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Exposed Operators in 8(C(X), C(Y))

R. GRzAaSLEWwICZ

A point g, in a convex set Q is exposed if there exists a bounded linear functional § such that
& qo) > &(q) for all g € Q\{qgo}. Characterizations of exposed points of the unit ball and the
positive part of the unit ball of B(C(X), C(Y))are given. We describe the set of strongly
exposed points. We also consider exposed operators on L~ and Ll—spaces.
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1. Introduction

Let B,, B, be Banach spaces. By R(B,, B,) there is denoted the Banach space of all bounded
linear operators from B, to B,. An operator T¢%(B,, B,) is called a contraction if |T |5 1.
Throughout this paper we assume that X and Y are non-empty compact Hausdorff topological
spaces. As usual, we denote by C(X) the Banach space of all real-valued (or complex) conti-
nuous functions on X with supremum norm. Following Morris and Phelps [23], we call a con-
tradiction T ¢ 8(C(X), C(Y)) nice, if its adjoint operator T *takes Dirac measures on Y into
extreme points of the unit ball of C(X)" It is not difficult to see that every nice operator is an
extreme contraction (extreme point of the unit ball). Note that any element of C(X)"can
be identified both as a linear functional and a measure. Moreover, the set of all extreme points
of the unit ball of C(X)* coincises with the set {ad,.: lal = 1, x € X}, where 8, denotes Dirac
measure (point mass) at x € X (see [2]). Thus T e R(C(X), C(Y)) is nice if and only if there
exists a function r € C(Y)with |r| = 1 .and a continuous map @: Y = X such that (Tf)(y) =
r(y) fle(y), forall fFeC(X)and ye Y-

Each extreme contraction in 8(C(X), C(Y))is nice in the following cases:

1. X is metrizable (see [4]).

2. Xis Eberlein compact, Yis metrizable (see [1]).

3. Xis dispersed (see [27]).

4. Yis extremally disconnected (see [27]; also [8,18]).

It should be pointed out that Sharir[28,29] has given counterexamples (see also [12]). Extreme
operators have been studied by many authors. The first theorem of this type was given by A.
and C. lonescu Tulcea [16,17]. Consider positive operators (an operator T is called positive if
Tfz 0 for all f2 0). An operator T e R(C(X), C(Y)) is an extreme positive contraction (extreme
point of the positive part of the unit ball of operators) if and only if there exists a clopen
(closed and open) set Z < Yand a continuous map ¢: Z—>X such that (Tf)(y) = 0 if y ¢ Z and
(TF)y) = Flo(y))if y e Z (see [6,24], also [26:111/8§9]).

Recall that a point g, in a convex set Q is exposed if there exists a bounded real linear
functional E such that £(q,) > E(q) for all g € Q\{qg,}. An exposed point g, ¢ Q is called strongly
exposed if for any sequence {q,}- C Q the condition.£(gqn) = &(q,) implies g,, > q,..Obviously
each exposed point is extreme. :
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The purpose of this paper is to study exposed and strongly exposed points of the unit ball
of B(C(X), C(Y)). We also consider exposed operators actingon L!- and L*- spaces. Note
that exposed operators in LP-spaces are considered in [13,14]. We should mention here that
P. Greim also obtained results in this direction for Bochner LP-spaces (9 -11].

We say that a compact Hausdorff space Xcarries astrict positive measure if there exists a
strictly positive Radon measure g on X (i.e. p(U) > 0 for all non-empty open subsets U of X).

The problem of characterization of spaces X which carry a strictly positive measure has
been studied by many authors (see, e.g., [3,7,15,21,22]). In particular Kelley [19] introduced
the notion of intersection numbers of a collection of subsets to give the characterization of
spases which carry a strictly positive measure. It should be pointed out that in the case of a
compact Hausdorff space the problem mentioned above is equivalent to the: problem of exi-
stence of a finitely additive strictly positive measure. Note that C(X) carries a strictly positive
functional if and only if its dual C(X)" contains a weakly compact total subset (see [24: The-
orem 4.5.b]). We refer the reader to [S: Chapter 6] for a summary of those and related results.
In fact a strictly positive measure on X can be considered as a functional on C(X) which
exposes the function ly,. Note that since B(R,C(Y )) coincides with C(Y) if Y carries a strict
positive measure, then the extreme points of the unit ball of 8(R,C(Y)) are exposed (cf. [30])).
They are strongly exposed only in the case when Yis a finite set.

2. Exposed points in $(C(X), C(Y))

We recommend to begin with a general sentence.

 Theorem 1: Let Y carry a strictly positive measure and suppose that
(i) X is metric or (ii) Y is extremally disconnected.
Then each extreme point of the unit ball of ((C(X), C(Y)) is exposed.

Proof: Let u be a strictly positive measure on Ywith p(Y) = 1. Let 7, be nice (= extreme),
i.e. there exist r, e C(Y) and a continuous map ®:Y —> X such that (£ }(y) = r,(y)F(O(y)),
iyl = 1. For TeR(C(X), C(Y)) and y ¢ Y we denote by myT the measure defined by the equality
(TF)(y) =J:\. f( x)dmyT for all fe C(X). This is asigned regularBorel measure on X with total
variation || myTII s||T|. In fact myT= T'Sy.

Assume that (X, d) is a metric compact Hausdorff space. For n¢ N and y ¢ Y we define by
hp 3 (x) = g (y) max((1 - nd(x,0(y)),0) an element of C(X). The map hy, .: Y= h, , € C(X)
is continuous, so for every operator S e $(C(X), C(Y)) the function y = (Sh, ,)Xy) is conti-

nuous (as an element of C(Y)). Now we define a linear functional £, on R(C(X), C(Y)) by
6(5)= 5 Sl (Shy Xn)duly)  (SeRCX),CYY).

If ISls1, then|Sh, ,(y)l s1and lEll s 1. Suppose that £(S,) =1 = £,(T;) for some contraction S,,.
Then f(Soh“‘y)(_y)dp(_y) =1for all ne N. Since the map y = (S, h,, ,,)(¥) is continuous with
[(Sohn,y X ¥) s 1 we get (Soh,, , Ny) = <hy, o, S;°8,> =1for ye Y. Hence S5°8,, = r(y)$
i.e. S, = T;, what show that T, is exposed.

®(y)

Now suppose that Y is extremally disconnected. Then C(Y ) is an order complete AM-
space with unit [26: Section [1.7.7] and R(C(X ), C(Y))is a Banach lattice [26: Section 1V.1.5.].
Therefore for every contraction S ¢ (C(X), C(Y)) there exist positive contractions S, and S_
such that S= S, -S_.Then mys = mys‘ -~mys‘. The map y - mys’ is weakly™ continuous. Since
for arbitrary nets y, —> y, in Yand By —> B, in R with B, € [0, m3({¢(y,)})] the condition myo*

- BoS () 2 0 implies that myf' - Boe(y,) 2 0 and the sets {y: m ({e(y)}) 2 a} are closed
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for all a € R. The same we have for m,>~. Therefore [ y) mS({e(y)}) du( y) exists for every
S e RC(X), C(Y ).
We define a linear functional , on 2(C(X), C(Y)) by

E(S) = [y o () mP({e(y M) du(y) (S eR(C(X), C(Y ).

For a contraction S ¢ (C(X), C(Y)) and an element y ¢ Y we have || mysll < 1. Thus £,(S) s u(Y)
= 1. Moreover E,(T,) = 1. Suppose now that £,(S,) = 1 for some contraction S, ¢ (C(X ), C(Y)).
We have IImyS°II s 1. Thus mSo({o(y)) = r(y) u-a.e. Hence mys° = 1(¥)84(y) u-a.e. There-
fore by a continuity argument and the fact that {y: mys°({q;(y)}) = r(y)} is closed we obtain
(Sof Xy) = r{¥)f(@(y)) forall y e Y. Thus S, = T, i.e. T, is exposed by £, in the unit ball of
(X)), cly)Hn '

Theorem 2: Let Y carry a strictly positive measure on Y. Then each extreme point of the.
positive part of the unit ball of %(C(X), C(Y)) is exposed.

Proof: Let pbe a strictly positive measure on Y and T, an extreme positive contraction.
Then there exists a clopen set ZC Yand a continuous map @: Z—>-X such that (T,f X y) = 0 if
yeZand (,fXy) = Fle(y)) if y € Z. Now we define a linear functional £ by

&S) = [, mS{e(yNdu(y) - [Le(Sh)»)duly) (S eRC(X), C(Y ).

This functional exposes T,. Indeed, for a positive contraction S we have £(S) s u(Z) =&(T).
Suppose E(S,) = u(Z) for some positive contraction S,.Then mys°({q7(y)}) =1for y e Z and
(So1Xy) = 0 for y € Z°. Using the same arguments as in the proof of Theorem 1 we have
(Sof Ny)=f(p(y)) forye Z.1f0s fs1,then0sS,fs S, 1,50 (S,FXy)=0forye Z°. There-
fore S, = T,1.e. T, is exposed by £ @

3. Strongly exposed operators

Now we consider the strongly exposed points of the unit ball and the positive part
of the unit ball of (C(X ), C(Y)).

Theorem 3: Let Y carry a strictly positive measure and X be metric or extremally discon-

nected.

(a) If cardY < o, then all extreme points of the unit ball of the space (C(X), C(Y)) are
strongly exposed.

(b) If cardY = o, then there are no strongly exposed points in the unit ball of the space
UC(X), C(Y)).

Proof: (a) Let Y={y,,¥%,,...,¥n}, n € N and T, be an extreme contraction. Then (LX)
n
N r(yj)f(tp(yj)), where Ir(yj)l = L.Put ¥8S) =Zj=lr(}f,~)m}§$({q>()g)}), where m)j.s denotes the
measure on X defined in the proof of Theorem 1. Obviously £ exposes 7. Suppose thast US) >
Sy
¥ T,) = n for some sequence of contractions S ¢ (C(X),C(Y)).Then || myj*” sland m}j.k({tp(}g)})

- r(yj)as k—> ®. Thus

gk - )80yl < [ myg® - 1370800, l(t0 05 ) = [ my *l(bo(35)e) —= 0

20*
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as k = . Now we obtain

ISk - Tll = sup sup U\'fd( B ’(«Vj)sw(y-))l
Ifll<s jsn J
s sup [If |} sup ||m - Hy)8(y)| = as k> <.
ifliss  jsn /i

Thus T is strongly exposed.

(b) Suppose now that cardY = @, Let T, be exposed by a functional E, i.e. &(S) s &(Tp) =1
for all contractions S. There exists a sequence {U} , of disjoint non-empty open subsets of Y.
Let g; ¢ C(Y) be such that [|lg; |l = 1,-and suppg; C Uj; for all j € N. Now we define operators R;
by R;f= g T,f. Puty;= E(R;) and let k ¢ N. The operator Z +R; is a contraction. Thus ZJ Y
= E(,_,} . ) < 1. Therefore limj ;= 0.Consider the operators T T - R We have || T, - T I =1,
i.e. {T;} does not converge to T,. But BT =8T)-ER)=1-y;>1= 5(7(',) as j—> . Thus T
is not strongly exposed 8

Theorem 4: The following statements are true.

(a) If cardY < o, then all extreme points of the positive part of unit ball of the space
@ C(X), C(Y)) are strongly exposed.

(b) IfcardY = o, then there are no strongly exposed points in the positive part of the unit
ball of the space Y(C(X ), C(Y)).

Proof: Let T, be a positive contraction inR(C(X), C(Y )). Then (Tf Xy) = 0 for y ¢ Z
and (TFXy) = flp(y)) fory e Z.
(a) Suppose that cardY < . We define a functional §, by

£,(S) = Zm ey - Ezb(sz\»xm
}GC

This functlonal exposes T, since £,(S) s card Z = E,(T). Suppose now that £,(S,) -> £,(T,) as
k — o, for some sequence of positive S;.. We have

w=="0fory; € Z and (SeiXy) 35570 = (Tl)(}j)for,}f,ezc

"”’;k' (3
Therefore IIS,, - Tl > 0 as n = ®, i.e. T, is strongly exposed.

(b) Suppose that a functional £ exposes a positive contraction Tp, i.e. E(S) s E(T;) = 1 for all
positive contractions S. If cardY = o, then using arguments from the proof of Theorem 4/(b)
we get that T} is not strongly exposed. Consider now the case card Z€ = . Let {U} ~, be a
family of disjoint non-empty open sets and let g; be such that 0 < g; s 1, suppg; C llg If =1
Fix x, € X. We define operators R; by (R;f X ) = g(y)f(x,). Put v; = &(R;) and let k ¢ N. Since
ij,Rj is a positive contraction, using the same arguments as in the proof of Theorem 3/(b)
we obtain v; = 0 and &(T;) > E(T,) as j > ,where T; =T, +R;, though I <1, T; 20, and
I7; - T,ll < 1. Thus T, is not strongly exposed l

Theorem S: If Y does not carry a strictly positive measure, ‘then there are not exposed
points in the unit balland in the positive part of the unit ball of  C(X), C(Y)).

Proof: First consider the case of the whole unit ball. Suppose that £, exposes an extreme
contraction T, ¢ R(C(X),C(Y)). We define a functional m on C(Y )by m(h) = E(hT), he C(Y).
Suppose that there exists a non-zero h,, 0 s Ay < 1and. m(hy)< 0. ThenE,((1- ho)T,) = m(1 - hy)
2 m(1) = E,(Ty). Since (1 - A,)T;|l s 1, we have (1 ~ h,)T, = T,. Fix x, ¢ X. Because I(1-h,)T,f
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t hf(x )l s IF Il for all fe C(X). The operator (1-h,)T; is not extreme. This contradictions
proves that m(h) > O for all he C(Y ) with 0 s h < 1. Therefore if there exists an exposed point
in the unit ball, then Y carries a strictly positive measure, what ends the proof for the unit ball.

Now consider the positive part of the unit ball. Suppose that a functional £, exposes a
positive contraction T,. The operator T, is of the form T,(f Xy) = 0 for y ¢ Z and T(f Xy) =
f(e(y)) for y e Z. Using arguments presented in the first part of the proof one can see that the
clopen set Z carries a strictly positive measure. Fix x, € X and put Rf = Izcf(x,), fe C(X).
We define a functional non C(Z<) by n(h) = -E,(hR), he C(Z°). Let 0 s h<1land h # 0. Then
because T, + hR is a positive contraction and hR + 0 we have Eo( T) > E(T, + hR) = £,(Ty) - n(h),
so n(h) > 0. Therefore n is a strictly positive measure on Z< 8

4. The case of L*- and L-spaces

Let (Q,B,u) be a o-finite measure space. Denote by L*=(yt) the space of all essentially mea-
surable functions on (Q, u), with essential supremum norm. The space L=(y) is the dual of the
AL-space L'(y), and is isomorphic to C(X), where X is the Stone representation space of B/N
(N denotes the ideal of measure zero sets). In this case the space X must be hyperstonian
(see [26: Chap. II, Sec. 9]). Thus X is also Stonean (extremally disconnected). Since p is
o-finite, there exists a strictly positive fe¢ L'(y). Hence X carries a strictly positive measure.

Let (Q;,®B;,u;) be o-finite measure spaces,i=1,2.Consider now extreme operators in
R(L=(u,), L=(y,)). We can identify this space with the space 8(C(X),C(Y ), where X and Y
are suitable hyperstonean spaces. Note that the representation of an .extreme operator in
R(L=(g,), L=(u,)) by means of a measurable transformation ¢ is not always possible (see [18:
p. 152]). The extreme positive contractions in the space 2(L>(y,), L%(y,)) can be characteri-
zed as.operators which carry characteristic functions, or equivalently, which are multiplicative
(see [24: Theorem 2.2]).The set of extreme contractions in 8(L™y,), L*(u,)) coincides with
the set of all lattice homomorphisms taking the function I into itself, multiplied by functions
of absolute value one ( see [18,20]). Using Theorem 2 and 3 we obtain the following

Theorem 6: Extreme positive contractions and extreme contractions in $(L*=(,), L=(u,))
are exposed. Moreover the exposed operators are strongly exposed if and only if L®(y,) is fi-
nite-dimensional.

Let us consider extreme operators in $(L*(y,), L'(i,)). The extreme contractions can be
characterized as those operators whose adjoints are extreme contractions in 8(L*(u,), L%(y,))
(see [18]). As we mentioned above, in general extreme operators cannot be represented by
measurable transformations. But in some cases this is possible, for example, if y, is a o-finite
Borel measure on R(see {18: Theorem 2]). Also extreme positive contractions are characteri-
zed by duality.

Theorem 7: Let i, be a o-finite Borel measure on R. Then extreme positive contractions
and extreme contractions in R(L(p,), L*(y,)) are exposed. Moreover the exposed operators are
strongly exposed if and only if L*(y,) is finite-dimensional.

Proof: Let 7, be an extreme operator in (L*(y,),L*(yt,)). Then T,” is also extreme, so ex-
posed. Suppose that the functional £, defined on R(L>(p;), L=(g,)) exposes T,*: We define a
functional v on R(L*(p,), L*(u,)) by n(T) = E,(T ™). It is easy to see that 1 exposes T, B
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