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On the Periodic Solution Process to the Stochastic Model 
of Single Species 
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Two stochastic models of single species are studied. A necessary and suffi-
cient condition and a sufficient condition for existence of the periodic solution 
process are obtained, respectively. 
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1. Introduction 

As is well known, the logistic model of single species is 

dN/dt = N(b - cN),	 (1.1) 

where N is the population density, b and c are positive numbers, b/c is called carrying 
capacity. N = 0 and N = b/c are equilibrium points of (1.1). The second of them is more 
important for us as it is asymptotically stable, i.e. every solution with initial value N(0) 
O tends to b/c as t- +. la [5], the author discussed (1.1) with periodic coefficients and 
obtained a sufficient condition for the existence of a unique periodic solution. In general, 
the environment where a population lives in possesses random property. In [4], May 
considered the random environment with a stochastic differential equation model. About 
this model some valuable remarks were given by [6]. We start out from May's idea (also 
see [31) and consider the following stochastic population models 

dN(t)=N(t)[b(t)_c(t)Na(t)]dt+a(t)N(t)dW(t),	 ( 1.2) 

dN(t) N(t)[b(t) - c(t)lnN(t)]dt + a(t)N(t)dvi.'(t),	 (1.3) 

where a, b and c are periodic continuous functions with period T, a > 0 is a constant. W is 
a Wiener process with E{W(t )} 0, E{(dW)2 } = dt. (1.2) and (1.3) are first order non-
linear Ito's stochastic differential equations. 

We define 

jnf{f a 0: N(r) a M} , tj = inf{t z 0: N(t) M1} 

T , Ii m M	M ' t = Ii m M -* CC 114 
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T' and t' are called explosion time and absorption time, respectively. For every N(0) > 0 

the solutions of (1.2) and (1.3) are unique up to the time t ' A t' min (t',r"). 

Definition: A stochastic process ( t) = ( t, w) (-co < t < - co ) with values in E is 

said to be periodic with period T if for every finite sequence of numbers t 1 .....t the joint 

distribution of the random variables k (t1 h).....(t,3 + h) is independent of h, where h 

kT (k = ±1, ±2,...). 

Our purpose is to find conditions for the existence of a periodic solution process of 
(1.2) and (1.3). We obtained a necessary and sufficient condition for the existence of a 
periodic solution process of (1.2) and a sufficient condition for the existence and distribu-
tion of a periodic solution process of (1.3). 

The following Lemma 1 is important in proving our main theorems. 

Lemma 1 [1] : Consider Ito 's differential equation of the form 

dX(t) = b(X(t), t)dt + o(X(r),t)dW(t). (1.4) 

Suppose that the coefficients of this equation are T-periodic in t and satisfy the linear 

growing condition and the Lipschitz condition in every cylinder UR x [0, w),for R > 0, 

where UR = {X: IX I < R}, and suppose further that there exists a function V = V(t X) 
which is twice continuously differentiable with respect to X and once continuously diffe-
rentiable with respect to t in E x [0, co), T-periodic in t and satisfies the conditions 

inf V(t,X)- co asR- c ,	inf LV(t,X)--coasR--. 
IXI=R	 IXI"R 

Then there exists a solution of equation (1.4) which is a T- periodic Markov process,where 
L is the generator for (1.4). 

Lemma 2: Assume that  is a T-periodic process and f is a Borel measurable func-
tion. Then f(y) is also a T-periodic process. 

The proof of Lemma 2 is simple, therefore we omit it I 

2. Main resu1. We are now in a position to prove the following result. 

Theorem 2.1: In (1.2), assume that c ( t) >  0, a and b are periodic continuous func - 
tions. a >0 is a constant. Then, for (1 -2), 

f(b(t) - 12 a 2 (t ))dt >0	 (2.1) 

is a necessary and sufficient condition for the existence of a periodic solution process. 

Proof: Sufficiency. We take the transformation X(t ) alnN(t ), which is defined 

up to the time t 'A t " . The explosion time of the process X is t lim inf {t a 0: 1X(t)1 a 

M). Obviously, t = t ' ' t ". The transformation A' a In N does not change the periodicity 

of the process from Lemma 2. Ito's formula shows that 

dX(t) = a[b(t) - 1,, a 2 (t) - c(r )exp(X(t ))ldt + aa(t)dW(t).	(2.2)
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Let us set 

1(t) - J (b(s) - "2 a 2 (s ))ds + Bt, 
0 

where B 1/TJT(b( t) - 1/2 a 2 ( t ))dt . It is easy to see that f is a T-periodic continuous 

function. Let Y( t ) af( t) • X(t). By Itos formula, we have 

dY(t)a[Bc(t)eXP(Uf(t)+Y(o))]dt+(t)dW(t)	 (2.4) 

Now we take a Liapunov function V( Y) = Y 2 . By the definition of generator, we have 

LV cx[B - c(t )exp(- cx 1(t) + Y(t))]2Y(t) + a2a2(t). 

Since the periodic continuous functions are bounded, therefore L V -	co as I Y I - co -



 

From Lemma I we obtain that (2.4) has a periodic solution process, then we get that (1.2) 
has a periodic solution process. Moreover the explosion time is t = 

Necessity. We want to prove that (1.2) has no T- periodic solution process if B :5 0. 

We consider the case of a * 0. In fact, if a a 0, (1.2) becomes a deterministic model and 
obviously the equation has no periodic solution in this case. We consider a comparison 
equation of (2.4) of the form dY( t) = a a( t )d W( t). By the comparison theorem [21, the 

same initial value implies that Y( t)	Y'( t ) a.s. But, obviously, urn	( t)	-	a.s,
t -,. 

therefore Y can not be a periodic process. We return to (1.2) and note that the transforma 
tions keep the periodicity of a process. As a consequence, the necessity of the theorem is 

proved U 

Corollary: 11 a a 0, (1.2) becomes a deterministic model. From Theorem 2.1 we know 
that if c with c(t) >0 and bare T- periodiccontinuous functions, then fb(t)dt > 0 
is a necessary and sufficient condition for the existence of a T-periodic solution of (1.2). 

Remark: This corollary includes a result of [5]. 

Theorem 2.2: Assume in (1.3) that a, b and c are continuously periodic functions with 
period T, c ( t) > 0. Then (1.3) has a periodic solution process with period T, moreover, we 
derive the distribution of this solution process in the formulas (2.9) - (2.12). 

Proof: We take the transformation X = In  which is defined up to ' A i ' . By Ito's 

formula we have 

dX(t) = [bt - '2 a 2 (t) - c(t )X(t )]dt + a(t)dW(t).	 (2.5)

Setting V(X) X 2 we know that 

L 	r [b ( t )	/2 a 2 (t)c(t)X]2\	2(t..c.o asIXI -'° 

since c( t ) > 0. By Lemma 1, (2.5) has a T-periodic solution process. Then we use Lem-
ma 2. therefore (1.3) has a T-periodic solution process. The equation (2.5) is linear. so its 

solution has an expression of the form (see [71)

(2.3)
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t	I  X(t)exp(ftc(s)ds)X(o)+f exp(-f,c(u)du)a(s)dw(s) 
to	\ S

(2.6) I	t	)[b(s)1/2a2(s)]ds. +J' expj-Jc(u)du t0	\ S 

The mean of the process X is

I	t 
EX(t)exp(-f'c(s)ds)EX(to)+ft0

t	
\ s 

expIfc(u)du)[b(s) 1/2 a 2 (s)]ds	(2.7) 

The covariance function of the process X is 

I 
(s,r) = expf-j

.s
 c(u)du - J c(u)du)DX(to) 

\	t0 

's,t	I 
+2J	exp[fc(v)dvftc(v)dv)a2(u)du. 

t0	\ Ju 

The variance of X is 

I	t	
)Luo	

t	
f.) c(u)dua2(s)ds.	(2.8) DX(t) expj-2f c(s)ds DX (t. 	exp[-2 

\	t0	 t0	\ 	) 

If we choose the initial value such that 

EX(t0) (
	

f	
(s)ds))1 = i-expi-f	c 

\	t, 

x I
T.r0	

I T+t (u)du)[b(s) - 1/2 a 2 (s)]ds , expi-f	C Jto	S 

(i - exp(_	
Tt0	- 1Tt0	

(	
T.t 

DX( r0 ) =	 ) 2j	
c(u)du)) 22

	exp 21	c(u)du a2(s)ds, to	 0	 S 

then

EX(t)=EX(t +T), DX( t)= DX(t +T), I1(s,t) ii(s +T,t+T), 
and the correlation function is 

y(s,t) = z(s,t)/IDX(s)DX(t) =y(s+T,t+T) 

Now we assume that X( t 0 ) is of Gaussian type with NC EX( f0), DX( t0 )). Then X is also 
Gaussian with N(EX( t ), DX( t )) [7].The joint distribution of (X(s ), X( t )) is 

N(EX(s), EX(t ), DX(s), DX(t), y(s, t)). 

The transition probability density of (X( t )I X(s) X(S)) is 

N( EX(t) + r(s, t.)IDX(t )DX(s) (x(s) - EX(s )), DX( t )( I - r2(s,t))). 

We note the transformation X(t ) = lnN(t ), so the distribution of N(t ) is logarithmic 
normal, its density is 

0	 ,n(t)0 
p(n(t)) 5	______	 (In n(t) - EX(t ))2\	 (2.9) 

I/(12DX(t)n(t))exp(	
2DX(t)	I n( t ) > 0 

and (N(s), N(t)) is  two-dimensional Gaussian distribution with the density 

p(n(s),n(t ))
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=1/(21t/(1r2(s,t)DX(t)DX(sn(s)n(t)) 

xexp((1/2(1r 2(s , t)))((Inn(s)EX(s)) 2/DXs	 (2.10) 

-2r(s,t)(Inn(s)-EX(s))(lnn(t)-EX(t))/1DX(t)DX(s) 

.(lnnt) - EX(r))2/DX(t))) 

if n(t ),n(s) > 0 and p(n(s), n ( t )) = 0 otherwise. The transition probability density of 
(N(t )I N(s) = n(s)) is 

p(n(t )I n(5)) = p(n(s ), n(t ))/p(n(s)). (2.11) 

Since N(t )is a Markov process, we have thus got the family of the finite-dimensional 
distributions. Especially, we have 

EN(t ) = exp(EX(t ) + /2 DX(t ))
(2.12) 

DN(t ) = exp(2EX(r ) + DX(t ))(exp(DX(t )) - i) 

Due to (2.7) and (2.8), the mean and variance in (2.12) are known U 
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