Exposed Operators in $\mathcal{B}(C(X), C(Y))$

R. ORZ4SLEWICZ

A point q_0 in a convex set *Q* is exposed if there exists a bounded linear functional ξ such that $\xi(q_0)$ > $\xi(q)$ for all $q \in Q \setminus \{q_0\}$. Characterizations of exposed points of the unit ball and the positive part of the unit ball of $\mathfrak{B}(C(X), C(Y))$ are given. We describe the set of strongly **exposed points. We also consider exposed operators on** *L°-* **and L-spaces.**

Key words: *Exposed points, space of continuous functions, operators, Nice operators, strongly exposed operators*

AMS subject classification: 47 D 20

1. Introduction

Let B_1 , B_2 be Banach spaces. By $\mathfrak{L}(B_1, B_2)$ there is denoted the Banach space of all bounded linear operators from B_1 to B_2 . An operator $T \in \mathfrak{L}(B_1, B_2)$ is called a contraction if $||T|| \leq 1$. Throughout this paper we assume that X and *Y* are non-empty compact Hausdorff topological spaces. As usual, we denote by $C(X)$ the Banach space of all real-valued (or complex) continuous functions on *X* with supremum norm. Following Morris and Phelps [23], we call a contradiction $T \in \mathfrak{L}(C(X), C(Y))$ nice, if its adjoint operator T^* takes Dirac measures on *Y* into extreme points of the unit ball of $C(X)^*$. It is not difficult to see that every nice operator is an extreme contraction (extreme point of the unit ball). Note that any element of $C(X)^*$ can be identified both as a linear functional and a measure. Moreover, the set of all extreme points of the unit ball of $C(X)^*$ coincises with the set $\{a\delta_{x}: |a|=1, x \in X\}$, where δ_{x} denotes Dirac measure (point mass) at $x \in X$ (see [2]). Thus $T \in \mathfrak{L}(C(X), C(Y))$ is nice if and only if there exists a function $r \in C(Y)$ with $|r| = 1$ and a continuous map $\varphi: Y \to X$ such that $(Tf)(y) =$ $r(y)f(\varphi(y))$, for all $f \in C(X)$ and $y \in Y$.

Each extreme contraction in $\mathfrak{L}(C(X), C(Y))$ is nice in the following cases:

1. X is metrizable (see [4]).

2. X is Eberlein compact, Y is metrizable (see [1]).

3. X is dispersed (see [27]).

4. Yis extremally disconnected (see [27]; also [8,18]).

It should be pointed out that Sharir [28,29] has given counterexamples (see also [12]). Extreme operators have been studied by many authors. The first theorem of this type was given by A. and C. Ionescu Tulcea [16,17]. Consider positive operators (an operator T is called *positive* if *Tf* ≥ 0 for all f ≥ 0). An operator $T \in \mathcal{B}(C(X), C(Y))$ is an extreme positive contraction (extreme point of the positive part of the unit ball of operators) if and only if there exists a *clopen* (closed and open) set $Z \subset Y$ and a continuous map $\varphi: Z \to X$ such that $(Tf)(y) = 0$ if $y \in Z$ and $(Tf)(y) = f(\varphi(y))$ if $y \in Z$ (see [6, 24], also [26: 111/§9]).

Recall that a point q_0 in a convex set Q is exposed if there exists a bounded real linear functional ξ such that $\xi(q_0) > \xi(q)$ for all $q \in Q \setminus \{q_0\}$. An exposed point $q_0 \in Q$ is called *strongly exposed* if for any sequence $\{q_n\} \subset Q$ the condition. $\xi(q_n) \to \xi(q_0)$ implies $q_n \to q_0$. Obviously each exposed point is extreme.

29 **Analysis, Bd. 10,** Heft 4 **(1991)**

The purpose of this paper is to study exposed and strongly exposed points of the unit ball of $\mathfrak{C}(C(X), C(Y))$. We also consider exposed operators acting on L^{1} - and L^{∞} - spaces. Note that exposed operators in L^p -spaces are considered in [13,14]. We should mention here that P. Greim also obtained results in this direction for Bochner L^p -spaces [9 - 11].

We say that a compact Hausdorff space *X carries a strict positive measure* if there exists a strictly positive Radon measure μ on *X* (i.e. $\mu(U)$ > 0 for all non-empty open subsets *U* of *X*).

The problem of characterization of spaces X which carry a strictly positive measure has been studied by many authors (see, e.g., L3,7,15,21, 221). In particular Kelley 119] introduced the notion of *intersection numbers* **of a collection of subsets to give the characterization of spases which carry a strictly positive measure. It should be pointed out that in the case of a compact Hausdorff space the problem mentioned above is equivalent to the problem of existence of a finitely additive strictly positive measure. Note that** *C(X)* **carries a strictly positive** functional if and only if its dual $C(X)^*$ contains a weakly compact total subset (see [24: The**orem 4.5.b]). We refer the reader to** [5: **Chapter 6] for a summary of those and related results.** In fact a strictly positive measure on X can be considered as a functional on $C(X)$ which **exposes the function** I_X **. Note that since** $\mathfrak{R}(R,C(Y))$ **coincides with** $C(Y)$ **if Y carries a strict positive measure, then** the **extreme points of the unit ball of 2(R,C(Y)) are exposed (cf. [30]). They are strongly exposed only in the case when V is a finite set.**

2. Exposed points in $\mathcal{G}(C(X), C(Y))$

We recommend to begin with a general sentence.

Theorem 1: *Let Ycarry a strictly positive measure and suppose that*

(i) *Xis metric or* (ii) *Yis extremally disconnected.*

Then each extreme point of the unit ball of $\mathfrak{L}(C(X), C(Y))$ is exposed.

Proof: Let μ be a strictly positive measure on Y with $\mu(Y) = 1$. Let T_0 be nice (= extreme), i.e. there exist $r_0 \in C(Y)$ and a continuous map $\Phi: Y \to X$ such that $(T_0 f)(y) = r_0(y)f(\Phi(y))$, $|r_0| = 1$. For $T \in \mathfrak{L}(C(X), C(Y))$ and $y \in Y$ we denote by m_y^T the measure defined by the equality $(Tf)(y) = \int_{N} f(x) dm_y^T$ for all $f \in C(X)$. This is a signed regular Borel measure on X with total variation $||m_{V}^{T}|| \le ||T||$. In fact $m_{V}^{T} = T^{*}\delta_{V}$.

Assume that (X, d) is a metric compact Hausdorff space. For $n \in \mathbb{N}$ and $y \in Y$ we define by $h_{n,y}(x) = r_0^{-1}(y) \max((1 - nd(x, \Phi(y)), 0))$ an element of $C(X)$. The map $h_{n,y}: Y \rightarrow h_{n,y} \in C(X)$ is continuous, so for every operator $S \in \mathfrak{L}(C(X), C(Y))$ the function $y \to (Sh_{n,y})(y)$ is continuous (as an element of $C(Y)$). Now we define a linear functional ξ_i on $\mathfrak{L}(C(X), C(Y))$ by *1 (S)* $\int_{X}^{T} \left\|f\right\|_{S}^{T}$ is $\|T\|_{S}^{T}$ in fact $m_{y}^{T} = T^{*}\delta_{y}$.
 N is a metric compact X , $\int_{S}^{T} = T^{*}\delta_{y}$.
 x) = $r_{0}^{-1}(y) \max((1 - nd(x, \Phi(y)), 0))$ and the sum $S \in \Omega$ ((as an element of $C(Y)$). Now we

$$
\xi_{\mathbf{1}}(S) = \sum_{n=1}^{\infty} \frac{1}{2^n} \int_Y (S h_{n,y} \chi y) d\mu(y) \qquad \big(S \in \mathfrak{L}(C(X), C(Y))\big).
$$

If $||S|| \leq 1$, then $|Sh_{n,y}(y)| \leq 1$ and $||\xi|| \leq 1$. Suppose that $\xi_1(S_0) = 1 = \xi_0(T_0)$ for some contraction S_0 . Then $\int (S_0 h_{n,y})(y) d\mu(y) = 1$ for all $n \in \mathbb{N}$. Since the map $y \to (S_0 h_{n,y})(y)$ is continuous with $|(S_0 h_{n,y})(y)| \leq 1$ we get $(S_0 h_{n,y})(y) = \langle h_{n,y}, S_0^* \delta_y \rangle = 1$ for $y \in Y$. Hence $S_0^* \delta_y = r_0(y) \delta_{\varphi(y)}$, i.e. $S_0 = T_0$, what show that T_0 is exposed.

Now suppose that Y is extremally disconnected. Then *C(Y)* is an order complete AMspace with unit $[26: Section II.7.7]$ and $\mathfrak{L}(C(X), C(Y))$ is a Banach lattice $[26: Section IV.1.5.]$. Therefore for every contraction $S \in \mathcal{G}(C(X), C(Y))$ there exist positive contractions S_+ and $S_$ such that $S = S_+ - S_-$. Then $m_Y^S = m_Y^{S_+} - m_Y^{S_-}$. The map $y \to m_Y^{S_+}$ is weakly* continuous. Since For $S_0 = I_0$, what show that I_0 is exposed.

Now suppose that Y is extremally disconnected. The

space with unit [26: Section II.7.7] and $\mathcal{G}(C(X), C(Y))$ is

Therefore for every contraction $S \in \mathcal{G}(C(X), C(Y))$ there

suc ϵ [0, $m_{\mathcal{Y}\alpha}^{S\bullet}(\{\varphi(y_{\alpha})\})$] the condition If $||S|| \le 1$, then $\int (S_0 h_{n,y}) (1)$
i.e. $S_0 = T_0$
Now suppose with the space with the space with the space π such that S
for arbitrary $-\beta_{\alpha} \delta_{\varphi}(y_{\alpha})$ $-\beta_{\alpha}\delta_{\varphi(y_{\alpha})}\geq 0$ implies that $m_{y_0}^{S+}-\beta_0\delta_{\varphi(y_0)}\geq 0$ and the sets $\{y:\, m_y^{S+}(\{\varphi(y)\})\geq a\}$ are closed for all $a \in \mathbb{R}$. The same we have for $m_y^{S_-}$. Therefore $\int r_0^{-1}(y) m_y^{S}(\{\varphi(y)\}) d\mu(y)$ exists for every $S \in \mathfrak{L}(C(X), C(Y))$;

We define a linear functional ξ_2 on $\mathfrak{L}(C(X), C(Y))$ by

$$
\xi_2(S) = \int_Y r_0^{-1}(y) m_y^S(\{\varphi(y)\}) d\mu(y) \quad (S \in \mathfrak{L}(C(X), C(Y))).
$$

For a contraction $S \in \mathfrak{L}(C(X), C(Y))$ and an element $y \in Y$ we have $||m_y^S|| \le 1$. Thus $\xi_2(S) \le \mu(Y)$ = 1. Moreover $\xi_2(T_0)$ = 1. Suppose now that $\xi_2(S_0)$ = 1 for some contraction $S_0 \in \mathfrak{L}(C(X), C(Y))$. We have $\|m_y^{\text{So}}\| \le 1$. Thus $m_y^{\text{So}}(\{\varphi(y)\}) = r_o(y)$ μ -a.e. Hence $m_y^{\text{So}} = r_o(y) \delta_{\varphi(y)}$ μ -a.e. Therefore by a continuity argument and the fact that $\{y: m_{\mathbf{y}}^{S_0}(\{\varphi(y)\}) = r_0(y)\}$ is closed we obtain *(S₀*) *(Spiera) (Spiera) (Spiera) (Spiera) (Spiera) (Spiera) (Spiera) (Spiera) (Spiera) (Y) (y* $R(C(X), C(Y))$ **I**

Theorem 2: *Let Ycarry a strictly positive measure on Y. Then each extreme point of the positive part of the unit ball of* $\mathfrak{L}(C(X), C(Y))$ is exposed.

Proof: Let μ be a strictly positive measure on *Y* and T_0 an extreme positive contraction. Then there exists a clopen set $Z \subseteq Y$ and a continuous map $\varphi: Z \to X$ such that $(T_0 f)(y) = 0$ if *y* **ε** Z and $(T_0 f)(y) = f(\varphi(y))$ if $y \in Z$. Now we define a linear functional ξ by

$$
\xi(S)=\int_Z m_y^S(\{\varphi(y)\})d\mu(y)-\int_Z c(SJ_X)(y)d\mu(y) \quad (S\in\mathfrak{L}(C(X),C(Y))).
$$

 $\xi(S) = \int_Z m_y S(\{\varphi(y)\}) d\mu(y) - \int_{Z^c} (S J_X)(y) d\mu(y)$ ($S \in \mathfrak{L}(C(X), C(Y))$).
This functional exposes T_o . Indeed, for a positive contraction S we have $\xi(S) \le \mu(Z) = \xi(T_o)$.
Suppose $\xi(S_o) = \mu(Z)$ for some positive contraction S_o . Suppose $\xi(S_o) = \mu(Z)$ for some positive contraction S_o . Then $m_y^S O(\{\varphi(y)\}) = 1$ for $y \in Z$ and $(S_o 1)(y) = 0$ for $y \in Z^c$. Using the same arguments as in the proof of Theorem 1 we have $(S_0 f)(y) = f(\varphi(y))$ for $y \in Z$. If $0 \le f \le 1$, then $0 \le S_0 f \le S_0 1$, so $(S_0 f)(y) = 0$ for $y \in Z^\infty$. Therefore $S_0 = T_0$, i.e. T_0 is exposed by ξ

3. Strongly exposed operators

Now we consider the strongly exposed points of the unit ball and the positive part of the unit ball of $\mathfrak{L}(C(X), C(Y)).$

Theorem **3:** *Let Y carry a strictly positive measure and X be metric or extremally disconnected.*

(a) If card $Y \leq \infty$, then all extreme points of the unit ball of the space $\mathfrak{L}(C(X), C(Y))$ are *strongly exposed.*

(b) If card $Y = \infty$, then there are no strongly exposed points in the unit ball of the space $R(C(X), C(Y)).$

Proof: (a) Let Y = { $y_1, y_2, ..., y_n$ }, $n \in \mathbb{N}$ and T_0 be an extreme contraction. Then $(T_0 f)(y_j)$ $= r(y_j)f(\varphi(y_j))$, where $|r(y_j)| = 1$. Put $\xi(S) = \sum_{i=1}^n r(y_j)m_{y_i}S((\varphi(y_j))$, where $m_{y_i}^S$ denotes the measure on X defined in the proof of Theorem 1. Obviously ξ exposes $\mathcal{T}_{\mathsf{O}_c}$. Suppose that $\xi(S_{\bm{k}})$ – = $r(y_j)f(\varphi(y_j))$, where $|r(y_j)| = 1$. Put $\xi(S) = \sum_{j=1}^n r(y_j) m_{y_j}^S((\varphi(y_j))$, where $m_{y_j}^S$ denotes the
measure on X defined in the proof of Theorem 1. Obviously ξ exposes T_0 . Suppose that $\xi(S_k) \to$
 $\xi(T_0) = n$ for some \rightarrow *r*(*y_j*) as *k* $\rightarrow \infty$. Thus

$$
\left\|m_{y_j}^{S_k}-r(y_j)\delta_{\varphi(y_j)}\right\| \leq \left|m_{y_j}^{S_k}-r(y_j)\delta_{\varphi(y_j)}\right|(\{\varphi(y_j)\})=\left|m_{y_j}^{S_k}\right|(\{\varphi(y_j)\}^c) \longrightarrow 0
$$

29 ***

as $k \to \infty$. Now we obtain

436 R. G(RZASLEWICZ
\nas
$$
k \to \infty
$$
. Now we obtain
\n
$$
||S_k - T_0|| = \sup_{\|f\| \le 1} \sup_{j \le n} \left| \int_X f d\left(m_j^{S_k} - r(y_j) \delta_{\varphi(y_j)} \right) \right|
$$
\n
$$
\le \sup_{\|f\| \le 1} \left| f \right| \sup_{j \le n} \left| m_j^{S_k} - r(y_j) \delta_{\varphi(y_j)} \right| \longrightarrow \text{ as } k \to \infty.
$$
\nThus T_0 is strongly exposed.
\n(b) Suppose now that card $Y = \infty$. Let T_0 be exposed by a func
\nfor all contractions S. There exists a sequence $\{U_j\}_{j=1}^{\infty}$ of disjoint no
\nLet $g_j \in C(Y)$ be such that $||g_j|| = 1$, and supp $g_j \subset U_j$ for all $j \in N$.

Thus T_0 is strongly exposed.

(b) Suppose now that card $Y = \infty$. Let T_0 be exposed by a functional ξ , i.e. $\xi(S) \leq \xi(T_0) = 1$ of disjoint non-empty open subsets of *Y.* Let $g_i \in C(Y)$ be such that $||g_i|| = 1$, and supp $g_i \subset U_i$ for all $j \in \mathbb{N}$. Now we define operators R_j by $R_j f = g_j T_0 f$. Put $\gamma_j = \xi(R_j)$ and let $k \in \mathbb{N}$. The operator $\sum_{j=1}^k R_j$ is a contraction. Thus $\sum_{j=1}^k \gamma_j$ $I = \xi(\sum_{j=1}^{k} R_j) \le 1$. Therefore lim_j $\gamma_j = 0$. Consider the operators $T_j = T_0 - R_j$. We have $||T_0 - T_j|| = 1$, i.e. $\{\tilde{T}_j\}$ does not converge to \tilde{T}_0 . But $\xi(T_j) = \xi(T_0) - \xi(R_j) = 1 - \gamma_j \rightarrow 1 = \xi(T_0)$ as $j \rightarrow \infty$. Thus T_0 is not strongly exposed \blacksquare

Theorem 4: *The following statements are true.*

(a) If card $Y \leq \infty$, then all extreme points of the positive part of unit ball of the space $\mathfrak{L}(C(X), C(Y))$ are strongly exposed.

(b) If card $Y = \infty$, then there are no strongly exposed points in the positive part of the unit *ball of the space* $\mathcal{B}(C(X), C(Y))$.

Proof: Let T_0 be a positive contraction in $\mathfrak{L}(C(X), C(Y))$. Then $(Tf)(y) = 0$ for $y \in Z$ *and* $(Tf)(y) = f(\varphi(y))$ *for y* $\in Z$ *.*

(a) Suppose that card $Y < \infty$. We define a functional ξ_0 by

(a) If cardY
$$
\leq
$$
 ∞ , then all extreme points of
\n (X) , $C(Y)$ are strongly exposed.
\n(b) If cardY = ∞ , then there are no strongly ex-
\nof the space $\mathcal{B}(C(X), C(Y))$.
\n**Proof:** Let T_0 be a positive contraction in \mathcal{B}
\n $(Tf)(y) = f(\varphi(y))$ for $y \in Z$.
\n(a) Suppose that cardY $\leq \infty$. We define a func
\n $\xi_0(S) = \sum_{y_j \in Z} m_{y_j}^S(\{\varphi(y_j)\}) - \sum_{y_j \in Z} (S I_X \chi y_j)$.
\n \therefore functional exposes T_0 since $\xi_0(S) \leq$ card $Z = \infty$, for some sequence of positive S_k . We have
\n $\|m_{y_j}^{S_k} - \delta_{\varphi(y_j)}\|_{K \to \infty} \to 0$ for $y_j \in Z$ and $(S_k I) \langle y_j \rangle$
\nrefore $\|S_{k,j} - T_k\| \to 0$ as $n \to \infty$, i.e. T_0 is strong

(a) Suppose that card $Y \le \infty$. We define a functional ξ_0 by
 $\xi_0(S) = \sum_{y_j \in \mathbb{Z}} m_{y_j}^S(\{\varphi(y_j)\}) - \sum_{y_j \in \mathbb{Z}^+} (SI_X \chi y_j).$

This functional exposes T_0 since $\xi_0(S) \le \text{card } Z = \xi_0(T_0)$. Suppose now that $\xi_0(S_k) \to \$ $k \to \infty$, for some sequence of positive S_k . We have ppose that card $Y \leq \infty$. We define a functional ξ_i
 $= \sum_{y_j \in \mathbb{Z}} m_{y_j}^S(\{\varphi(y_j)\}) - \sum_{y_j \in \mathbb{Z}} (S \, I_X \lambda y_j).$

ional exposes T_0 since $\xi_0(S) \leq \text{card } Z = \xi_0(T_0).$ S

r some sequence of positive S_k . We have
 $-\delta_{\varphi$

$$
\left\|m_{y_j}^{S_k} - \delta_{\varphi(y_j)}\right\| \xrightarrow[k \to \infty]{} 0 \text{ for } y_j \in Z \text{ and } (S_k I)(y_j) \xrightarrow[k \to \infty]{} 0 = (T_0 I)(y_j) \text{ for } y_j \in Z^c.
$$

Therefore $||S_n - T_0|| \to 0$ as $n \to \infty$, i.e. T_0 is strongly exposed.

(b) Suppose that a functional ξ exposes a positive contraction T_0 , i.e. $\xi(S) \le \xi(T_0) = 1$ for all positive contractions S. If card $Y = \infty$, then using arguments from the proof of Theorem 4/(b) we get that T_0 is not strongly exposed. Consider now the case card $Z^c = \infty$. Let $\{U_j\}_{j=1}^{\infty}$ be a family of disjoint non-empty open sets and let g_i be such that $0 \le g_i \le 1$, supp $g_i \subset U_i$, $||g_i|| = 1$. Fix $x_0 \in X$. We define operators R_j by $(R_j f)(y) = g_j(y)f(x_0)$. Put $\gamma_j = \xi(R_j)$ and let $k \in \mathbb{N}$. Since $\sum_{j=1}^{K} R_j$ is a positive contraction, using the same arguments as in the proof of Theorem 3/(b) we obtain $\gamma_j \to 0$ and $\xi(T_j) \to \xi(T_0)$ as $j \to \infty$, where $T_j \circ T_0 + R_j$, though $||T_j|| \le 1$, $T_j \ge 0$, and $||T_i - T_0|| \le 1$. Thus T_0 is not strongly exposed \blacksquare

Theorem 5: *If V does not carry a strictly positive measure, then there are not exposed points in the unit balland in the positive part of the unit ball of* $\mathfrak{L}(C(X), C(Y))$.

Proof: First consider the case of the whole unit ball. Suppose that *&⁰* exposes an extreme contraction $T_0 \in \mathfrak{L}(C(X),C(Y))$. We define a functional m on $C(Y)$ by $m(h) = \zeta_0(hT_0),\ h \in C(Y).$ Suppose that there exists a non-zero h_0 , $0 \le h_0 \le 1$ and $m(h_0) \le 0$. Then $\xi_0((1-h_0)T_0) = m(1-h_0)$ **Proof:** First consider the case of the whole unit ball. Suppose that ξ_0 exposes an extreme contraction $T_0 \in \mathfrak{L}(C(X), C(Y))$. We define a functional m on $C(Y)$ by $m(h) = \xi_0(hT_0), h \in C(Y)$. Suppose that there exists a n

± hf(x₀)|| ≤ ||f || for all $f \in C(X)$. The operator $(1-h_0)T_0$ is not extreme. This contradictions proves that $m(h) > 0$ for all $h \in C(Y)$ with $0 \le h \le 1$. Therefore if there exists an exposed point in the unit ball, then Ycarries a strictly positive measure, what ends the proof for the unit ball.

Now consider the positive part of the unit ball. Suppose that a functional ξ_0 exposes a positive contraction T_0 . The operator T_0 is of the form $T_0(f)(y) = 0$ for $y \in Z$ and $T_0(f)(y) = 0$ $f(\varphi(y))$ for $y \in Z$. Using arguments presented in the first part of the proof one can see that the clopen set *Z* carries a strictly positive measure. Fix $x_0 \in X$ and put $Rf = 1_Z \in f(x_0)$, $f \in C(X)$. We define a functional *n* on $C(Z^c)$ by $n(h) = -\xi_0(hR)$, $h \in C(Z^c)$. Let $0 \le h \le 1$ and $h \ne 0$. Then because T_0 + hR is a positive contraction and hR + 0 we have $\xi_0(T_0)$ > $\xi_0(T_0 + hR) = \xi_0(T_0) - n(h)$, so $n(h) > 0$. Therefore *n* is a strictly positive measure on Z^c

4. The case of L^{∞} - and L^1 -spaces

Let (Q,\mathfrak{B},μ) be a σ -finite measure space. Denote by $L^{\infty}(\mu)$ the space of all essentially measurable functions on (Q, μ) , with essential supremum norm. The space $L^{\infty}(\mu)$ is the dual of the AL-space $L^1(\mu)$, and is isomorphic to $C(X)$, where X is the Stone representation space of β /N *(N* denotes the ideal of measure zero sets). In this case the space *X* must be hyperstonian (see [26: Chap. II, Sec. 9]). Thus X is also Stonean (extremally disconnected). Since μ is o-finite, there exists a strictly positive $f \in L^1(\mu)$. Hence X carries a strictly positive measure. Let $(Q_i, \mathcal{B}_i, \mu_i)$ be o-finite measure spaces, $i = 1, 2$. Consider now extreme operators in $\mathfrak{L}(L^{\infty}(\mu_1), L^{\infty}(\mu_2))$. We can identify this space with the space $\mathfrak{L}(C(X), C(Y))$, where X and Y are suitable hyperstonean spaces. Note that the representation of an extreme operator in $\mathfrak{L}(L^{\infty}(\mu_{1}), L^{\infty}(\mu_{2}))$ by means of a measurable transformation φ is not always possible (see [18: p. 152]). The extreme positive contractions in the space $\mathcal{R}(L^{\infty}(\mu_1), L^{\infty}(\mu_2))$ can be characterized as operators which carry characteristic functions, or equivalently, which are multiplicative (see [24: Theorem 2.2]). The set of extreme contractions in $\mathcal{Q}(L^{\infty}(\mu_1), L^{\infty}(\mu_2))$ coincides with the set of all lattice homomorphisms taking the function *1* into itself, multiplied by functions of absolute value one (see [18,201). Using Theorem 2 and 3 we obtain the following

Theorem 6: *Extreme positive contractions and extreme contractions in* $\mathfrak{L}(L^{\infty}(\mu_1), L^{\infty}(\mu_2))$ are exposed. Moreover the exposed operators are strongly exposed if and only if $L^{\infty}(\mu_2)$ is fi*nite-dimensional.*

Let us consider extreme operators in $\mathfrak{L}(L^1(\mu_1), L^1(\mu_2))$. The extreme contractions can be characterized as those operators whose adjoints are extreme contractions in $\mathfrak{L}(L^{\infty}(\mu_2), L^{\infty}(\mu_1))$ (see [18]). As we mentioned above, in general extreme operators cannot be represented by measurable transformations. But in some cases this is possible, for example, if μ_2 is a σ -finite Borel measure on R (see [18: Theorem 2]). Also extreme positive contractions are characterized by duality.

Theorem 7: Let μ_2 be a σ -finite Borel measure on R. Then extreme positive contractions and extreme contractions in $\mathfrak{L}(L^1(\mu_1), L^1(\mu_2))$ are exposed. Moreover the exposed operators are *strongly exposed if and only if* $L^1(\mu_1)$ *is finite-dimensional.*

Proof: Let T_0 be an extreme operator in $\mathfrak{L}(L^1(\mu_1), L^1(\mu_2))$. Then T_0^* is also extreme, so exposed. Suppose that the functional ξ_0 defined on $\mathfrak{L}(L^{\infty}(\mu_2), L^{\infty}(\mu_1))$ exposes T_0^* . We define a Borel measure on R (see [18: Theorem 2]). Also extreme positive contractions are chized by duality.
 Theorem 7: Let μ_2 be a σ -finite Borel measure on R. Then extreme positive contant extreme contractions in \mathfrak

Acknowlegement: The paper has been written while the author was a research fellow of the Alexander von Humboldt - Stiftung at the Mathematisches Institut of the Eberhardt - Karis University, Tubingen.

REFERENCES

- *[11 AMIR, D. and J. LINDENSTRAUSS: The structure of weakly compact sets in Eanach* spaces. Ann. Math. **88** (1968). 35 - 46.
- L21 ARENS. R.F. and J. L. KELLEY: *Characterization of the space of continuous functions over a compact Hausdorff space. Trans. Amer. Math. Soc. 62(1947), 499 - 508.*
- L31 ARGYROS, S.: *On compact space without strictly positive measures.* Pac. J. Math. 105 (1983), 257 - 272.
- [41 BLUMENTHAL, R.M., LINDENSTRAUSS, J. and R.R. PHELPS *Extreme operators into C(K).* Pac. J. Math. 15(1965), 747 - 756.
- L51 COMFORT,W.W. and S.NEGREPONTIS: *Chain conditions in topology.* Cambridge: Canibr. Univ. Press 1982.
- [6J ELLIS, A. J.: *Extreme positive operators.* Quart. J. Math. Oxford **15** (1964), 342 -344.
- *L71 GAIFMAN, H. Concerning measures on Boolean algebras. Pac. J. Math. 14(1964), 61 73.* [8] GENDLER, A.: Extreme oparators in the unit ball of $\mathcal{B}(C(X), C(Y))$ over the complex
- field. Proc. Amer. Math. Soc. **57** (1976), 85 88. [9] $GREIM, P.: An external vector-valued L^p -function taking no extremal vectors as values.$ Proc. Amer. Math. Soc. **84** (1982), 65 - 68.
- *1101 GREIM, P.: Strongly exposed points in Bochner L^p-spaces. Proc. Amer. Math. Soc. 88

1101 GREIM, P.: A note on strongly extreme and strongly exposed points in Bochner L^p-spaces.

2111 GREIM, P., KOPPELBERG, S. and* (1983), 81 - 84.
- *[111 GREIM, P.: A note on strongly extreme and strongly exposed points in Bochner L-spaces.* Proc. Amer. Math. Soc. **93** (1985), 65 - 66.
- [121 GREIM,P., KOPPELBERG,S. and M. RAJAGOPALAN: *Extremally non -nice operator into CK and continuous mappings into the Hilbert cube. Math. Z. 188 (1985), 439 - 447.*
[13] GRZASLEWICZ, R.: *Extreme positive contractions on finite-dimensional* 1^P - *spaces.*
- Can. J. Math. 37 (1985), 682 699.
- [141 GRZASLEWICz.R.: *Exposed points in the unit ball of S(H).* Math. 2.193 (1986).595 -596.
- [15] HERBERT, D.J. and H.E. LACEY: *On supports of regular Borel measures.* Pac. J. Math. Can. J. Math. **37** (1)
GRZASLEWICZ,R
HERBERT,D.J. an
27 (1968), 101 - 118.
IONESCU TULCE
- [16] IONESCU TULCEA, A. and C.IONESCU TULCEA: A note on extreme points. (unpubl.). *[171 IONESCU TULCEA, A. and C. IONESCU TULCEA: On the Lifting Property I. I. Math.* Anal. App!. 3 (1961), 537 - 546.
- *[18) IWANIK, A.: Extreme contractions on certain function spaces. Colloq. Math. 40 (1978),* 147 - 153.
- [19] KELLEY, J.L.: Measures on Boolean algebras. Pac. J. Math. 9 (1959), 1165 1177.
- 1.20] KIM,C.W.: *Extreme Contraction Operators on 1m* Math. 2.151(1976), 101 -110.
- *[211* MAHARAM,D.: *An algebraic characterization of measure* algebras. Ann. Matti. 48(1947), Kelley,
Kim, C.W
Mahara
154 - 167.
Moore
- *[221 MOORE, L.C. Jr.: Strictly increasing Riesz norms. Pac. J. Math. 37 (1971), 171 180.*
- [23] MORRIS, P.D. and R.R. PHELPS: Theorems of Krein-Millman type for certain convex *sets of operators.* Trans. Amer. Math. Soc. **150** (1979), 183 - 200.
- *1241 PHELPS, R.R.: Extreme positive operators and homomorphisms.* Trans. Amer. Math. Soc. 108 (1965), 263 - 274.
- [25] \overline{R} OSENTHAL, $H.P.:$ On injective Banach spaces and the spaces $L^{\infty}(\mu)$ for finite measures V. Acta Math. 124 (1970), 205 - 248.
- [26] SCHAEFER, H.H.: *Banach Lattices and Positive Operators*. Berlin-Heidelberg -New York: Springer-Verlag 1974.
- *[27] SHARIR, M.: Characterization and properties of extreme operators into C(Y). Israel J.* Math. **12** (1972), 174 - 183.
- *[281 SHARIR,M.:A cotmnterexampleon extreme operators. Israel i.Math. 24(1976), 320-328.*
- *[29] S1-tARIR,M.: A non-nice extreme operator into C(Y). Israel J. Math. 26 (1977), 306 312.*
- *[30] PHELPS, R.R.: Extreme points in function algebras. Duke Math. J. 32(1965), 267 277.*

Received 10.10.1989; in revised form 08.03. 1991

Dr. Ryszard Grzaslewicz Politechimika. Institute of Mathematics Wb. Wyspiamiskiego 27 P - 50-370 Wroclaw