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On an Application of a Modification of the Zincenko Method 

to the Approximation of Implicit Functions 

IOANNIS K. ARGYROS 

We use the Zincenko iteration to approximate implicit functions in a Banach space by 
solving a linear algebraic system of finite order. The non- linear equations involved contain 
a non -differentiable term. Our hypotheses are more general than Zabre3ko and Nguens 
UOJ. in this case. 
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1. Introduction 

Let E,A be Banach spaces and denote by U(x0 ,R) the closed ball with center x0 € E and 
of radius R in E. We will use the same symbol for the norm 11 11 in both spaces. Let Pbe a 
linear projection operator (P 2 = P) which projects Eon its subspace Ep and set Q I - P. 

Suppose that the non-linear operators F(x, A) and G(x, A) with values in E are defined for 
N  D, where D is some convex subset of E containing U(x0 ,R) and A € U(XO , S). For each 
fixed A€ U(X0 ,S) the operator PF(z, A) will be assumed to be Fréchet differentiable for 
all z ED. Then PF'(x,A) will denote the Frechet derivative of the operator PF(z,A) with 
respect to the argument z at z = x. Moreover, we assume that (PF'(x0 ,X0 )Y 1 exists and 

II(PF'(xo,Ao)) i(pF'(
X A) - PF(y, X)) 11 :5 k 1(r,$)IIX - yll, 

II(PF'(xo,),o)) 
1 (PF'(xo, A) - PF(x0 , ),0))Il I k2(s)II), - A0 11,	 (2) 

IkPF'(xo,),o)Y'(QF(x, A) + G(x, A)) - (QF(y, A) + G(y, X))] 11 s	s) 11x - y II,	(3) 

for all x,y e U(x0 ,r) C U(x0 ,R) and A c U(A 0 ,$) C U(A0 ,S). Here k,, k, and k3 are non-
decreasing functions on the intervals [0,R] x [O,S],[O,R] and [O,R] x [O,S], respectively. 
We use a modification of the Zincenko iteration [11] 

x(A) - (PF'(x(A), )))_1(F(x,,(A). A) + G(x(A), A)) (n a 0)	 (4) 

to approximate a solution x	x(A) of the equation 

F(.v, A) + Q(x, )) = 0.
	 (5) 

By x0 we mean x0 (A). That is x0 depends on the A used in (4).
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It can easily be shown by induction on n that under the above hypotheses F(x(A), A) 
+ G(x(A), A) belongs to the domain of PF(x(A), ),) for all n a 0. Therefore, if the in-
verses exist (at it will be shown later in Theorem 1), then the iterates x,, can be compu-
ted for all n a 0. 

Our assumptions (1) - (3) generalize the ones made by Zabrejko and Nguen [10], Ya-
mamoto [9) and (for G = 0) Potra and Ptk [ 6 ] . The iterates generated by the above au-
thors cannot be easily computed in infinite dimensional spaces since the inverses of the 
linear operators involved (P = 1, then) may be to difficult or impossible to find. It is easy 
to see, however, that the solution of equations (4) reduces to solving certain operator 
equations in the space E. If, moreover, Ep is a finite-dimensional space of dimension N, 
we obtain a system of linear algebraic equations of at most order N. Furthermore, several 
authors have treated the case when G 0, P * I provided that k 1 and k2 are constants (or 
not) [1,2,4 -6]. 

We provide sufficient conditions for the convergence of iteration (4) to a locally uni-
que solution x(A)of equation (5) as well as several error bounds on the distances 11x+1()1) 
- x,,(A)II and llx(A) - x(X)U. 

We need to define the functions 

a5 = k(s)IJ(PF'(xo,),o)Y'(F(xo, A) + G(x0, )))JI (s 0 if A = A0), 

w5(r) = f0 k1(t,$)ds , k4(s) = f. k2(t )dt , k(s) (1 - k4(s)' 

provided that 

QS) <1, p5(r) = a +k(s)f')(f)dt -r, 

4(r) = k(s)fk3(t,$)dt, 5(r) = p(r)+ 4(r) 

and the iteration (y0 = x0 , n a 0) 

Y,,-,(X) = y,,(A) - (PF(xo,Ao))_1(F(y,3(x), A) + G(y, 1(A), A)).	 (6) 

2. Convergence results 

We can now formulate the following result. 

Theorem 1: Suppose that the function x = x( r ) has a unique zero p	p in [o,RJ

and x 5(R) s 0. Then the following statements are true. 

(a) Equation (5) has a unique solution x	x (A)e U(x0 ,R) with x(A) € U(x0,2). 
(b) The estimates 

IIy,,.1()') - y(A)II s v,.,. 1 - v	 (7) 
and

Ilv,,(A) - .v(A)II S p - ,
	 ( 8) 

are true t4--here the scalar sequence {v,,}nsc, is monotonically increasing and convergent 
to p) with 

v,., 1 d(v) (n a 0, % 0) and d(r) r	(r)	 (9)
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Proof: It is a simple calculus to show that the sequence {v} is monotonically increa-
sing and convergent to p (see also, [10: p. 6 7 5]) . Using induction to n we will show that 
the estimate (7) is true, from which (8) will follow immediately. From (6) for n 0, we get 

11y1(X) - .v0(A)II s j(PF(x0,X))1(F(x0,),) + Q(xo,),))II s a5 = d5(0) = vj - V,. 

That is, the estimate (7) is true for n = 0. Let us assume that (7) is true for n < k. Then by 
(6), (1), (3), [10: p. 6741 and the induction hypothesis we get 

ILv,.. 1 (X) - .Vk(')II 

-5 I(y () - yk .. l (X)) - (PF(x0.,X0))-1(PF(yk(A),X) - PF(ykl(X),X))I 

+IKPF'(xo, X 0 )Y' ((QF(yk(X),) + C(yk(A),A)) - (QF(yk 1(A),A) + G(y4. J)' ), x))) V 
"1 

J0 II(PF(xo,x0))-1{pF((l -t)ykl(X)tyk(X)) - PF'(xo, ), o )) Ijflyk(A) Ykl)II0't 

+II(PF(xo,xo))*{(QF(yk(x),x)+G(yk(x),),))(QF(ykj(x),),) G(yki(X),A))}II 
r Vk 

sk(sff"k 5(t)dt +j 
vk 

k V 1	 Vkj 
a(ts)dt] = dS( vk) - dS(vk l ) = Vk.j - Vk. 

That is, the estimate (7) is true for n = k. Hence, {y(X)} is a cauchy sequence in a Banach 
space and as such converges to some x(X) € U(x0 ,p) C U(x0,R). By letting n —+ co in (6) 
we deduce that x(X) is a solution of equation (5). 

We will now show that x(X) is the unique solution of equation (5) in U(x0 ,R), by 
considering the sequences given by (n ? 0; z0 E U(x0 ,R) and wo = R 

Z,,-,(X) = z(A) - (PF(xo,Xo))_1(F(z(X),X) + G(z(XX)),	 (10) 

and

= d(w).	 IM 
It is enough to show that 

IIy,,(X) - z, 1(A)II :5	- v,1 , n z 0.	 (12) 

It is a simple calculus to show that the scalar sequence given by (11) is monotonically 
convergent to p. Hence, if for ; we choose the. second solution y(),) € U(x0 ,r) of equa-
tion (5), then, by (12), 1Jx(),) - y(),)II s iv,, - V,,. That is, x(A) y(X). 

For n r 0, (12) becomes 11y0 -,IIs R -0 R. Hence, (12) is true for n 0. Let us assume 
that (12) holds for n :5 k. Then by (6), (10) as before we get 

11 Y), - ,( X) - zk.I(X)Il 

fl(z(X) - yk ( X )) - (PF(xo ,X o )Y*(PF(zk (A).A) - PF(yk(X),X))II 

+I1(PF(xo ,X o )Y 1 {(QF(zk(X),X) *Q(zk(X).X))-(QF(yk(X),X) +G(yk(),),X))}fl 

^ J h I!(PF(xo ,X o )y 1 (PF((1 -t) yk(X) + tz k(X)) - PF(.vO ,X O )}IIIIzk(X) -y(X)fldt 
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s )dr 

J'w((I f)k +twk)(wk - vk)dt +fk3(t,$)d( 

:5 k(s)[f"J(s)dt fWkk( )d] = dS(wk) - dS( vk) Wk+i - Vk*j. 

That completes the proof of the theorem U 

We can now formulate the main result. 

Theorem 2: Suppose that the hypotheses of Theorem I are satisfied. Then the follow-
ing statements are true. 

(a) The sequence (pa ) given by 

= p,1 u(p,,) (p0 0) with u(r) = 

is monotonically increasing and converges to p. 
(b) The iterates generated by (4) are well defined for all n zt 0 and remain in U(x0,p). 
(c) Moreover, the estimates 

IIx, 1(X) - x)lI 5 p	- p, (n ai)	 (13) 

and

IIx.1(X) - x(A)lI :S p - p,, (n ?0)
	

(14) 

are true. 

Proof: Part (a) can be shown exactly as in Proposition 3 in [10: p. 6771. We will only 
show (13) since (14) will follow then from it immediately. For n = 0 we get 1x 1(X) - x0(X)II 

25 as = p 1 - p0 . That is, (13) is true for n = 0. Let us assume that (13) is true for n < k. By 
the induction hypothesis 

IXk(X) - x0 11 s XIIx(X) - x 1(A)II	 (p - p) Pk, 

The Banach lemma on invertible operators, (2) and the estimate 

lI(PF'(xo,Xo))-'(PF(xk(A),A)-PF(xo,Ao))II S k(s)(p,,) :5 k(s)w(p) ip.(p)+l S 1, 

it follows that PF(x,X) is invertible for all (x,),)e U(x0 ,R) x U(X 0 ,S) and 

II(PF'(xk(X),X))- 1PF(.v0, X0)lI 

Ii' +(PF(x0,X))1(PF(x,X) - PF(x0 , ), 0 ))}	IKPF(xo,),)Y1PF'(xo,Xo)II	(15) 

- k(s)/cp(p,). 

Then by (4), (1) - (3), (15) and the induction Hypothesis we get 

IIx +1(X) - Xkk)JI 

I(PF(xk(A).X))-1(F(xk(A),X) + G(xk(X),X))II 

S II(PF(.())Y 1 {F(x (X),A) - F(xkl(X),X)
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-PF(xkl(X),X)(x),(X) - Xk l( A )) + G(Xk),A) - G(xkX),X)}II 

!^ II(j'F'(x(),)Y 1 PF'(x0 , X o ) I[f1 Il(PF '( xo, ), 0 ))-' 

x((pF(l_t)xkl(A)+txk(X))_PF(xkj(X))}IIIIxk.)-xkl(X)Udt 

+IKPF(xo ,X o )){(QF(xk(XX)+xk(X),X)) (QF(xkl(XX)+xki(XX))}fl] 

- k(s) J' {us( 1-t )pic_ i + t Pk) - Pk-.,())(P - Pkl)th -	 - 4's(Pk-)

c.(Pk)

P (pk - a ) - ;( Pk- )( Pk - Pk- ) 4l5(Pk)  
P.,( '(Pk) 

= Pk-1 - 

Hence, (13) is true for n k I 
We will now derive some a posteriori error bounds for iteration (4). Let 

r 5 = rn = IIx(X) - x0 11, q 5(r) = q(r) = k1(r +rs), 

fr,s( r ) = f(r) k3(r + r, s) for r € [0, R - r,,] 

and set 

a ,5 = an = IIx. 1(X) - x(X)II, b ,5 = b = k(s)(1 - 

Without loss of generality we assume that a, > 0. Then exactly as in Theorem 2 in [9: p. 
9891 we can show 

Theorem 3: Suppose that the hypotheses of Theorem I are satisfied. Then the follow-
ing statements are true. 

(a) The equation 

r = an + b,J0 ((r - t)q(r) + f(t))dt 

has a unique positive zero	= p , in the interval [0,R - r,], n 2: 0 and p = p. 
(b) The estimates

(p - p)a/p	forn a 0 

	

IIx,,(X) - x(X)II s p, :5 (p - p)a.. 1/p 1 for  a 1	 (16) 
p-pa	 for naO 

are true, where Ap n = p,, 1 - p,,. That is, our bound (16) is sharper than Mid -type bounds 
[3, 7] and more general than the corresponding one in [9: p. 9891 (for P = 1). 
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