(2)

A Strengthening of a Lemma on Continuous Families of Closed Convex Sets

R. KLÖTZLER

Let X be a normed linear space and $E(\cdot)$ a family of set-valued mappings on a metric space T. It will be shown the following strengthening of a result by S. Rolewicz. If $E(\cdot)$ is lower semi-continuous in t_0 and 0 c int $E(t_0)$, then 0 c int E(t) holds for sufficiently neighbouring t of t_0 too.

Key words: Semi-continuous set-valued mapping, interior points AMS subject classification: 54C60

In the book [2: p.174] by S.ROLEWICZ the following useful lemma is stated.

Lemma 1: Let X be a normed vector space, T a metric space with the metric φ , as well as $E(t) \subseteq X$, $t \in T$, a family of closed convex sets, which is continuous in $t_0 \in T$. We assume int $E(t_0) \neq \Phi$. Then there is a number $\eta > 0$ such that int $E(t) \neq \Phi$ holds for every $t \in T$ with $\varphi(t_0, t) < \eta$.

Now we shall prove the following strengthening of this lemma.

Theorem : Let X be a normed vector space, T a metric space with the metric ρ , as well as $E(t) \subseteq X$, $t \in T$, a family of closed convex sets, which is lower semi-continuous in $t_0 \in T$. We assume the zero element $0 \in int E(t_0)$. Then there is a number $\eta > 0$ such that $0 \in int E(t)$ for every $t \in T$ with $\rho(t_0, t) < \eta$.

Proving of theorem we shall use the following lemma by H.RADSTRÖM[1].

Lemma 2: Let A, B, C be subsets of a normed vector space X. If $A + C \subseteq B + C$ holds for a convex and closed B and bounded C, then the inclusion $A \subseteq B$ follows.

Further we introduce the following denotations:

$V_{\varepsilon} = B(0)$	ε) is the closed ball i	X with the radius ε and the center 0 .	(1)
--------------------------	----------------------------------	--	-----

 $M_{-\varepsilon} = \{ z \in M \mid z + V_{\varepsilon} \subseteq M \} \text{ for any set } M \subseteq X.$

Assertion 1: For each convex and closed set $M \subseteq X$ we have the equation $(M + V_{\varepsilon})_{-\varepsilon} = M$.

Proof: Per definitionem (2) the relation

 $(M + V_{\varepsilon})_{-\varepsilon} = \{ z \in M + V_{\varepsilon} \mid z + V_{\varepsilon} \subseteq M + V_{\varepsilon} \} \supseteq M$ (3)

is evident. We shall prove that even $(M + V_{\varepsilon})_{-\varepsilon} = M$ holds. For this end we assume the contrary. Thus there is an element $z_0 \in (M + V_{\varepsilon})_{-\varepsilon}$ which does not belong to M. On the other hand, since (3), $z_0 + V_{\varepsilon} \subseteq M + V_{\varepsilon}$ follows and in consequence of Lemma 2 $z_0 \in M$ in contradiction to $z_0 \in M$

Assertion 2: From $M_1 \ge M_2$ follows $(M_1)_{-\epsilon} \ge (M_2)_{-\epsilon}$.

Proof: We have

$$(M_2)_{-\epsilon} = \{ z \in M_2 | z + V_{\epsilon} \subseteq M_2 \}$$

$$\subseteq \{ z \in M_2 | z + V_{\epsilon} \subseteq M_1 \} \subseteq \{ z \in M_1 | z + V_{\epsilon} \subseteq M_1 \} = (M_1)_{-\epsilon} \blacksquare$$

Proof of the Theorem : On account of the lower semi-continuity of the family of setvalued mappings E(t) in t_0 , for any $\varepsilon > 0$ there is a number $\eta(\varepsilon) > 0$ such that

 $E(t) + V_{\varepsilon} \supseteq E(t_{o}) \text{ for } \rho(t, t_{o}) < \eta(\varepsilon)$ (4)

holds. Since $0 \in int E(t_0)$ we can choose ε so very small that $E(t_0)_{-\varepsilon} \neq 0$ and even an $\varepsilon_1 > 0$ exists with the property

$$0 \in V_{\varepsilon_1} \subseteq E(t_0)_{-\varepsilon}$$
 (5)

By Assertion 2 the conditions (4) and (5) together lead to the inclusion

 $0 \in V_{\varepsilon_*} \subseteq E(t_0)_{-\varepsilon} \subseteq (E(t) + V_{\varepsilon})_{-\varepsilon}$

and, because of Assertion 1, to the result $0 \in V_{\varepsilon} \subseteq (E(t) + V_{\varepsilon}) = E(t)$, i.e. to the inclusion $0 \in \text{int } E(t) \blacksquare$

REFERENCES

- RÅDSTRÖM, H.: An embedding theorem for spaces of convex sets. Proc. Amer. Math. 3 (1952), 165 - 169.
- [2] ROLEWICZ, S.: Funktionalanalysis und Steuerungstheorie. Berlin Heidelberg New York 1976.

Received 10, 12, 1990

Author's address:

Prof. Dr. R. KLÖTZLER Sektion Mathematik der Universität Leipzig Augustusplatz 10 D (Ost) – 7010 Leipzig