_s(r) = k(s) \int_0^r k_3(t, s) \, dt, \ \chi_s(r) = \varphi_s(r) + \psi_s(r)
$$

and the iteration ($y_0 = x_0$, $n \ge 0$)

$$
y_{n+1}(\lambda) = y_n(\lambda) - (PF'(x_0, \lambda_0))^{-1} \big(F(y_n(\lambda), \lambda) + G(y_n(\lambda), \lambda) \big).
$$
 (6)

2. **Convergence results**

We can now formulate the following result.

Theorem 1: *Suppose that the function* $\chi_s = \chi_s(r)$ has a unique zero $\rho^* = \rho_s^*$ in [o,R]
 $\chi_s(R) \le 0$. Then the following statements are true. and $\chi_s(R) \leq 0$. Then the following statements are true. **Theorem 1:** *Suppose that the function* $\chi_s = \chi_s(r)$ has a unique zero $\rho^* = \rho_s^*$ in [o $\chi_s(R) \le 0$. *Then the following statements are true.*
(a) *Equation (5) has a unique solution* $x^* = x^*(\lambda) \in U(x_0, R)$ with $x^*(\lambda) \$ *v,.,. 1 - v* **Theorem 1:** *Suppose that the function* $\chi_s = \chi_s(r)$ has a unique $\chi_s(R) \le 0$. Then the following statements are true.

(a) *Equation* (5) has a unique solution $x^* = x^*(\lambda) \in U(x_0, R)$ *wi* (b) The estimates
 $||y_{n+1}(\lambda) - y_n$

(a) *Equation (5)* has a unique solution $x^* = x^*(\lambda) \in U(x_0, R)$ with $x^*(\lambda) \in U(x_0, \rho^*)$.
(b) *The estimates*

(a) Equation (3) has a unique solution
$$
x^2 = x^2(\lambda) \in U(x_0, R)
$$
 with $x^2(\lambda) \in U(x_0, \rho^*)$.
\n(b) The estimates
\n
$$
||y_{n+1}(\lambda) - y_n(\lambda)|| \le v_{n+1} - v_n
$$
\n(7)
\nand
\n
$$
||y_n(\lambda) - x^*(\lambda)|| \le \rho^* - v_n
$$
\n(8)
\nare true where the scalar sequence $\{v_n\}_{n \ge 0}$ is monotonically increasing and convergent

and

$$
\|y_n(\lambda) - x^*(\lambda)\| \le \rho^* - \nu_n \tag{8}
$$

to p' with

$$
V_{n+1} = d_s(v_n) \quad (n \ge 0, v_0 = 0) \quad \text{and} \quad d_s(r) = r + \chi_s(r) \tag{9}
$$

Proof: It is a simple calculus to show that the sequence $\{v_n\}$ is monotonically increasing and convergent to ρ^* (see also, [10: p. 675]). Using induction to *n* we will show that the estimate (7) is true, from which (8) will follow immediately. From (6) for $n = 0$, we get

$$
||y_1(\lambda) - y_0(\lambda)|| \le ||(PF'(x_0, \lambda))^{-1}(F(x_0, \lambda) + G(x_0, \lambda))|| \le a_s = d_s(0) = v_1 - v_0.
$$

That is, the estimate (7) is true for $n = 0$. Let us assume that (7) is true for $n \leq k$. Then by (6) , (1) , (3) , $[10: p. 674]$ and the induction hypothesis we get

$$
\|y_{n+1}(\lambda) - y_k(\lambda)\|
$$
\n
$$
\leq \left\| (y_k(\lambda) - y_{k-1}(\lambda)) - (PF'(x_0, \lambda_0))^{-1} (PF(y_k(\lambda), \lambda) - PF(y_{k-1}(\lambda), \lambda)) \right\|
$$
\n
$$
+ \left\| (PF'(x_0, \lambda_0))^{-1} \{ (QF(y_k(\lambda), \lambda) + G(y_k(\lambda), \lambda)) - (QF(y_{k-1}(\lambda), \lambda) + G(y_{k-1}(\lambda), \lambda)) \} \right\|
$$
\n
$$
\leq \int_0^1 \left\| (PF'(x_0, \lambda_0))^{-1} \{ PF'(1 - t)y_{k-1}(\lambda) + ty_k(\lambda)) - PF'(x_0, \lambda_0) \} \right\| \|y_k(\lambda) - y_{k-1}(\lambda) \| dt
$$
\n
$$
+ \left\| (PF'(x_0, \lambda_0))^{-1} \{ (QF(y_k(\lambda), \lambda) + G(y_k(\lambda), \lambda)) - (QF(y_{k-1}(\lambda), \lambda) + G(y_{k-1}(\lambda), \lambda)) \} \right\|
$$
\n
$$
\leq \int_0^1 \omega((1 - t)v_{k-1} + tv_k)(v_k - v_{k-1}) dt + \int_{v_{k-1}}^{v_k} k_3(t, s) dt
$$
\n
$$
\leq k \left\{ \int_{v_{k-1}}^{v_k} v_{s}(t) dt + \int_{v_{k-1}}^{v_k} k_3(t, s) dt \right\} = d_s(v_k) - d_s(v_{k-1}) = v_{k+1} - v_k.
$$
\nIt is, the estimate (7) is true for $n = k$. Hence, $\{y_n(\lambda)\}$ is a cauchy sequence in a Banac

That is, the estimate (7) is true for $n = k$. Hence, $\{y_n(\lambda)\}$ is a cauchy sequence in a Banach space and as such converges to some $x^*(\lambda) \in U(x_0, \rho^*) \subset U(x_0, R)$. By letting $n \to \infty$ in (6) we deduce that $x^*(\lambda)$ is a solution of equation (5). *Z*, is, the estimate (7) is true for $n = k$. Hence, $\{y_n(\lambda)\}$ is a cauchy sequence in a Banach e and as such converges to some $x^*(\lambda) \in U(x_0, \rho^*) \subset U(x_0, R)$. By letting $n \to \infty$ in (6) leduce that $x^*(\lambda)$ is a solution o **Example 1** as such convergent (7) is
 as such convergent (2) is a
 b is a vill now show the
 g the sequences
 λ) = $z_n(\lambda) - (PF^2)$
 $= d_s(w_n)$. is true for $n = k$. Hence,
ges to some $x^*(\lambda) \in U$
a solution of equation (2
is actually in the unique
given by $(n \ge 0; z_0 \in U)$
 $x^*(x_0, \lambda_0))^{-1} (F(z_n(\lambda), \lambda_0))^{-1}$
 $F(z_n(\lambda), \lambda_0)$
of the scalar
if for z we choose the

We will now show that $x^*(\lambda)$ is the unique solution of equation (5) in $U(x_0, R)$, by considering the sequences given by $(n \geq 0; z_0 \in U(x_0, R)$ and $w_0 = R$ ³

$$
z_{n+i}(\lambda) = z_n(\lambda) - (PF'(x_0, \lambda_0))^{-1} \big(F(z_n(\lambda), \lambda) + G(z_n(\lambda), \lambda) \big), \tag{10}
$$

and

$$
w_{n+1} = d_s(w_n).
$$
\n(11)

\nenough to show that

\n
$$
||y_n(\lambda) - z_n(\lambda)|| \leq w_n - v_n, \, n \geq 0.
$$
\n(12)

\na simple calculus to show that the complex groups given by (11) is non-orthonically.

It is enough to show that

$$
|y_n(\lambda) - z_n(\lambda)| \le w_n - v_n, \quad n \ge 0. \tag{12}
$$

It is a simple calculus to show that the scalar sequence given by (11) is monotonically convergent to ρ^* . Hence, if for z_0 we choose the second solution $y^*(\lambda) \in U(x_0, r)$ of equation (5), then, by (12), $||x^*(\lambda) - y^*(\lambda)|| \leq w_n - v_n$. That is, $x^*(\lambda) = y^*(\lambda)$.

For $n = 0$, (12) becomes $||y_0 - x_0|| \le R - 0 = R$. Hence, (12) is true for $n = 0$. Let us assume that (12) holds for $n \leq k$. Then by (6), (10) as before we get

$$
\|y_{k+1}(\lambda) - z_{k+1}(\lambda)\|
$$
\n
$$
\leq \|(z_k(\lambda) - y_k(\lambda)) - (PF'(x_0, \lambda_0))^{-1}(PF(z_k(\lambda), \lambda) - PF(y_k(\lambda), \lambda))\|
$$
\n
$$
+ \|(PF'(x_0, \lambda_0))^{-1}\{(QF(z_k(\lambda), \lambda) + G(z_k(\lambda), \lambda)) - (QF(y_k(\lambda), \lambda) + G(y_k(\lambda), \lambda))\}\|
$$
\n
$$
\leq \int_0^1 \|(PF'(x_0, \lambda_0))^{-1}\{PF'((1-t)y_k(\lambda) + tz_k(\lambda)) - PF'(x_0, \lambda_0)\}\| \|z_k(\lambda) - y_k(\lambda)\| dt
$$

26 Analysis, Bd. 10. Heft 3 (1991)

$$
+ \int_{v_k}^{w_k} k_3(t,s)dt
$$

\n
$$
\int_0^1 \omega_s ((1-t)v_k + t w_k)(w_k - v_k)dt + \int_{v_k}^{w_k} k_3(t,s)dt
$$

\n
$$
\leq k(s) \left[\int_{v_k}^{w_k} \omega(s)dt + \int_{v_k}^{w_k} k_3(t,s)dt \right] = d_s(w_k) - d_s(v_k) = w_{k+1} - v_{k+1}.
$$

That completes the proof of the theorem U

We can now formulate the main result.

Theorem 2: Suppose that the hypotheses of Theorem I are satisfied. Then the following statements are true. e main result.

the hypotheses of Theorem 1 are satisfied. Then the follow

ren by

(1) with $u_s(r) = -\chi_s(r)/\varphi_s'(r)$

(13) *(4)* are well defined for all $n \ge 0$ and remain in $U(x_0, \rho^*)$.

es
 $-\rho_n$ ($n \ge 1$) (13)

(14) theses of T₁
 $\chi(r) = -\chi_s(r)$

re well defi
 $\chi \ge 1$

(a) The sequence (ρ_n) given by

$$
\rho_{n+1} = \rho_n + u_s(\rho_n) \quad (\rho_0 = 0) \text{ with } u_s(r) = -\chi_s(r)/\varphi'_s(r)
$$

is monotonically increasing and converges to p.

(b) The iterates generated by (4) are well defined for all $n \ge 0$ and remain in $U(x_0, \rho^*)$. *(c) Moreover, the estimates* onotonically increasing and

(b) The iterates generated

(c) Moreover, the estimat
 $||x_{n+1}(\lambda) - x_n(\lambda)|| \le \rho_{n+1}$

$$
\|x_{n+1}(\lambda) - x_n(\lambda)\| \le \rho_{n+1} - \rho_n \quad (n \ge I)
$$
\n(13)

and

$$
||x_{n+1}(\lambda) - x^{\bullet}(\lambda)|| \le \rho^{\bullet} - \rho_n \quad (n \ge 0)
$$
 (14)

are true.

Proof: Part (a) can be shown exactly as in Proposition 3 in [10: p. 677]. We will only show (13) since (14) will follow then from it immediately. For $n = 0$ we get $||x_1(\lambda) - x_0(\lambda)||$ 25 *a_s* = $\rho_1 - \rho_0$. That is, (13) is true for *n* = 0. Let us assume that (13) is true for *n* < *k*. By the induction hypothesis
 $\|x_k(\lambda) - x_0\| \le \sum_{j=1}^k \|x_j(\lambda) - x_{j-1}(\lambda)\| \le \sum_{j=1}^k (\rho_j - \rho_{j-1}) = \rho_k$, *the induction hypothesis*

$$
||x_k(\lambda) - x_0|| \leq \sum_{j=1}^k ||x_j(\lambda) - x_{j-1}(\lambda)|| \leq \sum_{j=1}^k (\rho_j - \rho_{j-1}) = \rho_k,
$$

The Banach *lemma on invertible operators, (2) and the estimate*

$$
\left\|\left(P F'(x_o, \lambda_o))^{\mathsf{-1}}\right(P F'(x_k(\lambda) \lambda) - P F'(x_o, \lambda_o)\right\| \leq k(s) \omega_s(\rho_k) \leq k(s) \omega_s(\rho^*) = \varphi'_s(\rho^*) + 1 \leq 1,
$$

if follows that
$$
PF'(x_0, \lambda_0)^{-1} \{PF'(x_k(\lambda, \lambda)) \geq R(S) \omega_s(\rho_k) \leq R(S) \omega_s(\rho) \} = \varphi_s(\rho) + 1 \leq 1
$$
,
it follows that $PF'(x, \lambda)$ is invertible for all $(x, \lambda) \in U(x_0, R) \times U(\lambda_0, S)$ and

$$
\left\| \left(PF'(x_k(\lambda, \lambda)) \right)^{-1} PF'(x_0, \lambda_0) \right\|
$$

$$
\leq \left\| \left\{ I + \left(PF'(x_0, \lambda) \right)^{-1} \left(PF'(x, \lambda) - PF'(x_0, \lambda_0) \right) \right\}^{-1} \right\| \left\| \left(PF'(x_0, \lambda) \right)^{-1} PF'(x_0, \lambda_0) \right\|
$$
(15)

$$
\leq -k(s) / \varphi'_s(\rho_k).
$$

Then by (4), (1) - (3), (15) and the induction Hypothesis we get

$$
\|x_{k+1}(\lambda) - x_k(\lambda)\|
$$

=
$$
\|(PF'(x_k(\lambda)\lambda))^{-1}(F(x_k(\lambda)\lambda) + G(x_k(\lambda)\lambda))\|
$$

$$
\leq \|(PF'(x_k(\lambda)\lambda))^{-1}\{F(x_k(\lambda)\lambda) - F(x_{k-1}(\lambda)\lambda)\}\|
$$

On an Application of the Zincenko Method 393
\n- PF'(x_{k-1}(
$$
\lambda
$$
), λ)(x_k(λ) - x_{k-1}(λ)) + G(x_k(λ), λ) - G(x_{k-1}(λ), λ)}
\n
$$
\leq ||(PF'(xk(\lambda),\lambda))^{-1}PF'(x0,\lambda0)||[\int_0^1 ||(PF'(x0,\lambda0))^{-1}
$$

\n
$$
\times \{ (PF'(1-t)xk-1(\lambda)+txk(\lambda)) - PF'(xk-1(\lambda)) \} ||xk(\lambda)-xk-1(\lambda)|| dt
$$

\n+ $||(PF'(x0,\lambda0))^{-1} \{ (QF(xk(\lambda),\lambda)+G(xk(\lambda),\lambda)) - (QF(xk-1(\lambda),\lambda)+G(xk-1(\lambda),\lambda)) \}||]$
\n
$$
\leq -\frac{k(s)}{\varphi'_s(\rho_k)} \int_0^1 {\{\omega_s((1-t)\rho_{k-1}+t\rho_k)-\omega_s(\rho_{k-1})\}(\rho_k-\rho_{k-1})dt} - \frac{1}{\varphi'_s(\rho_k)}(\psi_s(\rho_k)-\psi_s(\rho_{k-1}))
$$

\n
$$
\leq \frac{\varphi_s(\rho_k)-\varphi_s(\rho_{k-1})-\varphi'_s(\rho_{k-1})(\rho_k-\rho_{k-1})+\psi_s(\rho_k)-\psi_s(\rho_{k-1})}{\varphi'_s(\rho_k)}
$$

\n= $\rho_{k+1}-\rho_k$.

Hence, (13) is true for $n = k$

We will now derive some a posteriori error bounds for iteration (4). Let

$$
r_{n,s} = r_n = ||x_n(\lambda) - x_0||, q_{n,s}(r) = q_n(r) = k_1(r_n + r, s),
$$

$$
f_{n,s}(r) = f_n(r) = k_3(r_n + r, s) \text{ for } r \in [0, R - r_n]
$$

and set

$$
a_{n,s} = a_n = ||x_{n+1}(\lambda) - x_n(\lambda)||, \quad b_{n,s} = b_n = k(s)(1 - k(s)\omega_s(r_n))^{-1}.
$$

Without loss of generality we assume that $a_n > 0$. Then exactly as in Theorem 2 in [9: p. 989] we can show

Theorem 3: *Suppose that the hypotheses of Theorem* I *are satisfied. Then the following statements are true.* **has a** ing statements are true.

(a) The equation
 $r = a_n + b_n \int_0^r ((r - t)q_n(t) + f_n(t)) dt$

has a unique positive zero $\rho_{n, s}^* = \rho_r^*$

(b) The estimates

(a) The equation

$$
r = a_n + b_n \int_0^r ((r - t)q_n(t) + f_n(t)) dt
$$

in the interval $[0, R - r_n]$, $n \ge 0$ *and* $\varphi_0^* = \varphi^*$.

(b) The estimates

about loss of generality we assume that
$$
a_n > 0
$$
. Then exactly as in Theorem 2 in [9: p.]

\nWe can show

\nTheorem 3: Suppose that the hypotheses of Theorem 1 are satisfied. Then the follow-g statements are true.

\n(a) The equation

\n
$$
r = a_n + b_n \int_0^r ((r - t)q_n(t) + f_n(t)) dt
$$
\na unique positive zero $\rho_{n,s}^* = \rho_n^*$ in the interval $[0, R - r_n]$, $n \ge 0$ and $\rho_0^* = \rho^*$.

\n(b) The estimates

\n
$$
||x_n(\lambda) - x^*(\lambda)|| \leq \rho_n^* \leq \begin{cases} (\rho - \rho_n) a_n / \Delta \rho_n & \text{for } n \ge 0 \\ (\rho^* - \rho_n) a_{n-1} / \Delta \rho_{n-1} & \text{for } n \ge 1 \\ \rho^* - \rho_n & \text{for } n \ge 0 \end{cases}
$$
\n(16)

\ntrue, where $\Delta \rho_n = \rho_{n+1} - \rho_n$. That is, our bound (16) is sharper than Miel-type bounds and more general than the corresponding one in [9: p. 989] (for $P = I$).

are true, where $\Delta \rho_n = \rho_{n+1} - \rho_n$. That is, our bound (16) is sharper than Miel-type bounds $[3, 7]$ and more general than the corresponding one in $[9: p. 989]$ (for $P = I$).

REFERENCES

- [1] ARGYROS. 1K.: *On Newtons method and nondiscrete mathematical induction.* Bull. Austr. Math. Soc. 38 (1988). 131 - 140.
- *12) BALAZS,* M.. and G. GOLDNER *On the method of the cord and on a modification of it for the solution of nonlinear operator equations.* Stud. Cerc. Mat. 20 (1968). 981-990.
- (3J GItaGo, W. B., and R. A. TAPIA: *Optimal error bounds for the* Newton-kantoro *vich Theorem.* SIAM I. Numer. Anal. 1(1974), 10 - 13.
- ¹ ⁴ 1 KANTOROVICH, L. V., and G. P. AKILOV: *Functional Analysis in Nor,ned Spaces.* New York: Pergamon Press 1964.
- *151 KRASNOSELSKII, M.A.,VAINIKKO, G. M., ZABREJK0, P. P., et al.: The apprximate solution of operator equations* **LRussianj. Mocow: Nauka 1969.**
- **[6]** POTRi\, F. A., and V. PTAK: *Sharp error bounds for Newton's process.* Numer. Moth, 34 (1980). 63 - 72.
- [7] RHEINBOLDT, W. C.: A unified convergence theory for a class of iterative processes. SIAM *J.* Numer. Anal. S (1968), 42 - 63.
- [8] YAMAMOTO, T.: A method for finding sharp error bounds for Newton's method under the Kantorovich assumptions. Num. Math. 44 (1986), 203 - 220.
- [9] YAMAMOTO,T.: *A note on* a *posteriori error bound of Zabrejko and Nguen for Zincenko's iteration.* Numer. Funct. Anal, and Optimiz. 9 (1987), 987 - 994.
- [10] ZABREJKO. P. P., and D. F. NGUEN: *The majorant method in the theory of Newton-Kantorovich approximations and the Ptak error estimates. Numer. Funct. Anal, and* Optim. 9 (1987), 671 - 674.
- [11] ZINCENKO, A. I.: Some approximate methods of solving equations with nondiffer*entiable operators* (Ukrainian). Dopovidi Akad. Nauk Ukrain. RSR (1963), 156 - 161.

Received 02. 10. 1989; in revised form

Author's address:

Prof. Dr. loannis K. Argyros Cameron University Department of Mathematics Lawton, OK 73505-6377, U.S.A.