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On an Algorithm for Optimal Control Using an Augmented Hamiltonian

U. FLEMMIG and H. POPPE

An algorithm on optimal control due to Y. Sakowa and Y. Shindo is considered. It is based
on Pontryagin's minimum principle and the Hamiltonian is extended by a penalty term.
Using another penalty term for this algorithm. under suitable assumptions we can show
that each sequence of control vectors generated by the algorithm converges with respect
to the L -norm to an admissible control fulfilling the first order optimality condition.
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1. Introduction

We consider a general control problem with fixed time and Lagrange functional governed
by a system of ordinary differential equations. In {4] SAKAWA and SHINDO proposed an
iterative algorithm to solve problems of such kind using Pontryagins minimum principle.
They defined an augmented Hamiltonian, which is the sum of the Hamiltonian and a
quadratic term penalizing the difference between the new and the old controls, and the
new control minimizes at each time the augmented Hamiltonian. This term contains also
a real parameter. By BONNANS [1] this algorithm as considered too. The mentioned
authors proved some properties of convergence for this algorithm, but they did not prove the
convergence in the metric of some function spaces of a sequence of controls generated by
the algorithm to an admissible control, which fulfils the (first order) optimality condition.

We want to treat the problem in the space L,(7,R™) and as a penalty term we use
the L,-norm of the difference between the new and the old controls. We use rather mild
assumptions (in essential only the existence and continuity of first order partial derivati-
ves of the relevant functions is assumed), as compared with the assumptions used by
Sakawa and Bonnans, respectively. Applying these assumptions we deduce an inequality
which estimates the difference of two successive values of the cost functional by the
L,-norm (Theorem 1). This inequality is analogous to inequalities which were obtained by
Sakawa and Shindo and Bonnans, respectively, using their approaches. We further show
that any sequence (u*) of control functions generated by the algorithm converges to an
admissible control § with respect to the L,-norm. In order to show that { fulfils the first
order optimality condition we must assume some second order conditions of differentiabi-
lity for the functions L and f (see Theorem 2).

2. Problem
We consider the system of differential equations
Ne) = F(xte) uCe), e), teT =[t5.8,] . x(1,) = x5, (1)

x(t) e X c R" and u(t)e U c R™ denoting the state vector and control vector, respecti-
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vely. The control problem is to find an admissible control u”¢ Upg such that u* minimizes

the cost functional
t
Jw) = fL(xtnutee)de < g(x(1,) )
x denoting the solution of system (1) corresponding to u and

Uaag = {U:T"’ R™ | u measurable, u(r)e U for a.a. r(T},

where Uis a convex and compact subset of R™ and u measurable means Lebesgue mea-
surability of u~'(B) for every Borel subset B c R'". We denote by L,(T,R'™)the usual
Lebesgue space. (See, e.g.,[5).) We define the augmented Hamiltonian of this problem:

Ko (x(6), ult), v(), x(1), 1)
= L(x(e), we),e) +(A(0), F(x(0), u(e),0)) « e [ Nule) - wlt)ll ot

= H(x(0), ult), A(0), t) + & Hpllue) - v(O)lldr .

We want to remark that in case of the control problem (1), (2) it is known that one can
choose XAy =1 for the additional Lagrange multiplier.

The costate equation we can write as

dNt)/dt = - dH(x(¢),ult),A(t),t)/ox ae.onT (3)

e, = og(x(t, ))/().\’, where A(t) e R? (condition of transversality).

Algorithm:

Step 1: Let be given an admissible control u® and a positive sequence (e¥)2,c R
set k = 0. Compute the state x° associated to u°.
Step 2 : Compute the costate Ak associated to u k,
Step 3: Set k = k+1. Compute uk x* such that
Ktk(xk, uk yk-1 k-1 ¢y s Kek(.\'k, u, uk-13k-1 )
for all u(t)e U, a.e. on T, where u¥:= uzk(.\'k, uk LAk ) e Uy -

Step 4 : If a convergence test is satisfied ,then stop;else go to Step 2.

We need still the following property of Uyg.
Lemma 1: U, is closed in the norm topology of L,(T,R™).

Proof:If u,u¥e¢ L,(T.R)are such that llu k- uli ,~ 0, then by a well-known theorem
we find a subsequence (u ¥i) of (u*) such that u*i - v a.e. As is easily seen this state-

ment also holds for the space L,(T,R™).Now let (uR)cUpg, ueL(T, R™) and lu¥-u ”L4
> 0.Let uki > u a.e., and let t be any element of T such that uki(t) = u(t). We have

u¥i(t)e U for all i and since U is compact, U is closed, too. Hence u(t)e U. Therefore
we have u(t)e U for almost all t ¢ T which proves ue Upy 8

Now let us formulate the following Hypotheses:
(H1) L(-,-,-) and £(-,-.-) are continuous and L(-..t) and f (-, - 1) are continuously diffe-
rentiable, a.e. on T.
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(H2) g is continuously differentiable from R” to R.
(H3) There exists a positive constant M such that

fF(xCe) ule), )| s M1+ lix(e)) ¥(x(e), u(t))e R?=x U, a.e.on T.
(H4) H(x(t), u(t), A1), t) is convex with respect to u(t).

We need some properties of the solutions of the state and costate equations, respec-
tively. At first we remark that for each u € U,q equations (1) and (3) have unique solutions
on T (see, e.g.,[3]). Moreover, these solutions have useful boundedness properties, which

we formulate in the following

Lemma 2 : By assumption (H3) we obtain

(i) a uniformly bounded solution x(t) of system (1) ; i.e. Ix(e)ll s M,, where M, is
a positive constant not depending on -t and u (see [1D);

(i) a uniformly bounded solution A(t)e R” of system (3) for any t T ; i.e. [IX(¢)ll
s M, , where M, is a positive constant not depending on t.

We can define the compact and convex sets
X={xeR|lIxlsM,} and A={XeR"|INlsM,}.
Proof of Lemma 2: Those of (i) and (ii) are similar. That is why we give only the proof

of (ii). Itis true that d\(¢)/dt = - H(x(t), u(t), X(¢), t). If we use the definition of
the Hamiltonian, then we get

dX(e)/dt = -x(1) f(x(2), u(t), t) - L(x(2), u(t), ).

Since f,, and L, are continuous on the compact set X x Ux T, therefore we can find posi-
tive constants c,, ¢, such that

|| £fie(x (), ule), )]s e, and "Lx(x(t). u(t), )] sc,.

We get [IA(£)] s Ix(£)lc, + c,.Using the time transformation t = £, -t (te[0,|T1],iTI
=1, -ty ) we estimate

diIx(e)l/dt s ldA(e)/dell = IX(eM < IA(e)lle,+c, .

By integration from 0 to t and estimation we get
T IT|
IxCe, -0 - M) s e [ I, - Offde + e, [ a
(]

and therefore || A(t, - t)| s ¢ *f:c,")\(t, - 1)]]dt. Now we use the Lemma of Gronwall and
our assertion is proved B

3. Remarks about existence and uniqueness of functions u*, u* as generated by the

algorithm

We assume that we have found functions x %71 u¥~1 XX"1 by the algorithm. Now we
want to construct the corresponding functions x k. uk_ Ak,
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1. Since K:k is continuous in all its variables and U is compact, for fixed re 7,
arbitrary x ¢ X, ve U, X e A we find u(k(r)e U/ such that

'\:k(\ u () v X, !)six (\ u,v, X, r) YueU.
Especially for fixed t¢ T we find uX(¢+)eU such that

K:k(xk, uk gkl k-1 :)5 I'\'ck(.\'k, u, uk 1 ako t) Yue U. (4)
Since U is also convex and if we would assume that K_ is a strictly convex function
with respect to u, then we would find a unique uk(t)e U.

2. We consider a partition of the time interval T=[1¢,.¢,] into n (equal) parts and
we want to show how to construct a pair(,\',’,". u,‘,‘) approximating (x ¥ u*), where v ¥ is
the state corresponding to uk and x¥ u“' fulfil inequality (4) (for this construction, see
also[4]).Letbe t,=a,< a,<...< a, = t,. Since x ¥(¢, )= xg, x*(a,) is known and

hence we find u X(a,) ¢ U which sat;sfles (t'or t=a,) (4). Now, for t e [a,.a,] let uX(r)

= uX(a,), and setting v = uX we integrate the differential equanon (1) on [ao, a,]. The

solution we denote by \ K Starting with the new initial value x (a ) we can continue

this process, yielding x and up, X. But we still could not prove that A ¢ > x kK u,‘," ->uk

as n—> ® for some sunable notion of limit.

4. Estimation of the cost functional

Checking up the behavnour of the cost functional J(u) we can formulate the followmg
theorem.

Theorem 1 : Let the hypotheses (H1) - (H4) be fulfilled for x(t) e XC R™, u(t)e
UCR™ A(t)e ACR” and te T.Let (¢X),,, be an increasing sequence of positive num -
bers. Then, with a constant C> 0,

Juk)-d(u* ) s -(IT1/E5- Clluk-uk Mg, (5)
Proof : By the definition of the cost functional we find
J(uk) - J(uk 1)
= [T[L(.\"‘,uk.r) - L(.\""l‘uk",r)]dr +g(xk(t))) - g(x*7U¢))
=f [KEL-(,\"‘. v Akl Jt) - K k. 1(\ uk'l,v,)\"",t)
T .
+ ()\k'l. f(xkt gk-t) - f(.\'k.ukll))
P U DY R S vu]ds]dt
v e(xX(1,) - (v ke ))).

Now we estimate the term g(x ¥(¢,)) - g(x ¥7!(t,)) by means of a Lipschitzian, the inner
product (lk'l. F(x - Luk ) - F(xKkuke )) by means of the inequality of Schwarz

and a Lipschitzian. too. We get
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Hu®)-Juk N s Cllxk-x 1
’fT[K‘k('\’k’uk'v‘)‘k-l") 'Kek—a(-"k_'yUk'l,V,kk",r)
v Ixk-x% e lluk- u kY
o frlver-sllu®t - vl - Ve lluk- v||:|ds]dt ,
Further we can estimate the first integrand:
Koe() - Ko ()
= K x(xk uk v, A6 r) - Ko(x K ukl v, 2k )
+ K:k(_\'k‘uk'l‘v')\k"l',) - K:k—n(‘\:k,ukvl, v, Xk"l,l)
+sz.,(xk, uk'l,v,)\k-l',) _ K:k 1(.\'k_l,uk—1,v,)\k'1,t)_

We use the mean value theorem, the inequality of Schwarz and assumption (H1). We con-

centrate:
K k(..) - Kok-alol)
s C xk-x e Cllu®-u kM o+ (Ve - Vek-1) [ lu®-viide.-
Since by the assumption on (£*),, the last term is non-positive we obtain
Ke(o) - Koxerlo) s Cllsk - x & 1 g llu® - wk 0
Summarizing we get
Juk) - J(uk D)

< [T( C, Iy k-x M+ c, k- u"_ln)dt

) - c k k-1
+L_|:JT[1/EJ<-‘ Nuk-t - vl - Vellu®- vll:]ds]dt + Cyllxk - x k-

If we apply the algorithm at step kK we can write uk-1=: v and the inner integratio
yields - Veillu ¥ - u ¥l . In order to estimate G, lx% - x %1l we use the Lemma o -

Gronwall and thus we get C,lixk - x %"t s & frlluk - uk 1l de. Now we have
.f(uk) -J(uk'i) SJ‘.’.(C°||.\*k-xk'1"+Ca"uk - uk'lu)dt #fr(-i/sk)"u‘k- V||ler.

From the Lemma of Gronwall we can conclude

frclxk-x* tar s ¢ frliu*-u* ar
and therewith

k k-1 ) k_ k1 _ . k_ o, k-1
CJ(uk) - J(u )SJTC"U ukUde fT‘/EL”u u ||let
c (T - C)llak - uk1l,

" Thus the theorem is proved B

27*
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S. Results on convergence

At first we prove a lemma which we want to use in the proof of the following theorem.

Lemma 3: Ler (z%) be a sequence in a normed space N.(y*) ¢ R and («*) c R
decreasing, ay >0 for each k¢ N. Assume further that

v  yE Vs llz®-25 M forallk. (6)
Then
v -viscalzk-z00 foris k. ™

Proof : We give the proof with the help of a two-dimensional version of the induction
principle as e.g. announced in [3]. Let M < N x N have the following properties:

G) (1.1) e M,

(i) ((i,k)isksn}cM = {(i,n+1)| isn+1}cM (neN).
Then {(i.k)| is k} c M.

Obviously (7) holds if i = k. Now, we suppose that (7) is satisfied for i < k < n and
prove that (7) holds for (j, n+1), j s n +1, too. For j =n +1 the inequality holds. By
assumption, for arbitrary j, js n, we have y” - yJ < -a, llz"-2/|l. Moreover by (6)

yUT -y s —a,, lz "7 - 2"l Adding the two inequalities we get

yor - yiscap (27 -zl e 27 - 250).
Now [z7*t -2/l sllz?** - 27|+ lz™- 27| implies that

capa 2 -z 2w (275 -2 s 127 - 25))

e _yds ca,, 1z -zJ| holds B

and thus showing that y

Theorem 2 : Let (Ek)k.'zl be an increasing sequence of positive numbers with £* s
T ay+C), where a, > 0. | T| is the length of the time intervall and C >0 is taken from
inequality (S). Let (u¥),.,, be any sequence of control functions generated by the algo-
rithm and corresponding to the sequence (c")ku . We further assume that there exists an
optimal control u *¢ U, 4. Then the following holds:

1. (J (u k)) is a decreasing convergent sequence.

2. We find some ¢ U,y such that lu -all. —o0.

3. There exists a subsequence (u*i) of (u*) such that u¥/ - § ae. on T.

4. If in addition L, and f,,, (or Ly, and f.,) exist, then U fulfils the necess-
ary (first order) condition of optimality and J(u*) - J(d).

Proof: 1. We have ¢¥< IT|/(a,+ C) and hence ¢X<|T|/C for all k. too. Then
IT1/eX- C>0 and hence by (5) (J(u¥)) decreases. If u® is an optimal control, then
Jlu*) s J(u*®) forall k and (J(u*)) converges.

2.Forkz1weseta, =|Tl/c¥. C,y*=J(u¥)and 2% = u¥ Then, applying Lemma
3 to the inequality (5), we find that

Juk) - Jui)ys -(IT1/e X CMuk-uilly for is k. (8)

The convergence of (J(u*k)) implies that this sequence is a Cauchy sequence, too. From
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(8) we get Juty-Huk)>2 ay luk-u ill,_‘ for all i s k. Moreover, £k < ITH/(ag+ C)
implies &ty 2 o,. These facts show that (u¥) is a Cauchy sequence with respect to the L ,-
norm . Since L,(T.R™) is complete we find &€ L,(T.R™) such that flu*-dll, - 0.
By Lemmal. ve U,q4.

3. Assertion 3 we obtain at once from Assertion 2 (see the proof of Lemma 1).

4 .Let ¥ and X be the solutions of system (1) and (3) which correspond to the control
vector U . We show at first that [| X "\'k"L, —= 0 and x¥(t) > x(t) a.e. on T. By our
assumption we find constants D,. D, such that

i ey-x*el s b1 (e)-x )l e D la(o)-uk o).

Integrating and applying the Lemma of Gronwall give [[X(¢)-x*(e)ll s Dyl d-u¥lp,.
Integrating once more we get. || "\'k"L, s D,ITId-u ¥l . By statement 2 we get
luk-dil, o0 and hence I£(e)-x*(s)l > 0a.e.on Tand IIx -x ¥l , > 0. Now we
show that AX(r)— A(t) a.e. on T. Applying the additional assumption we get

dIn(e) - 2k(e)|/de

||d—‘:(i(r)—)\“(t))||

A

|- Hu(% d, %, 0) + Ho(x %, u k2% o)

ILoalxbuk o) « XETF (x K uk 0) - L(R, G, t) - NE(R, G, t)]
sD[|xk -2 |+ A5 (fu(x R uk ¢) - £(2, a8 )]+« JOXT - XD £ (%, G, 0)
<D ix* -8 +Dlluk -3 Il + DA% - Al

Letbe t=1t,-t and we consider

d ) - a%(e)ll/d e s Nd(...)/dell = d(.. DIl /dt v
s D lIxk-50 + D lluk - Gl + DIk - XL

We integrate from 0 to t and get for the left term

ey =260l - WACe,) - 2(e ) = 1X4e) -2k ()l - lg(R(e)) - g(x*e )l

Hence we get

T T
IxCe)-2k(e)ll s .[D‘ [Ix%(e,- 1) - £ (2, - t)||dr *st flu*(e,-o)-a(e,-1)]dx

T
< [D 2K - 0 - Mt D de + [ (R(2,) - (kKD
o
Application of the Lemma of Gronwall yields

| A(e)-2% ()]l s [LTD‘ Ix5(e) -2 (e)de + Dy lu*(e) - G()]|dr

J‘Z.Dbdt‘
+ |le(£e,) _g(,‘.k({l))ﬂe sD,[...]

and hence |I3\(1)-Xk(!)|!—>0, teT. Since u = u*(r)e Uminimizes K_x(x kyuk Lok 1)
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on the convex set U we get (H“(.\'k. uk Ak Yy uk u) < 0. From Assertion 3 we have
a subsequence (u*j) of (u*) such that u %j — u a.e. on T.Further on we have x ¥ =<
on T.xki— X on T. We obtain (Hu(.\7, G.), 1), 4 - u) 5 0 since H,, is continuous on .\ x
U« A = T . By assumption (H4) the Hamiltonian is convex and hence by a well-known
theorem we get H( X, 4, Xot)=min{ H(%, u.a‘. t) ue U}.Moreover we find constants
Dy . D, such that

lL(xkuke) - L(%,d,0] s Dylixk-% [+ Dollu*-all

which yields | J(u®)- J(8)| s Dgllx*- % fi , + Dollu*-dll,, = Oask > @
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