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On an Algorithm for Optimal Control Using an Augmented Hamiltonian 

U. FLEMMIG and H. POPPE 

An algorithm on optimal control due to Y. Sakowa and Y. Shindo is considered. it is based 
on Pontryagins minimum principle and the Hamiltonian is extended by a penalty term. 
Using another penalty term for this algorithm, under suitable assumptions we can show 
that each sequence of control vectors generated by the algorithm converges with respect 
to the L 1 -norm to an admissible control fulfilling the first order optimality condition. 
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1. Introduction 

We consider a general control problem with fixed time and Lagrange functional governed 
by a system of ordinary differential equations. In [411 SAKAWA and SHINDO proposed an 

iterative algorithm to solve problems of such kind using Pontryagins minimum principle. 
They defined an augmented Hamiltonian, which is the sum of the Hamiltonian and a 
quadratic term penalizing the difference between the new and the old controls, and the 
new control minimizes at each time the augmented Hamiltonian. This term contains also 
a real parameter. By Bor'mNs [ii this algorithm as considered too. The mentioned 
authors proved some properties of convergence for this algorithm, but they did not prove the 
convergence in the metric of some function spaces of a sequence of controls generated by 
the algorithm to an admssible control, which fulfils the (first order) optimality condition. 

We want to treat the problem in the space L 1(T, Rm ) and as a penalty term we use 
the L 1 -norm of the difference between the new and the old controls. We use rather mild 
assumptions (in essential only the existence and continuity of first order partial derivati-
ves of the relevant functions is assumed), as compared with the assumptions used by 
Sakawa and Bonnans, respectively. Applying these assumptions we deduce an inequality 
which estimates the difference of two successive values of the cost functional by the 
L 1 -norm (Theorem 1). This inequality is analogous to inequalities which were obtained by 
Sakawa and Shindo and Bonnans, respectively, using their approaches. We further show 
that any sequence (Uk) of control functions generated by the algorithm converges to an 
admissible control 11 with respect to the L 1 -norm. In order to show that i fulfils the first 
order optimality condition we must assume some second order conditions of differentiabi-
lity for the functions L and f (see Theorem 2). 

2. Problem 

We consider the system of differential equations 

x(t )	f(x(t ), u(i' ), t), t € T	[t0 . t] , x(t0 ) x0 ,	 (1) 

x(t) E X c R and u(t ) € U c R denoting the state vector and control vector, respecti-
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vely. The control problem is to find an admissible control ut Uad such that u minimizes 

the cost functional 

J(u)	f t 'L(x(t ), u(t ),t) dt	g(x(t 1 ))	 (2) 
J to 

x denoting the solution of system (I) corresponding to u and 

tjad r {u:T-4 R m lumeasurable, u(t)€U fora.a. tcT) 

where Uis a convex and compact subset of R and u measurable means Lebesgue mea-
surability of u'(B) for every Borel subset B c R". We denote by L 1 (T,R ... )the usual 
Lebesgue space. (See, e.g.,[5].) We define the augmented Hamiltonian of this problem: 

K( x ( t ), u(t), v(t), A(t), t) 

= L(x(t), u(t),t) +(x(t), f(x(r), u(t), t)) . tfT IIu(t) - v(t)IIdt 

H(x(t), u(t), A(t), r) + E	 IIu(t) - v(t)IIdt. 

We want to remark that in case of the control problem (1), (2) it is known that one can 
choose A 0 = I for the additional Lagrange multiplier. 

The costate equation we can write as 

d A(t )/dt = -	t ), u( t ), A(t), t)/cx a.e. on T	 (3) 

X(t 1 ) = c)g(x(t1))/ax, where A(t)€ R' (condition of transvorsality). 

Algorithm: 

Step 1: Let be given an admissible control u° and a positive sequence (E')k ,, l c R; 
set k 0. Compute the state x° associated to u°. 

Step 2: Compute the costate A' associated to u 
Step 3: Set k k + 1. Compute u Ic. x k such that 

KEk(xuc,u1,),11,t):5KEk(X,u,Ukl,Akt,t) 

for all u(t)e U. a.e. on T, where uk	uk(x, uk, ),k - It) € Uad 

Step 4 : If a convergence test is satisfied ,then stop; else go to Step 2. 

We need still the following property of U8d. 

Lemma 1: UOd is closed in the norm topology of L 1( T, R"). 

Proof: If u, u k  L 1 (T, R) are such that Ilu k - U 1L1 -+ 0, then by a well-known theorem 
we find a subsequence (u 1-0 of (u k ) such that u - u a.e. As is easily seen this state-

ment also holds for the space L 1(T, R'). Now let (u k) c U, u € L 1 (T, R m ) and Ilu k - u ll, 

- 0.Let u' -+ u a.e., and let t be any element of Tsuch that u"(t) -* u(t ). We have 

ukj(t )€ U for all i and since U is compact, U is closed, too. Hence u(t )€ U. Therefore 

we have u(t)E U for almost all t € Twhich proves u E 1jad ) 

Now let us formulate the following Hypotheses: 

(Hi) L(,,) and f(, ,) are continuous and L( . '.t) and f(, , t) are continuously diffe-

rentiable, a.e. on T.
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(H2) g is continuously differentiable from R" to R. 

(H3) There exists a positive constant M such that 

	

II f(x(t) , u(t ), t ) 15. M(1 + IIx(t ) Ii) V (x(t ), u(t )) €	x U, a.e. on T. 

(114) H(x(t), u(t), A(t), t) is convex with respect to u(t). 

We need some properties of the solutions of the state and costate equations, respec-

tively. At first we remark that for each u € U d equations (1) and (3) have unique solutions 

on T (see , e. g., [3)).Moreover, these solutions have useful boundedness properties, which 

we formulate in the following 

Lemma 2 : By assumption (H3) we obtain 
(i) a uniformly bounded solution x(t) of system (1) i.e. Ilx(t)iI s M 1 , where M. is

a positive constant not depending on t and u (see [1]); 
(ii) a uniformly bounded solution X(t)e R" of system (3) for any t € T; i.e. llX(t)U 

^ M2 , where M2 is a positive constant not depending on t. 

We can define the compact and convex sets 

X {x€ R" I jjxjj g Mj and A = {x€ R'7 1 1 1 ), 11 , M2}. 

Proof of Lemma 2: Those of (i) and (ii) are similar. That is why we give only the proof 

of (ii). It is true that dA(t)/dt = - H(x( t ), u(t), A(t), t). If we use the definition of 
the Hamiltonian, then we get 

dA(t)/dt	-A(t)Tf(x(t), u(t), t) - L(x ( t ), u(t), t). 

Since f, and L are continuous on the compact set X  U  T, therefore we can find posi-
tive constants c 1 , c 2 such that 

II E"x((t) , u(t), t ) 11 :5 c	and 11L(x(t), u(t), t) 11 S C2 

We get 11X( 0 11 )hI s II )( t )hI c 1 + C 2 . Using the time transformation t = t 1 - t (t e[O, I TI], ITI 
= t1 - t) we estimate 

dihX(t)hl/dt :5 IhdA(t)/dthl = II x ( t )11 :5 11X(t)11c1+c2. 

By integration from 0 to t and estimation we get 

II X( ' - ) I111 A( t i )I , c	),( t 1 - t)JI dt + c2fdt 

and therefore II A(t 1 -	-s c +fc II X(t  - t ) I jd t .Nowwe use	the Lemma of Gronwall and 

our assertion is proved I 

3. Remarks about existence and uniqueness of functions u u k as generated by the 
algorithm 

We assume that we have found functions x 1 , u 1 . x' by the algorithm. Now we 
want to construct the corresponding functions x k u k Ak 

27 Analysis. tkt, lii. 1 cli 3 (19 1) 1
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1. Since K,.k is Continuous in all its variables and U is compact, for fixed t E T, 
arbitrary x E X, v€ U, A€ A we find u k ( t )c U such that 

VUEU. 

Especially for fixed t E T we find uk(t )E U such that 

Kk(x", Ak-I t)s h C k(x k,u,u 1 ,),,t) Vue U. (4) 

Since U is also convex and if we would assume that Kk is a strictly convex function 
with respect to u, then we would find a unique uc(t )e U. 

2. We consider a partition of the time interval Tr [t0 . r 1 ] into n (equal) parts and 
we want to show how to construct a pair (X k . u,) approximating (x u k) where .v k is 
the state corresponding to u k and x u k fulfil inequality (4) (for this construction, see 
also [4]). Let be to = a0 < a 2 < ... < a,, = t . Since x k( t 0 ) x 0 , x k( a 0 ) is known and 
hence we find u,(a0 ) e (Jwhich satisfies (fort a 0 ) (4). Now, for t € [a0 .a 1 ] let U,k(r) 

u,(a0 ), and setting u u,' we integrate the differential equation (1) on [a0 , a 1 ]. The 
solution we denote by x,, . Starting with the new initial value x(a 1 ) we can continue 
this process, yielding x,,k and u. But we still could not prove that x,,k	x'<, Uri	

k 
as n—	for some suitable notion of limit. 

4. Estimation of the cost functional 

Checking up the behaviour of the cost functional J(u) we can formulate the following 
theorem. 

Theorem 1: Let the hypotheses (HI) - ( 1-14) be fulfilled for x(r) E Xc R 1', u( t )€ 
UC" ),(t)€ A C " and t € T. Let (t')kl be an increasing sequence of positive num-
bers. Then, with a constant C> 0, 

J(uk)J(uk1):5(tTI/EkC)tIukk-IIj U	 (5) 

Proof: By the definition of the cost functional we find 

J(u k ) - J(u1)

U k. yA k - I , t) - K k . l ( x k_t , u 1 ,v, A1,t) 

+ ( A k1 . f( k-I ukI t) - f(x k.0 kt)) 

+JI/5ki IIu k I	
- I/kIIuvIf]ds]dt 

Now we estimate the term (x k( t 1 )) - g(x k I( )) by means of a Lipschitzian, the inner 

product k-XI. f(x k- I u k - I t) - f(x k, u k )) by means of the inequality of Schwarz 
and a Lipschitzian. too. \k'e get
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J(uk)J(u1)2^C3IlxkxJll 

+J 1K k(Xk,t,k.,, X k-I . t) - Kk_l(xk, uk,v,Xki,r) 
TL 

+ C1 lIc k - x k - 1 11 +	
k. u k-i11 

+J'T[41u	- Vu - /5 k11U	v]ds]dt 

Further we can estimate the first integrand: 

- 1k i••• 

=K(k(xk,uk,v,X1,t)_KCk(Xk,Uh1,V,X,t) 


+ K k (x k ,u	lvXk ,t) - Kk - 1(', a k-I v, 

+ K, k (x k, u 1 , v, ), 1 , t) - Kk	, u k-i v, Xk-1t) 

We use the mean value theorem, the inequality of Schwarz and assumption (Hl). We con-
centrate: 

:5 Clix 1 -x11 + Cs Ilu k ull +( 1/E k - I/E k1)j 11u	vlldt 

Since by the assumption on ( t k )kll the last term is non-positive we obtain 

Kr k - K kI ( ... ) S C4 llx c - v k 111 + C5 Iiu k - u111 

Summarizing we get 

J(uk) - J(u" ') 

:5 
.IT( C6 1k k _x ki ll + C7 lIu k u	ll)dt 

+J[jT[/Ek	
lju k1 - vii - I/E k 	- vll]ds]dt + C3 llx k - xli. 

If we apply the algorithm at step k we can write u k- I : v and the inner integratio 

yields - i/5kllU k - u k- 'IIL,- In order to estimate C3 lix" - x k - I ll we use the Lemma o 

Gronwall and thus we get c3 iIx' - x k - I ll f offT ll u k - u k - I ll dt. Now we have 

J(u")J(u')	 - u ch ll)dt +fT (_ I/E k)llu k_ VlILdt. 

From the Lemma of Gronwall we can conclude 

JT Co IIX	x' 1 11 d s C9 Jrllu k_ u' flldt 

and therewith 

J(u") - J(u') s JT C II u " -  u"flldt	JTEdiL	u1IIdt


= - ( ITI/k - C)llu" - ullL. 

Thus the theorem is proved I 

27*
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5. Results on convergence 

At first we prove a lemma which we want to use in the proof of the following theorem. 

Lemma 3: Let (z k) be a sequence in a normed space X(yk) c R and (a) c R 
decreasing, a k > 0 for each k € N. Assume further that 

• k ykl s _akHzk Z  1 11 for all k.	 (6) 

Then 
ykvl S	kZl1 for i:5 k.	 (7) 

Proof : We give the proof with the help of a two-dimensional version of the induction 
principle as e.g. announced in [3]. Let M c N x N have the following properties: 

(1) (1,1) € lvi; 

(ii){(i,k)iik:5n}cM	{(i,n+l)Iin+1}cM (n€t'.J). 
Then {(i,k)I i:^ k} c: M. 

Obviously (7) holds if I k. Now, we suppose that (7) is satisfied for I s k s n and 
prove that (7) holds for (j, n 1), j s n + I, too. For j n - 1 the inequality holds. By 
assumption, for arbitrary j, j ^ n , we have y fl - yJ s	11Z  -zIi. Moreover by (6) 

-	11  "' - z"ll. Adding the two inequalities we get 

y"	- yJ'15- an.,(ilz	' _ Z n 1 1 + liz - zJiI). 

Now liz n  - z'll s liz "	- z' II + liz n zIi implies that 

- a, 1 liz	- zil ^ - a n. 
(Ilz	- z	II + lIz" -z i ii) 

and thus showing that y"	yJ :S -	liz " t -z-'ll holds I 

Theorem 2 : Let (s 
k k i be an increasing sequence of positive numbers with E k 

lTl/(a0 C), where a0 > 0. I TI is the length of the time interval] and C >0 is taken from 
inequality (5). Let (u	be any sequence of control functions generated by the algo-




rithm and corresponding to the sequence (€ k )k . We further assume that there exists an 
optimal control u € 'ad• Then the following holds: 

1. (J( u 10) is a decreasing convergent sequence. 
2. We find some i2EUad such that 11u -illL-+0. 
3. There exists asubsequence (u k.i) of ( U k) such that u ki -->	 a.e. on T. 
4. If in addition	and f, (or L,, u and f) exist, then G fulfils the necess-

ary (first order) condition of optimality and J(uk) - J(2). 

Proof: 1. We have r 1*s iTl/(a0 C) and hence t* < TI/C for all k. too. Then 
lTl/ E k - C> 0 and hence by (5) (J( u k)) decreases. If u is an optimal control, then 
AU *) s J( u k) for all k and (J (u'- )) converges. 

2. For k^: 1 w set a , lTl/r' C , y k =J( U k ) and z k = uk. Then, applying Lemma 
3 to the inequality (5), we find that 

J(uk)_J(ui)s -(iTl/r' C)llu k_ u u ll Ll for is k.	 (8) 

The convergence of (J( u k)) implies that this sequence is a Cauchy sequence, too. From
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(8) we get J( u') - J(u k ) a j II uu ll Lj for all i s k. Moreover, Ek ^ lTl/(a0 C) 

implies a  ^ a 0 . These facts show that (u k) is  Cauchy sequence with respect to the L 1 -
norm . Since L 1 ( T. R") is complete we find Ii E L 1 ( T. R"') such that l lu k - 0. 

By Lemma 1. U E Uad 
3. Assertion 3 w obtain at once from Assertion 2 (see the proof of Lemma 1). 
4. Let . and X be the solutions of system (I) and (3) which correspond to the control 

vector :i We show at first that II -x k 0 and x 1 ( t) -+ . (t) a.e. on T. By our 
assumption we find constants D1 . D2 such that 

d 'I- iix(t )-.v'(t )I! s D 1 II . ( t )_xk(r)II	D2II6(t)_uk(0II. 

Integrating and applying the Lemma of Gronwall give 112(t) - x k(t )Il :s D 3 V a - u k 

Integrating once more we get 112 x k lI, r D 3ITIIIt2-u k ilL . By statement 2 we get 

lu k - U 1 1 L, 0 and hence Ilk(t)- x'(r)Il - 0 a. e. on Tand Ilk X'llL 1	0. Now we


show that )++( t) -+ X( t) a.e. on T. Applying the additional assumption we get 

d IIX(t) - xk(t)IJ/dr 

:5
dt 

= 11 _H(kI,A,t)+H(xk,uk,XIc, t)D 

^ D4xk2 H + xkT(f (vk U k t)	 t) JI + J(X kl - 5T)f(2 a, t )IJ 
^D41Ixk_k11+D51IUk_iiII+D6IIXk_XI1. 

Let be t t 1 - t and we consider 

d IIA(r) - A k (t)Ij/d t :; IId(...)/dt II = IId(.. .)II/dt 

s D 4 llx k 2Il +D 5 Ilu k II +D6 IIX k All. 
We integrate from 0 to t and get for the left term 

IIA(t) - xk (t)II - IIX(tj)_Xk(tj)II	11 j, 	_Xk(t)II - Ig(2(t)) _g(xk(tj). 

Hence we get 

II X (r) Xk ( t )II ^ D4 lx k(t j t)2(t a -t)IIdt +fD s IIu k (t i t)	(tj -t)IIdt 

II A(t - t) - X( t 1 - E) 11 dt + h g (k( t,)) - g(x k( t,)) II. 

Application of the Lemma of Gronwall yields 

flx(t ) xk ( t )II ^ 
[1 0, D4hIxkt -2(t)IJdr =JD

s hJu k(t) - (t)hldr 

d t 
- g(.vk(ti))	e	5 D7[...] 

and hence DX(t)_X k (t)U_40,tET. Since uuk(t)EUminimiZe5KEk(X.U.U& 
1

. Xk 1,t)
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on the convex set ti we get (H.,(x k, Li k	c- ',I), 1k	0. From Assertion 3 we have 

a subsequence (u kj) of (u k) such that u ki --i, u a.e. on T. Further on we have x kJ - 

on T. >!'J	X on T. We obtain	i, X,t), i - Li) s 0 since H0 is continuous on ..V 

U w A T. By assumption (H4) the Hamiltonian is convex and hence by a well-known 

theorem we get H(,L,),.t) min {H(X,U,),t)IuEU}. Moreover w find constants 

De. D 9 such that 

L(xk,uk,t)L(.,,t) I I D.ali	XlI+DqIlukUll 

which yields I J( u	- J( Ii )l s D. I1 x k_ L1 + D. Ilu k -	1IL1 -+ 0 as k -	U 
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