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It is shown that some modification of the fixed point theorem of Browder, Gohde and Kirk remains valid on
star-shaped domains as well. Additionally, we will give an iteration scheme for the approximation of some fixed
point of the mapping under consideration. Finally, in connection with the result above, two characterizations
of inner product spaces will be obtained.
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0. Introduction

In the fixed point theory of non-expansive mappings the related domains are often
supposed to be convex. The used methods, however, mostly don’t carry over to
not necessarily convex domains like, e.g., star-shaped sets. A well-known access for
star-shaped domains consists in trying to find almost fixed points and to ensure their
convergence to an actual fixed point. Besides results of Dotson [16,17] and Guseman
and Peters [25], who assumed the domain A to be compact, which is rather restrictive,
we call attention to the works of Géhde [23,24], Crandall and Pazy [10] and Reinermann
[37], where A is a closed bounded and star-shaped subset of a Hilbert space. Motivated
by these works the question occurs whether the famous Browder-Gohde-Kirk Theorem
[5,22,31] ("every non-expansive selfmapping of a closed, bounded and convex subset of
a uniformly convex Banach space has at least one fixed point”) remains true, if the
domain is assumed to be merely star-shaped. A positive answer was given by Miller
and Reinermann [33] in case of a reflexive Banach space admitting a weakly sequentially
continuous duality mapping. For further fixed point results on non-convex domains see,
e.g. [9,19,27,38].

In Section 1, we will give another version of the Browder-Gohde-Kirk Theorem,
holding true on star-shaped subsets of a reflexive Kadec-Klee space, by sharpening the
assumptions made on the operator (Theorem 1.16). After a short discussion of the
necessity of the several assumptions (Section 2), we present some applications of the
results derived in Section 1 (Section 3). In Section 4 we deal with an explicit iteration
scheme due to Halpern [26] and finally, in Section 5, we examine the relations between
non-expanssve, pseudo-contractive and the new defined (see Section 1) nearly pseudo-
contractsve mappings.

Conventions: Throughout this paper all normed spaces are assumed to be real
Banach spaces. Let (E, ||-||) be a normed space, A C E, (z,)€EV, z,z0€ E, r > 0 and
T : A — E. We denote by (E*,||-]|) the strong dual space of E equipped with the_ usual
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operator norm, conv A, Tonv A, A, 8A stand for the convex hull, the closed convex hull,
the closure and the boundary of A, respectively. The weak and strong convergence of
(zn) to z is indicated by z,—z and z, — r, respectively, and if we just say that (zn)
converges to ¢ we will always mean that z, — z. We use the abbreviation Fix T for
the fixed point set of T and denote the closed ball of radius r around z, by B(zo, 7).
Finally, we call A star-shaped if there exists an zg € A such that for all A € [0, 1] and all
z € A it follows that Az 4 (1 — X)zq € A.

1. A fixed point theorem for non-expansive nearly pseudo-contractive
mappings

Before stating our main results we recall some definitions needed in the sequel.

Definition 1.1 (see, e.g., [13: pages 111-113, 15: pages 21,23,32 and 36]): A normed
space (E,[|-|]) is called

(1) strictly conver if for all z,y € B(0,1) it follows from z # y that iz + y|| < 2;

(2) uniformly convez if for each € > O there is a § > 0 such that for all z,y € B(0,1)
with ||z — y|| > € it follows that ||z + y|| < 2(1 - §);

(3) (uniformly) smooth if its norm is (uniformly) Gateaux differentiable on dB(0, 1);

(4) Kadec-Klee space if for each sequence (z,) € EN and each point z € E with
both z,—z and ||z.|| — [|z]| it follows that £, — .

For a discussion of these and other concepts see, e.g., [2: Part 3, 11,18,30,42).

Definition 1.2 (see, e.g., [6]): Let (E,||-||) be a normed space and J : E — E*.
(1) The (normalized) duality mapping Jg : E — 2F" is given by Jg(0) = {0} and

Je(z) = {u€ E* | u(z) = |[ullllz]| and |lull = ||z||} for all z # 0.

(2) J is called a (normalized) duality mapping if J(z)€ Jg(z) for all z € E.

(3) J is said to be weakly sequentsally continuous if for each sequence (z,)€ EV and
each point z € E it follows from z, —z that J(z, )~ J(z).

(4) The modulus of converity is given by

8(e) =inf{1— ||z + yll/2|z,y € B(0,1) and ||z — y]| > ¢ } for.all €€ [0,2].

Remark 1.3: Note that by the Hahn-BanachTheorem Jg(z) # @ for all z € E and
that (E,|| - ||) is smooth if and only if |Jg(z)] = 1 for all z € E (see, e.g., [2: Part 3,
Chapter I, §2, Proposition 2] taking into account the definition of smoothness given in
[2: page 177]). In the latter case we regard Jg as a mapping from E to E*. If there is
no fear of confusion we simply write J for Jg. Recall that for a uniformly convex space
(E, [l 1) the mapping § is continuous with 6{(2) = 1 and that in arbitrary normed spaces
for each € > 0 and each M > ¢/2 and all z,y € B(0, M) with ||z — y}| > € it follows that
liz +yll/2 < (1 - é(e/M)M.
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Definition 1.4 [8: page 211]: Let (E,{| - ||) be a normed spé.ce, zg€ Eandr > 0.
We define the radial projection R|[zq,r} by

Az —zol| £ 7

R[zo, r](z) = {’

zo + (r/llz.— zol|)(z — 7o) ,otherwise
Obviously R[zo,r]lg(!w) = id"é’(zo,') and R[zo,r](E \ B(zo,r)) C 8B(z0, ).

First of all we need two lemmas of geometrical nature.

Lemma 1.5: Let (E,|| -||) be a normed space, zo € E, r > 0 and R = R[z,,r].
Then [lyll 2 || R(0)|| for all y € B(zo, 7).

Proof: If 0 € B(z,,r) we have R(0) = 0 and there is nothing to show. Otherwise
R(0) = zo(1 = r/||zo]|) and 1 — r/||zol| > O. Therefore, ||R(0)|| = |lzoll — r and so, for
y € B(zg,r), we have r > ||y — zol| > ||zol| — Ifyll- Hence |lyll > [lzoll ~ r = [|R(0)I| B

Lemma 1.8: Let (E,||-||) be a normed space, (z,)€ (E\ {0}V and (u,)€ (0, 0)
strictly decreasing. For n,m € IN we define
znm = (1/2)((Bn/8m) + 1)Zn, Tom = (1/2)((#a/18m) = 1)l|Znll
and _
s-znm = B(an,rnm)~
Assume furthermore that z,, € Qnp, for all m > n. Then (|{zn|]) 53 non-decreasing.

We will keep to the abbreviations above throughout the whole paper.

Proof: For m > n we have u,,, < i, and so r,,, > 0. Since [|znm || > rnm, it follows
that O € ., and denoting R[znm, 7nm] by R we have R(0) = z,m(1 = ram/{l2amll),
where rom/|lzaml|l = (Bn = tim )/(88n + Bm ). Hence we conclude that

R(0) = (1/2)((#n/#m) + 1)Tn (1.~ (8n = tim )/ (in + Hm)) = Tn
Since Ty, € Qam for all m > n, it follows from Lemma 1.5 that |{zm|| 2 ||:::,.|| for all
m>n §

Now we are able to prove

Theorem 1.7: Let (E, || - ||) be a uniformly conver Banach space, (u,) € (0, 00) ¥
strictly decreasing and (z,) € EV bounded with z,, € B(znm,Tam ) for allm > n. Then
(zn) converges.

Proof: If there is n € IN such that z, = 0, then z, € Qnn = {0} for all m > n and
50 (fm) — 0. We now assume that r, # 0 for all n € IN. From Lemma 1.6 and the
boundedness of (z,,) we know that (||zn]|) converges to some a > 0 and that ||z.]| < a

for all n€ IN. Fix m > n now. Then ||z,||,||zm|| € a and € := 2||za|| > 0. Since
Tp,Zm € Qpm, we have (z, + 2,,)/2 € R, and since R[zom, ram}(0) = 2, (see above),
it follows from Lemma 1.5 that ||z, + || > 2|iz.]] = € Hence (see Remark 1.3)

Hzn — zm]| < 2(1 — 6(2||zn|l/a))a for all m > n. Since the right side is independent
of m and tends to 2(1 - §(2))a = 0 for n — oo, we conclude that (x,,) is a Cauchy
sequence and the result follows § .
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Remark 1.8: Let (E,(-,)) be a Hilbert space and consider the following conditions.

@) (X + pn)zn = (1 + pm)Em|| < {|Zn — Zm|| for all n,m € IN.

(b) (Tp — T, BnTh — BmTm) <0 foralln, meN.

(c) Tm € F(z,.m,r,,m) for all m > n.
From elementary calculations (cf. [23]) we obtain the relations (a) = (b) and
(b) <= (c). Thus, Theorem 1.7 yields as a special case the convergence lemmas given
by Crandall and Pazy in [10: Lemma 2.4(b)] and Géhde in (23] (in the course of the
proof of Theorem 1) dealing with (b),(a), respectively. For a similar result see also

[4: Lemma 1.4].

Next, we wish to show that, in case of a reflexive Kadec-Klee space, it is possible to
ensure the convergence of a subsequence, although we can’t guarantee that the whole
sequence converges.

Lemma 1.9: Let (E,||-||) be a normed space, (u.) € (O,OO)N_Atrictly decreasing,
(zn) € (E\ {0})” bounded and z € E such that z,—z and z,, € B(2nm,Tam) for all
m > n. Then ||z,.]| = ||z]|

Proof: Analogously to the proof of Theorem 1.7 it follows that (||z,]|) converges to
some a > 0. Since z,—z, we have ||z|| < liminf||z,|] = a. Fix n€ IN now. Form > n
we have Q,, C @ m41, because for m > n and y€Q,,,, we have pn /i 41— tin/tin > 0
and

“y - zn,m+1” S ”y - znm“ + ”an - zn,m+l”
S Tam + (“n/’-‘m-}-l - I‘n/ﬂm)”xnlllz
= (“n/“m-bl - 1)”1’,."/2 = Tn.m+1,

and therefore y € Qn my;. It follows that z, € Qp C Qn for all §# > n and
all m € {n + 1,...,i}. Taking into account the convexity of §,,, we conclude
conv{z, |In<m<i} CQifori>n. So,fori>nand z€conv{zn, [n<m<i},
we have ||z — zpi|| € ra, and therefore [j2]] 2 enill = )2 = znsl] 2 2nill = 7aé = llznll-
Since (T )my>n—2, we know that z € onv {z,,|m > n}, and from the considerations
above it follows ||z]] > ||z,|| (letting i tend to infinity). Since n was arbitrary, we
conclude ||z|| > a and thus ||z|| = «. Hence ||z,|| — ||z||. 1@

Theorem 1.10: Let (E, ||-||) be a reflezive Kadec-Klee space, (4 )€ (0, 00)V strictly
decreasing and (zp) € EYN bounded, with ., € B(znm,ram) for allm > n. Then (z,)
possesses a convergent subsequence (z,, ).

Proof: As already shown in the proof of Theorem 1.7, we may assume that z,, # 0
for all n€ IN. Since (E, ||-||) is reflexive and (z,) is bounded, there exists an z € E and
some subsequence (z,_ ) of (z,) such that z, —z (Pettis’ theorem). We may assume ¢
to be strictly increasing, so that ||z, || — [|z|| by Lemma 1.9. Since (E, || ||} is a Kadec-

“Klee space, the result follows 1
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The next theorem states some examples of reflexive Kadec-Klee spaces. We refer
to [13: pages 112-113] for the definition of local uniform converity, k-rotundsty and
property (K) and to [23: page 744] for the definition of nearly uniform converity .

Theorem 1.11 [13,28,34,41): The following spaces are reflexsve Kadec-Klee spaces:
(1) & space of finite dsmension,

(2) a reflexive space which s locally uniformly convez,

(3) a uniformly conver space,

(4) a k-rotund space with k > 2,

(3) a space having property (K),

(6) a nearly unsformly convez space,

(7) a reflezive space admitting a weakly sequentially continuous daality mapping,
(8) a space for which its operator norm is Fréchet differentiable on E* \ {0}.

Note that in {23] there is given the following example of an infinite-dimensional

reflexive Kadec-Klee space (E, |} ||) which is not uniformly convex:
oo o0 (=]
E= {.r =(zn)€ [ En| D llzallnen € F} normed by |[z]| = Y lzallnen| .
n=1 n=1 . n=1 F

where (Ep, ||.||») denotes IR® with the usual {"-norm, (F,||.||r) stands for the sequence
space {2 with its [2-norm and {e, | n € IN } is the standard Schauder basis of {2,

Let us now recall some definitions and introduce a new property which we will call
"nearly pseudo-contractive”.

Definition 1.12 (see, e.g., [8: page 198]): Let (E,|| - ||) be a normed space and
P# ACE. A mapping T: A — E is called

(1) non-erpansive if ||Tz — Ty|| <'|lz — yl| for all z, y € 4,

(2) psesdo-contractive if for all z,y € A there exists some u € Jp(z — y) such
that u(Tz — Ty) < llz — wl?,

(3) nearly psendo-contractive if || Tz—=Ty—(1-A)(z—y)l| < I Tz-Ty—(1+2)(z—y)l|
for all z,y€ A and all A >0,

(4) strongly pseudo-contractive if there is a k € [0, 1) such that for all z,y € A there
exists some 4 € Jg(z — y) with u(Tz — Ty) < k||z — y|[*.

Using Lemma 1.13 (existence of almost fixed points) and Theorem 1.14 we will be
able to state our first fixed point result for non-expansive nearly pseudo-contractive
mappings (Theorem 1.16).

Lemma 1.13: Let (E,{| - |}) be a Banach space, ® # A C E closed and star-shaped
with respect to 0, (A,) € [0,1)N and T : A — E non-ezpansive with T(OA) C A. Then
for each n € IN there is ezactly one z, € A such that £, = ATz,

Proof: For n€ IN define T, = A\,T: A — E. Then
To(8A4) = A, T(BA) C A\ A=) A+ (1-2,){0}CA

because of the star-shapedness of A. Since the mapping T is non-expansive, we conclude
[|Tnz = Tayll € Anllz — yi| for all z,y € A, and it follows from the classical contraction
principle in the form of Assad [1] that T, has exactly one fixed point z,, € A |
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Theorem 1.14: Let (E,|| - |]) be a reflezive Kadec-Klee space, ® # A C E
closed, T : A — E continnous and nearly pseudo-contractive, (A,) € (0,1)N strictly
increasing with A, — 1 and (z,) € AN bounded such that z, = \. Tz, for allne IN.
Then FixT # 0.

Proof: Set u, =1/X,—1>0forall n€ IN. Then (p,) is strictly decreasing. Since
T is nearly pseudo-contractive, it follows for all m > n that

TZm = Tzn = (1= bm )(@m = o)l S IT2m — T2n = (1 + ptim )(Tm — 7a)|l.
Taking into account ujz; = Tz; — z; for all 5 € IN and tn — fm > 0, we have
bmZm = BaZn + bmTm = pmZall < ||mTm — bnZn — bmTm + BmZall,
hence ||126mZm — (Bn + bm)Zal] € (Bn — pm)||za|[. Dividing by 2u,, we see that
Zm € B(2pm, Tam ) and so, by Theorem 1.10, there exists an z € E and some subsequence

(z,.) of (z,) converging to z. Since T is continuous and Tz, = z, /A, it follows
that Toe =z

Remark 1.15: From Theorem 1.11 we know that Theorem 1.14 especially applies
to reflexive normed spaces having a weakly sequentially continuous duality mapping.
Nevertheless, in this case Lemma 2.7 of {33] (Miiller and Reinermann) tells us that
we.can replace the assumption “T nearly pseudo-contractive” by the weaker one (see
Lemma 2.1) "T pseudo-contractive”.

Theorem 1.16: Let (E,|| - ||) be a reflerive Kadec-Klee space, @ # A C E
closed, bounded and star-shaped and T : A — E non-ezpansive and nearly pseudo-
contractive with T(8A) C A. Then FixT # 0.

Proof: Without loss of generality we may assume that @ is a star point of A. It
follows from Lemma 1.13 that for each n € IN there is exactly one z, € A such that
Tn = AnTz,, where (e.g.) A\n =1 —1/n. Since A is bounded, (z») is bounded too and
applying Theorem 1.14 we are done 1

Remark 1.17: In case of a uniformly convex Banach space and a convex subset A
of E it is a consequence of the Browder-Gohde-Kirk Theorem (see Introduction), that
the assumption "T nearly pseudo-contractive” may be dropped.

2. Necessity of the assumptions made in Theorem 1.16

The question occurs whether we may weaken the assumptions made in Theorem 1.16.
With the help of simple counter-examples (cf. [36: page 67/68]) one easily sees that we
can’t dispense with any of the assumptions "T(8A4) C A”, ” A bounded”, ” A closed” and
" A star-shaped”. We also can’t drop the property that (E, || - ||) is a reflexive Kadec-
Klee space, as the following example due to Gohde {22] will show. Let

(B, 11- 1) = (C([0, 1], R), Il - [}eo)

and
A={feE| f(0)=0and f(z)e€[0,1] for all z € [0, 1] }.
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Define T : A — E as follows:

zx=0

0 .
T(f)(z) = {(l—r)f(f) +(1/2)z(1 +sin(1/z)) ,z #0

From [22] we know that A is closed, bounded and convex, T(A) C A, T non-expansive
and Fix T = @. It remains to show that 7T is nearly pseudo-contractive. But this can be
easily seen, observing |z = A| < |z 4 A| forall A > 0 and all £ > 0 and

IT()(z) - T(9)(z) - (1 £ A)(f(2) - 9(2))| = |A £ z|1f(2) - g()]

for all A > 0, all €[0,1] and all f, g€ A. The question, whether we can dispense with T
being nearly pseudo-contractive, was already raised in [38} (Reinermann and Stallbohm)
in case of a uniformly convex Banach space. This problem still seems to be open.

Finally, we will show that the non-expansiveness of T may be replaced merely by
the continuity of the operator, if we demand A to be convex instead of being just star-
shaped.

Lemma 2.1: Let (E,|}-||) be a normed space, D # AC E and T : A — E nearly
psesdo-contractive. Then T is pseudo-contractsve.

Proof: Taking into account that T is nearly pseudo-contractive, it follows that for
arbitrary z,y€ A and all A >0

IIMTz = Ty) = (1 + A)(z - y)l|

=A|(Tz - Ty) = (1 + 1/A)(z = y)|| 2 A|(Tz = Ty) - (1 — 1/A)(z - y)||

= ATz -Ty) - A= 1)z - y)|| = |MTz = Ty) - (1 + A)(z - y) + 2(= — ¥}
> 2|z — yll = [MTz = Ty) — (1 + A)(= - y)||

and consequently
ATz = Ty) = (1 + A) (= = y)ll 2 ||z - oll,

llz — yll < li(z - y) + A((id - T)z - (id = T)y)||-
By a lemma of Schoneberg [40: page 24] this means that T is pseudo-contractive @

The following-result of Deimling [14] is also needed.

Theorem 2.2: Let (E,||-||) be a Banach space, let @ # A C E be closed and
T : A — E continuous and strongly pseudo-contractive such that for allz € A

(1/2)dist (1 = M)z + ATz, A) > 0 if X — 0 + .

Then T has ezactly one fized posnt.
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Theorem 2.3: Let (E,||-||) be a reflezive Kadec-Klee space, let @ # A .C E be
closed, bounded and conver and T : A — A continuous and nearly pseudo-contractive.
Then FixT # 0.

Prooft Assuming 0 € A (without loss of generality) and setting A, = 1 — 1/n, we
observe that (A, T){(A) C A (cf. proof of Lemma 1.13). Since 7 is pseudo-contractive by
Lemma 2.1, A, T is clearly strongly pseudo-contractive. Finally, because A is convex,
dist ((1 — A)z + AAnTz, A) = 0 for all z € A and all A € (0,1). Thus it follows from
Theorem 2.2 that for each n € IN there exists a unique z, € A such that z, = A, Tz,.
The result follows by Theorem 1.14 1§

3. Some applications of Theorem 1.14

We begin with a generalization of a result of Goebel and Kuczumow [20: Theorem 2J. It
was originally proved for non-expansive mappings on a closed convex subset of a Hilbert
space. Note that A is not necessarily bounded.

Theorem 3.1: Let (E, ||-||) be a reflezive Banach space, let® # A C E be closed and
star-shaped with respect to some 2 € A and T : A - E non-ezpansive with T(OA) C A.
Suppose that the set G = {y € T(A) |u(Tz—2)> 0 forallu € Jp(y— 2)} 1s bounded
and assume furthermore that (a) or (b) holds, where

@) (B, |- l) possesses a weakly sequentially continuous duality mapping

(b) (E,}}- 11} ¢s a reflezive Kadec-Klee space and T s nearly pseudo-contractive.
Then FixT # 0. '

Proof: Without loss of generality we may assume that z = 0 and T0 # 0. It follows
from Lemma 1.13 that for each n€ IN there exists a unique z,, € A such that =, = A, Tz,,
where A, = 1 —1/n. Then, for u € J(Tz,), we have

lzall? = A2{|Tzn||? = A2u(Tz,) = A2u(T0) + A2u(Tz, — TO)
< AJu(T0) + A2 || Tz, |ITz, — TO||
< A%u(T0) + ATzl lzall = AZu(T0) + Aslizaf*.

Hence (1 — A,)l|znl|? € A2u(T0). If z, # 0, we have u(T0) > (1 — A\,)||zal2/A2 > 0.
Otherwise u € J(T0) and so u(T0) = ||T0{|2 > 0. This shows that Tz, € G for all ne IV,
and so (Tz,) is bounded. Since z, = X, Tz, for all n € IN, it follows that (z,) is
bounded, too, and applying Lemma 2.7 of [33] in case (a) and Theorem 1.14 in case (b)
we are done 1

Note that all those results of [33] and [32: Chapter 3] which were derived from
Lemma 2.7 of [33) with the help of almost fixed points (see Section 1) carry over to
our situation (T nearly pseudo-contractive, (E,|| - ||) a reflexive Kadec-Klee space)
immediately (just use Theorem 1.14 instead of [33: Lemma 2.7]). Exemplarily, we state
the following result, which is an analogue to Theorem 3.14 of [32: page 38].
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Theorem 3.2: Let (E,||-]|) be a reflezive Kadec-Klee space, let® # A C E be open
and bounded, 0€ A and T : A — E be non-expansive and nearly pseudo-coniractive.
Additionally suppose that T satisfies the following Leray-Schasder condstion: for all
r€8A and all A > 0 with Tz = Az it follows that A < 1. Then FixT # 0.

4. On an iteration scheme due to Halpern

Let us introduce some abbreviations (see Halpern [26]). A sequence (A, ) is said to fulfill
condition (Hal) if

(1) (An) €(0,1)" is non-decreasing with A, — 1,

(2) there exists some non-decreasing sequence (ﬁ,,)e IN™ such that B,(1-X,) = o
and (1= An4p.)/(1=2p) = 1

Halpern gave the following example of such a sequence: A, = 1—n~%, where a€(0,1).
In the course of the proof of [26: Theorem 3] he actually showed that the following holds.

Lemma 4.1: Let (E,||- ||) be a normed space, let 8 £ A C E be bounded and star-
shaped with respect to 0, T : A — A non-ezpansive, (A,) a sequence which fulfils (Hal)
and let (z,) € AV be such that £, = \n Tz, for alln € IN. Define za41 = Ang1T2n for
allne INo, where zo is an arbitrary point in A. Assume furthermore that (zn) converges
to some g€ E. Then (zn) converges to g as well.

Note that (z,) is well-defined, because T(A) C A and A is star-shaped with respect
to 0. In analogy to [26: Theorem 1] (E Hilbert space, T : B(0,1) — B(0,1)) we will
show next

Theorem 4.2: Let (E,||-||) be o uniformly convez Banach space, ® # A C E closed,
bounded and star-shaped with respect to 0, T : A — E non-ezpansive and nearly pseudo-
contractive with T(8A) C A and (X,) € (0, 1)V strictly increasing with A, — 1. Then

(1) for each n € IN there is ezactly one z, € A such that z, = ATz,

(2) (zn) converges to some q€ FixT,

(3) llgll = min{|{z|| | z€ FixT'}.

Proof: Set pun, = 1/X, — 1 for all n € IN. From Section 1 (see Lemma 1.13,
Theorem 1.14, Theorem 1.7) we already know that (1) and (2) hold. Since un > 0
and T is nearly pseudo-contractive, we conclude that for all z € FixT

[ITzn — Tz — (1 = pin}(2n = 2)I| S IT2n = Tz = (1 + pin )70 — 2)l.
Since pnzn, = T2y, — 2, and Tz = 2, it follows that

[ln2n + tn(zn = 2)|| € B Zn — pa(zn - 2|,

hence p, |22, — 2|| < wallz|| and therefore ||z|| > |22, - z|| 2 2||za]l = ||z || which
implies that |]z|] 2 ||za||- Letting n tend to infinity, it follows that ||z|| > |q||
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Contrary to Theorem 1.7, Theorem 1.10 just supplies a convergent subsequence.
Therefore we can't expect that the theorem above is still true in arbitrary reflexive
Kadec-Klee spaces. Nevertheless, we have

Theorem 4.3: Let (E,||-||) be a reflexive and strictly conver Kadec-Klee space,
@ # A C E closed, bounded and conver, 0€ A, T : A — E non-erpansive and nearly
psesdo-contractive with T(8A) C A and (A, ) € (0, 1)¥ strictly increasing with A, — 1.
Then the assertion of Theorem 4.2 holds.

Proof: Since A is closed and convex, (E,|| - ||) is strictly convex and T is non-
expansive, we know from [7] (Browder) that Fix T is closed and convex. Additionally,
FixT # @ by Theorem 1.16. Hence (see, e.g., [21: page 12]) there is exactly one
p € Fix T such that ||p|| = min{||z|| | 2 € FixT }. Consider an arbitrary subsequence
(z,) of (zn) now, where (z,) is choosen according to Lemma 1.13. Following the proofs
of Theorem 1.14 and Theorem 4.2 we obtain some g € E and some subsequence (z!') of
(z,) such that z;] — ¢, Tq = q and ||g|| = min{{|2||| 2 € FixT}. From the uniqueness
part of this relation it {ollows that ¢ = p. Therefore z,, — p

Combining Theorems 4.1-4.3 we obtain

Theorem 4.4: Let (E,||-||) be a reflexive Banach space and @ # A C E closed and
bounded. Suppose that (a) or (b) holds, where

(@) (E, 1l 1]) és uniformly convezr and A is star-shaped with respect to 0,

(b) (E,|l - I}) is a strictly conver Kadec-Klee space and A is conver.
Assume furthermore that T : A — A 1s non-ezpansive and nearly psendo-contractive,
that (A,) s a sequence which fulfils (Hal) and that (z,) is given by 29 € A and
Zn41 = An41T2n for all n € INg. Then (2n) converges to some y € FixT such that
llyll = min{||z}{ | z € Fix T }.

Remark 4.5: (1) (E,|| - ||) is a reflexive and strictly convex Kadec-Klee space
if and only if its operator norm is Fréchet-differentiable on E* \ {0} (see, e.g., [34]).
(2) In case of a nearly pseudo-contractive T, Theorem 4.4(a) improves a result contained
in [35: Theorem 3.1] (Reich), where A was additionally demanded to be convex and
(E,Il - ]1) had to be a smooth normed space possessing a duality mapping which is
weakly sequentially continuous at 0. (3) For further fixed point iterations on star-
shaped domains see, e.g., [37].

5. Comparison of the properties ”non-expansive” and ” seudo-contractive”
with ”nearly pseudo—contractwe”

The following theorem shows that the terms pseudo-contractive and nearly pseudo-
contractive coincide in case of a Hilbert space. Therefore Theorem 1.16 contains, as a
special case, the results of Gohde [24], Crandall and Pazy [10] and Reinermann [37],
which were already mentioned in the introduction.
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Theorem 5.1: Let (E,(-,")) be a Hilbert space, 8# ACE and T : A — E. Then
T is pseudo-contractive if and only if T is nearly pseudo-contractive.

The easy proof (|| - || is a Hilbert space norm !) is omitted B

Actually, it is characterizing for Hilbert spaces that the properties above coincide,
as we will show in Theorem 5.5. But first we have to give a further definition and to
state some lemmas.

Definition 5.2 (cf. [3,12,29,39]): Let (E, || ||) be a normed space and z,y€ E. We
say that

(1) = is orthogonal to y in the sense of Roberts (zLry) if ||z —Ayl| = ||z +Ayl|VAER,

(2) z is orthogonal to y in the sense of Birkhoff (rLpy) if ||z]| < ||z + Ayl|VA € R.

Lemma 5.3 [40: page 11): Let (E,||-||) b¢ ¢ normed space and z,y € E. Then there
ezists an-u € Jp(z) such that u(y) > 0 if and only if ||z|| < ||z + Ayl| for all X > 0.

Lemma 5.4: Let (E,||-||) be a normed space which satisfies condition
(%) for all z,y € E it follows from zipy that zLry.
Then (E,|| - |l) is o Hilbert space.

Proof: According to a result of James [29: Corollary 4.7], it suffices to show that
for all two-dimensional subspaces F of E and for all z € F there exists a y € F \ {0}
such that z1 g y. Therefore suppose F = £{ej,e2}, z = 161+ T2¢3€ F and let u be an
arbitrary element of Jg(z). Without loss of generality we may assume that u(ez) # 0,
so that y := e, — (u(e,)/u(ez))es € F\ {0} is well-defined. Clearly, u(y) =0 and so, by
Lemma 5.3, z1p y. Since (x#) implies that zL g y, we are done | :

Theorem 5.5: Let (E,|| - ||) be o normed space which satisfies the following
condition: for each @ # A C E with |A| = 2 and for each T : A — E which is
pseudo-contractive it follows that T is nearly pseudo-contractive, too. Then (E,||-||) 1s
a Hilbert space.

Proof: Fix z,y € E such that z41py. We may assume that £ # 0. Define
{2,0} and TO = y as well as Tz = z and observe that zlpy implies
llz—0]| < JI(1+A)(2 =0)= A(Tz—T0)|| for all A > 0. Hence T is pseudo-contractive (see
above) and from our assumption also nearly pseudo-contractive. Therefore, for A > 0,

>

[ITz — T0 - (1 = X)(z = 0)|| < |ITz — TO - (1 + A)(z - O)l,

ie. |ly — Az|| < lly + Az]|. If we define T0 = —y and Tz = z, it follows in the same
manner that the inequality above holds for A < 0, too. Finally, because —IR = IR, it
follows that ||y — Az]| = |ly + Az|| for all A€ IR, i.e. yLgz. It's not difficult to see that
this iplies zLg y. Applying Lemma 5.4 we are done [
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With regard to Theorem 1.16 there also arises the question whether there are spaces
in which every non-expansive mapping is nearly pseudo-contractive, too. At least in
smooth spaces of dimension strictly greater than two we will see that this property
yields a further characterization of Hilbert spaces (Theorem 5.10). First of all we need

several lemmas.

Lemma 5.6: Let (E,||-||) be a normed space. Then the followsing properties are
equsvalent:

(a) for allz,y € E with ||z]| < |[yl| st follows that |z — (1 — Ny} < ||z — (1 + Myl
foralld >0 :

(b) for each @ # A C E with |A| = 2 and for each T : A — E which is non-ezpansive
st follows that T s nearly pseudo-contractive, too.

The proof uses a method similar to the one used in the proof of Theorem 5.5 §

Lemma 5.7: Let (E,||-||) be a smooth normed space, £,y € E and \g > 0 such that
Je(z — (1= Vy)y) + Je(z— (1 4+ Ny)(y) > 0 for all X € [0, Xo).

Then, for all A € (0, Ag), we have flz — (1 = M)yl > |lz — (1 + My||.

Proof: Define g(z) = [|2}|/2 and f()) = g(z — (1 — N)y) — g(z — (1 4+ A)y) for all
z2€ E and A > 0, respectively. Since D, g|, = J(2)(w) forall z, w € E, one easily verifies
that

£ = Iz = (1= \)(y) + J(z ~ (1+ A)y)(y) >0

for all A € (0, o). Thus f is strictly increasing in (0, o). Since f is continuous, this
implies that f(A) > f(0) = 0 for all A € (0, Aq), from which the result follows

Lemma 5.8: Let (E,||-||) be a smooth normed space and z,y € E such that
lle = (1 = A)gll € lla = (14 Ayl for all A > 0.
Then Je(z —y)(y) <O.

Proof: Suppose J(z — y)(y) > 0. Since (E,|| - ||) is smooth, J is strong-weak®-
continuous (see, e.g., [15: Chapter 2, §1, Theorem 1]) and therefore

Jz=(1=y)y)+ J(z -1+ NMy)(y) > 2J(z —y)(y) > 0if X - 0+.

Thus there exists a \g > 0 such that J(z — (1 - My} () + J(z — (1 + My)(y) > 0 for all
A €0, Ag]. Using Lemma 5.7 we derive a contradiction to our assumption
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Lemma 5.9: Let (E, || ||) be 6 smooth normed space with dim E > 3 which satisfies
the condstion

(* * %) for all z,y € E it follows from ||z|| < ||y} that Je(z — y)(y) <O
Then (E, || - ||) is a Hilbert space.

Proof: From [12: Theorem 6.4] (Day) we know, that (E,]| - ||) is a Hilbert space
if and only if Lg is symmetric. Fix z,y € E such that zLgy. Then ||z|]| < |lz + Ayll
for all A € IR, and so it follows from (** %) that J(z — (z + Ay))(z + Ay) £ 0, 1e.
AJ(y)(z) + A?||y||> > 0. For A > 0 (X < 0) this implies that J(y)(=) + Ally|[* > 0 (< 0),
from which we conclude that J(y)(z) > 0 (< 0) letting A = 0+ (A — 0—). Hence
J(y)(z) = 0 and so yLp z by Lemma 5.3. We have shown that Lp is symmetric and
thus the result follows 1

Combining the lemmas above we obtain at once

(

Theorem 5.10: Let (E,|| - |l) be a smooth normed space with dimE > 3 which
satisfies the following condition : for each § # A C E with |A| = 2 and for each
T A — E which i3 non-expansive it follows that T is nearly pseudo-contractive, too.
Then (E,||-||) ss o Hslbert space.

Remark 5.11: With the help of explicit counter-examples and in view of
Lemma 2.1, we see that the following relations hold in general: (a) "T nearly
pseudo-contractive” implies ”T pseudo-contractive”, but the converse implication does
not hold; (b) "T non-expansive” implies "T pseudo-contractive”, but the converse
implication does not hold; (c) ”T non-expansive” and "T nearly pseudo-contractive”
are independent.
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B.-W.SCHULZE and H.TRIEBEL (eds.): Symposium "Partial Differential Equations’,
Holzhau 1988 (Teubner-Texte zur Mathematik: Vol. 112). Leipzig: B.G. Teubner Verlagsges.
1989, 316 S.

The volume contains part of the papers contributed to the Conference "Partial Differential
Equations” held in Holzhau in April 1988 and organized by the Karl-Weierstrass-Institut of
Mathematics of the Academy of Sciences of the GDR. The majority of the papers included in
this volume deals with spectral and scattering theory for linear operators, in particular Schro-
dinger operators and, as a whole, they offer a useful overview of recent trends in the current
research in this field. Both the analytic point of view of differential and pseudodifferential
operators and the one related to diffusion processes and functional integration are represented,
as some aspects of spectral theory on manifolds. Another group of articles is concerned with
various problems in the theory of pseudodifferential operators, in particular on non-smooth
manifolds, and with other aspects of differential geometry. A third group deals with some non-
linear equations. Most of these papers are pleasant to read and this is an additional motivation
to recommend the volume to everyone interested in these fields. We can only sketch the con-
tent of each contribution, by grouping them for convenience as indicated above.

E. Balslev and E. Skibsted consider Schrodinger operators with short-range potentials in
RN and study the analytic continuation of the resolvent operator and the S-matrix in the half
planes. Ph. Briet, J.M. Combes and P. Duclos describe some spectral stability properties of a
Schrodinger operator with a many-well potential in R’ in terms of the one-well operators
associated with the truncated potentials in each connected component of the classically allow-
ed region in RN. V. Enss gives a new proof of the asymptotic complieteness for the scattering
in two- and three-particle systems, for a class of short range potentials. P. Exner and P. Seba
discuss the existence of bound states for sufficiently thin strips, locally deformed by bends or
protrusions, in connection with various physical models of classical and Quantum waveguides
and layered semiconductors. M. and T. Hoffmann-Osterhof describe the asymptotic behaviour



