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On the Periodic Solution Process to the Stochastic Model
of Single Species
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Two stochastic models of single species are studied. A necessary and suffi-
cient condition and a sufficient condition for existence of the periodic solution

process are obtained, respectively.
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1. Introduction

As is well known, the logistic model of single species is
dN/dt = N(b - cN), (1.1)

where N is the population density, b and c¢ are positive numbers, b/c is called carrying
capacity. N = 0 and N = b/c are equilibrium points of (1.1). The second of them is more
important for us as it is asymptotically stable, i.e. every solution with initial value N(0) >
0 tends to b/c as t = +. la [5], the author discussed (1.1) with periodic coefficients and
obtained a sufficient condition for the existence of a unique periodic solution.In general,
the environment where a population lives in possesses random property. In [4], May
considered the random environment with a stochastic differential equation model. About
this model some valuable remarks were given by [6]. We start out from May's idea (also
see [3]) and consider -the following stochastic population models :

dN(t) = N()[b(t) - c()N*(t)]dt + a(t)N(t)dW(t), (1.2)
dN(t) = N()[b(t) - c(e)InN(e)]dt + a(t)N(t)dW(t), (1.3)

where a, b and c are periodic continuous functions with period T, « > O is a constant. W is
a Wiener process with E{W{t)} =0, E{(dW)?} = dr. (1.2) and (1.3) are first order non-
linear [to’s stochastic differential equations.

We define

thg = inf{t 2 0: N(1)2M}, t"pg = inf{t 20: N(t)s M1}
Uslimpayp ooty « U =limpg o tag.
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t" and 1" are called explosion time and absorption time, respectively. For every N(0)>0
the solutions of (1.2) and (1.3) are unique up to the time t'a t” = min (v,t7).

Definition : A stochastic process E(f) = E(t, w) (-@ < t < +@) with values in E is
said to be periodic with period T if for every finite sequence of numbers ty,..., t, the joint
distribution of the random variables E( ¢, + h),..., E(t,, + h) is independent of h,where h =
kT (k=21,22,...).

Our purpose is to find conditions for the existence of a periodic solution process of
(1.2) and (1.3). We obtained a necessary and sufficient condition for the existence of a
periodic solution process of (1.2) and a sufficient condition for the existence and distribu-
tion of a periodic solution process of (1.3).

The following Lemma 1 is important in proving our main theorems.

Lemma 1(1): Consider Ito’s differential equation of the form
dX(t)=b(X(e), t)dt +o(X(t),e)dW(t). (1.4)

Suppose that the coefficients of this equation are T-periodic in t and satisfy the linear
growing condition and the Lipschitz condition in every cylinder Ug = [0, »),for R > 0,
where Ug = {X: | X| < R}, and suppose further that there exists a function V= V(z,X)
which is twice continuously differentiable with respect to X and once continuously diffe-
rentiable with respect to ¢ in E,, x [0, ®), T-periodic in ¢t and satisfies the conditions

inf V(t,X)—>® asR —» > , inf LV(¢, X)—>-®© asR > >,
IX{>R IX1>R
Then there exists a solution of equation (1.4) which is a T-periodic Markov process, where

L is the generator for (1.4).

Lemma 2 : Assume that y is a T-periodic process and f is a Borel measurable func-
tion. Then f(y) is also a T-periodic process . '

The proof of Lemma 2 is simple, therefore we omit it B

2. Main results. We are now in a position to prove the following resuit.

Theorem 2.1: In (1.2), assume that c(t) > 0,a and b are periodic continuous func-
tions. a > 0 is a constant. Then, for (1.2),
[T (btt) - v5 a%(1))de >0 eR)

is a necessary and sufficient condition for the existence of a periodic solution process.

Proof : Sufficiency. We take the transformation X(t)=alnN(t), which is defined
up to the time t'a t”. The explosion time of the process X is t = 'L’li;lf {e20:1X(tN2
M. Obviously, t = t'at”. The transformation X = aln/N does not change the periodicity
of the process from Lemma 2. Ito’s formula shows that

dx(t)= a[b(l) - Yy a2(t) - C(!)exp(/\'(r)):]d! +oaalt)dWit). (2.2)
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Let us set

Fle)= -0 (b(s) - Yy a2(s))ds + Bt, (2.3)

T
where B = 1/-,-fo(b( t) - ¥, a2(t))dt . Itis easy to see that f is a T-periodic continuous

function. Let Y(¢)=af(r)+ X(t). By Ito’s formula, we have
ay(t)=a[B-clt)exp(-af(t)+ Y(¢))]dr + aa(t) dW(r). (2.4)

Now we take a Liapunov function V(Y) = Y 2. By the definition of generator, we have
LV = a[:B -c(r)exp(-af(e)+ Y(r))]ZY(r)*uzaz(t).

Since the periodic continuous functions are bdunded, therefore LV —> - ® as |Y|—> .
From Lemma 1 we obtain that (2.4) has a periodic solution process, then we get that (1.2)
has a periodic solution process. Moreover the explosion time is t = .

Necessity. We want to prove that (1.2) has no T-periodic solution process if B s 0.
We consider the case of a ¢ 0. In fact, if a = 0, (1.2) becomes a deterministic model and
obviously the equation has no periodic solution in this case. We consider a comparison
equation of (2.4) of the form d¥(t)=aalt)dW(t). By the comparison theorem [2], the
same initial value implies that Y(¢t) s Y (¢t ) a.s. But, obviously, _l_iﬁ.”?(!) = - as,
therefore Y can not be a periodic process. We return to (1.2) and no't?that the transforma
tions keep the periodicity of a process. As a consequence, the necessity of the theorem is
proved i

Corollary : If a = 0,(1.2) becomes a deterministic model. From Theorem 2.1 we know
that if ¢ with ¢ (t) > 0 and b are T- periodic continuous functions, then f;r b(t)dt >0
is a necessary and sufficient condition for the existence of a T- periodic solution of (1.2).

Remark : This corollary includes a result of (s].

Theorem 2.2 : Assume in (1.3) that a, b and c are continuously periodic functions with
period T, c(t) > 0. Then (1.3) has a periodic solution process with period T, moreover, we
derive the distribution of this solution process in the formulas (2.9) - (2.12).

Proof : We take the transformation X = In N which is defined up to t'a1”. By Ito’s
formula we have

ax(0)= [6(6) - vy a2(e) - c()X(2)]dt + a()dW (). (2.5)
Setting V(X ) = X2 we know that
LV = [b(r) - o a2(1) - c()X]2X + a%(1) > - @ as|X|>e

since c(t)> 0. By Lemma 1, (2.5) has a T-periodic solution process. Then we use Lem-
ma 2. therefore (1.3) has a T-periodic solution process. The equation (2.5) is linear, so its
solution has an expression of the form (see [7])
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X(t )= exp(-ft;c(s)ds))\'(to) + f';exp(—fs’c(u)du)a(s)dW(s) .
(2.6)

*f';exp(—fs'c(u)du)[b(s)- Vs az(s)]ds.

The mean of the process X is
¢ i 4 t
EX(t)= exp(—Loc(s)ds)E/\(to) *Loexp(-fsc(u)du)[b(s) -, az(s)]ds (2.7)
The covariance function of the process X is

uis 1) = cxp(-J:c(u)du -J;;c(u)du)DX(to)

+2fs”exp('fsc(v)dv - frc(V)dv)az(U)du'

to u u
The variance of X is
t t t
DX(t)= exp(-Zfroc(s)ds)DX(to) + Zj;oexp(— Zfs c(u)du)az(s)ds. (2.8)
If we choose the initial value such that

'oc(s)ds))_l

+

EX(to)=(1-exp(-f;:
xf:;"oexp(—f:*zoc(u)du)[b(s) -1, a2(s ):Ids,

DX(t,) = (1 - exp(- ZIZ;*'oc(u)du))_’gf:’rogxp(- Zf:"oc(u)du)az(s)ds ,
then

EX(t)=EX(t +T), DX(t)=DX(t +T), ul(s,t) = u(s +T,t +T),
and the correlation function is

v(s,t) = u(s,t)//DX(sIDX(t) =v(s + T,t +T).

Now we assume that X(¢,) is of Gaussian type with N(EX(t,), DX(t,)). Then X is also
Gaussian with N(EX(t ), DX(t))[7]. The joint distribution of (X (s ), X(t))is

N(EX(s), EX(t), DX(s), DX(t), y(s,t)).
The transition probability density of (X(t ) X(s) = x(s))is
N(EX(t)+ r(s, 0 )/DX(0)DX(s) (x(s) - EX(s)), DX(t X1 - r(s,1))).

We note the transformation X (¢ ) = InN(¢ ), so the distribution of N(t ) is logarithmic

normal, its density is

0 ,n(t)s0

, 2
l/('/21rD,\'(!)n(t))exp(_(]nnz(tD)X_(,ES\(r))) ,n(t)>0

p(n(t)) = (2.9)

and (N(s), N(t))is a two-dimensional Gaussian distribution with the density

pln(s)n(e))
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=1/(2n AT-72(5, 1) DX(IDX(s ) n(s)n(t))
x exp((- 1/2(1 - r2(s,!)))((ln n(s)- EX(s)2/DX(s) (2.10)
- 2r(s.t)inni(s)- EX(sN(Inn(t)- EX(£))/ADX(t)DX(s)

«(lnn(t)- EX(!))z/DX(I)))

if n(t),n(s)>0and p(n(s), n(t)) =0 otherwise. The transition probability density of
(Nt N(s)=n(s)is

p(n(t)l n(s)) = p(n(s), n(t))/p(n(s)). (2.11)

Since N(t )is a Markov process, we have thus got the family of the finite-dimensional

distributions. Especially, we have

EN(t)=exp(EX(t)+V,DX(1))
DN(t)=exp(2EX(t)+ DX(t))exp(DX(t)) -1).

(2.12)

Due to (2.7) and (2.8), the mean and variance in (2.12) are known B
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