Exposed Operators in $\mathscr{G}(\mathcal{C}(X), \mathcal{C}(Y))$

R. GRZĄŚLEWICZ

A point q_0 in a convex set Q is exposed if there exists a bounded linear functional ξ such that $\xi(q_0) > \xi(q)$ for all $q \in Q \setminus \{q_0\}$. Characterizations of exposed points of the unit ball and the positive part of the unit ball of $\Re(C(X), C(Y))$ are given. We describe the set of strongly exposed points. We also consider exposed operators on L^{∞} - and L^1 -spaces.

Key words: Exposed points, space of continuous functions, operators, Nice operators, strongly exposed operators

AMS subject classification: 47 D 20

1. Introduction

Let B_1, B_2 be Banach spaces. By $\Re(B_1, B_2)$ there is denoted the Banach space of all bounded linear operators from B_1 to B_2 . An operator $T \in \Re(B_1, B_2)$ is called a contraction if $||T|| \le 1$. Throughout this paper we assume that X and Y are non-empty compact Hausdorff topological spaces. As usual, we denote by C(X) the Banach space of all real-valued (or complex) continuous functions on X with supremum norm. Following Morris and Phelps [23], we call a contradiction $T \in \Re(C(X), C(Y))$ nice, if its adjoint operator T^* takes Dirac measures on Y into extreme points of the unit ball of $C(X)^*$. It is not difficult to see that every nice operator is an extreme contraction (extreme point of the unit ball). Note that any element of $C(X)^*$ can be identified both as a linear functional and a measure. Moreover, the set of all extreme points of the unit ball of $C(X)^*$ coincises with the set $\{a\delta_X : |a| = 1, x \in X\}$, where δ_X denotes Dirac measure (point mass) at $x \in X$ (see [2]). Thus $T \in \Re(C(X), C(Y))$ is nice if and only if there exists a function $r \in C(Y)$ with |r| = 1 and a continuous map $\phi: Y \to X$ such that $(Tf)(y) = r(y) f(\phi(y))$, for all $f \in C(X)$ and $y \in Y$.

Each extreme contraction in $\mathfrak{L}(C(X), C(Y))$ is nice in the following cases:

1. X is metrizable (see [4]).

2. X is Eberlein compact, Y is metrizable (see [1]).

3. X is dispersed (see [27]).

4. Y is extremally disconnected (see [27]; also [8, 18]).

It should be pointed out that Sharir [28,29] has given counterexamples (see also [12]). Extreme operators have been studied by many authors. The first theorem of this type was given by A. and C. Ionescu Tulcea [16,17]. Consider positive operators (an operator T is called *positive* if $Tf \ge 0$ for all $f \ge 0$). An operator $T \in \mathfrak{L}(C(X), C(Y))$ is an extreme positive contraction (extreme point of the positive part of the unit ball of operators) if and only if there exists a *clopen* (closed and open) set $Z \subset Y$ and a continuous map $\varphi: Z \rightarrow X$ such that $(Tf)(\cdot y) = 0$ if $y \in Z$ and $(Tf)(y) = f(\varphi(y))$ if $y \in Z$ (see [6,24], also [26:111/§9]).

Recall that a point q_0 in a convex set Q is exposed if there exists a bounded real linear functional ξ such that $\xi(q_0) > \xi(q)$ for all $q \in Q \setminus \{q_0\}$. An exposed point $q_0 \in Q$ is called *strongly exposed* if for any sequence $\{q_n\} \subset Q$ the condition $\xi(q_n) \rightarrow \xi(q_0)$ implies $q_n \rightarrow q_0$. Obviously each exposed point is extreme.

29 Analysis, Bd. 10, Heft 4 (1991)

The purpose of this paper is to study exposed and strongly exposed points of the unit ball of $\mathfrak{B}(C(X), C(Y))$. We also consider exposed operators acting on L^{1-} and $L^{\infty-}$ spaces. Note that exposed operators in L^{p} -spaces are considered in [13,14]. We should mention here that P. Greim also obtained results in this direction for Bochner L^{p} -spaces [9-11].

We say that a compact Hausdorff space X carries a strict positive measure if there exists a strictly positive Radon measure μ on X (i.e. $\mu(U) > 0$ for all non-empty open subsets U of X).

The problem of characterization of spaces X which carry a strictly positive measure has been studied by many authors (see, e.g., [3,7,15,21,22]). In particular Kelley [19] introduced the notion of intersection numbers of a collection of subsets to give the characterization of spases which carry a strictly positive measure. It should be pointed out that in the case of a compact Hausdorff space the problem mentioned above is equivalent to the problem of existence of a finitely additive strictly positive measure. Note that C(X) carries a strictly positive functional if and only if its dual $C(X)^*$ contains a weakly compact total subset (see [24: Theorem 4.5.b]). We refer the reader to [5: Chapter 6] for a summary of those and related results. In fact a strictly positive measure on X can be considered as a functional on C(X) which exposes the function I_X . Note that since $\Re(R, C(Y))$ coincides with C(Y) if Y carries a strict positive measure, then the extreme points of the unit ball of $\Re(R, C(Y))$ are exposed (cf. [30]). They are strongly exposed only in the case when Y is a finite set.

2. Exposed points in $\mathscr{G}(C(X), C(Y))$

We recommend to begin with a general sentence.

Theorem 1: Let Y carry a strictly positive measure and suppose that

(i) X is metric or (ii) Y is extremally disconnected.

Then each extreme point of the unit ball of $\mathfrak{L}(C(X), C(Y))$ is exposed.

Proof: Let μ be a strictly positive measure on Y with $\mu(Y) = 1$. Let T_0 be nice (= extreme), i.e. there exist $r_0 \in C(Y)$ and a continuous map $\Phi: Y \to X$ such that $(T_0 f)(y) = r_0(y)f(\Phi(y))$, $|r_0| = 1$. For $T \in \Omega(C(X), C(Y))$ and $y \in Y$ we denote by m_y^T the measure defined by the equality $(Tf)(y) = \int_X f(x) dm_y^T$ for all $f \in C(X)$. This is a signed regularBorel measure on X with total variation $||m_y^T|| \le ||T||$. In fact $m_y^T = T^* \delta_y$.

Assume that (X, d) is a metric compact Hausdorff space. For $n \in \mathbb{N}$ and $y \in Y$ we define by $h_{n,y}(x) = r_0^{-1}(y) \max((1 - nd(x, \Phi(y)), 0))$ an element of C(X). The map $h_{n,y}: Y \rightarrow h_{n,y} \in C(X)$ is continuous, so for every operator $S \in \mathfrak{Q}(C(X), C(Y))$ the function $y \rightarrow (Sh_{n,y})(y)$ is continuous (as an element of C(Y)). Now we define a linear functional ξ_i on $\mathfrak{Q}(C(X), C(Y))$ by

$$\xi_{\mathfrak{l}}(S) = \sum_{n=1}^{\infty} \frac{1}{2^n} \int_{Y} (Sh_{n,y})(y) d\mu(y) \qquad \big(S \in \mathfrak{Q}(C(X), C(Y))\big).$$

If $||S|| \le 1$, then $|Sh_{n,y}(y)| \le 1$ and $||\xi|| \le 1$. Suppose that $\xi_1(S_0) = 1 = \xi_0(T_0)$ for some contraction S_0 . Then $\int (S_0 h_{n,y})(y) d\mu(y) = 1$ for all $n \in \mathbb{N}$. Since the map $y \to (S_0 h_{n,y})(y)$ is continuous with $|(S_0 h_{n,y})(y)| \le 1$ we get $(S_0 h_{n,y})(y) = \langle h_{n,y}, S_0^{-\delta} \delta_y \rangle = 1$ for $y \in Y$. Hence $S_0^{-\delta} \delta_y = r_0(y) \delta_{\varphi(y)}$, i.e. $S_0 = T_0$, what show that T_0 is exposed.

Now suppose that Y is extremally disconnected. Then C(Y) is an order complete AMspace with unit [26: Section II.7.7] and $\Re(C(X), C(Y))$ is a Banach lattice [26: Section IV.1.5.]. Therefore for every contraction $S \in \Re(C(X), C(Y))$ there exist positive contractions S_+ and $S_$ such that $S = S_+ - S_-$. Then $m_y^S = m_y^{S_+} - m_y^{S_-}$. The map $y \to m_y^{S_+}$ is weakly* continuous. Since for arbitrary nets $y_{\alpha} \to y_0$ in Y and $\beta_{\alpha} \to \beta_0$ in R with $\beta_{\alpha} \in [0, m_{y\alpha}^{S_+}(\{\varphi(y_{\alpha})\})]$ the condition $m_{y\alpha}^{S_+} - \beta_{\alpha} \delta_{\varphi(y_{\alpha})} \ge 0$ implies that $m_{y_0}^{S_+} - \beta_0 \delta_{\varphi(y_0)} \ge 0$ and the sets $\{y: m_y^{S_+}(\{\varphi(y_{\beta})\}) \ge a\}$ are closed for all $a \in \mathbb{R}$. The same we have for m_y^{S-} . Therefore $\int r_0^{-1}(y) m_y^{S}(\{\varphi(y)\}) d\mu(y)$ exists for every $S \in \mathcal{Q}(C(X), C(Y))$:

We define a linear functional ξ_2 on $\mathfrak{L}(C(X), C(Y))$ by

$$\xi_{2}(S) = \int_{Y} r_{0}^{-1}(y) m_{y}^{S}(\{\varphi(y)\}) d\mu(y) \quad (S \in \mathfrak{L}(C(X), C(Y))).$$

For a contraction $S \in \Omega(C(X), C(Y))$ and an element $y \in Y$ we have $||m_y^S|| \le 1$. Thus $\xi_2(S) \le \mu(Y) = 1$. Moreover $\xi_2(T_0) = 1$. Suppose now that $\xi_2(S_0) = 1$ for some contraction $S_0 \in \Omega(C(X), C(Y))$. We have $||m_y^{S_0}|| \le 1$. Thus $m_y^{S_0}(\{\varphi(y)\}) = r_0(y) \mu$ -a.e. Hence $m_y^{S_0} = r_0(y)\delta_{\varphi(y)} \mu$ -a.e. Therefore by a continuity argument and the fact that $\{y: m_y^{S_0}(\{\varphi(y)\}) = r_0(y)\}$ is closed we obtain $(S_0f(y) = r_0(y)f(\varphi(y)))$ for all $y \in Y$. Thus $S_0 = T_0$, i.e. T_0 is exposed by ξ_2 in the unit ball of $\Omega(C(X), C(Y))$

Theorem 2: Let Y carry a strictly positive measure on Y. Then each extreme point of the positive part of the unit ball of $\mathfrak{Q}(C(X), C(Y))$ is exposed.

Proof: Let μ be a strictly positive measure on Y and T_0 an extreme positive contraction. Then there exists a clopen set $Z \subset Y$ and a continuous map $\varphi: Z \to X$ such that $(T_0 f(y) = 0$ if $y \in Z$ and $(T_0 f(y) = f(\varphi(y))$ if $y \in Z$. Now we define a linear functional ξ by

$$\xi(S) = \int_{\mathbb{Z}} m_y^{S}(\lbrace \varphi(y) \rbrace) d\mu(y) - \int_{\mathbb{Z}} c(S I_X)(y) d\mu(y) \quad (S \in \Omega(C(X), C(Y))).$$

This functional exposes T_0 . Indeed, for a positive contraction S we have $\xi(S) \le \mu(Z) = \xi(T_0)$. Suppose $\xi(S_0) = \mu(Z)$ for some positive contraction S_0 . Then $m_y^{S_0}(\{\varphi(y)\}) = 1$ for $y \in Z$ and $(S_0 t)(y) = 0$ for $y \in Z^c$. Using the same arguments as in the proof of Theorem 1 we have $(S_0 f)(y) = f(\varphi(y))$ for $y \in Z$. If $0 \le f \le 1$, then $0 \le S_0 f \le S_0 I$, so $(S_0 f)(y) = 0$ for $y \in Z^c$. Therefore $S_0 = T_0$, i.e. T_0 is exposed by $\xi \blacksquare$

3. Strongly exposed operators

Now we consider the strongly exposed points of the unit ball and the positive part of the unit ball of $\mathfrak{L}(C(X), C(Y))$.

Theorem 3: Let Y carry a strictly positive measure and X be metric or extremally disconnected.

(a) If card $Y < \infty$, then all extreme points of the unit ball of the space $\mathfrak{L}(C(X), C(Y))$ are strongly exposed.

(b) If card $Y = \infty$, then there are no strongly exposed points in the unit ball of the space $\mathfrak{L}(C(X), C(Y))$.

Proof: (a) Let $Y = \{y_1, y_2, ..., y_n\}$, $n \in \mathbb{N}$ and T_0 be an extreme contraction. Then $(T_0 f)(y_j) = r(y_j)f(\varphi(y_j))$, where $|r(y_j)| = 1$. Put $\xi(S) = \sum_{j=1}^n r(y_j) m_{y_j}^S(\{\varphi(y_j)\})$, where $m_{y_j}^S$ denotes the measure on X defined in the proof of Theorem 1. Obviously ξ exposes T_0 . Suppose that $\xi(S_k) \Rightarrow \xi(T_0) = n$ for some sequence of contractions $S_k \in \Omega(C(X), C(Y))$. Then $||m_{y_j}^{S_k}|| \le 1$ and $m_{y_j}^{S_k}(\{\varphi(y_j)\}) \Rightarrow r(y_j)$ as $k \to \infty$. Thus

$$\left\| m_{y_j}^{S_k} - r(y_j) \delta_{\varphi(y_j)} \right\| \le \left| m_{y_j}^{S_k} - r(y_j) \delta_{\varphi(y_j)} \right| \left(\{\varphi(y_j)\} \right) = \left| m_{y_j}^{\tilde{S}_k} \right| \left(\{\varphi(y_j)\}^c \right) \longrightarrow 0$$

29*

as $k \to \infty$. Now we obtain

$$\begin{split} \|S_k - T_0\| &= \sup_{\|f\| \le i} \sup_{j \le n} \left\| \int_X f d\left(m_{y_j}^{S_k} - r(y_j) \delta_{\varphi(y_j)} \right) \right\| \\ &\leq \sup_{\|f\| \le i} \|f\| \sup_{j \le n} \left\| m_{y_j}^{S_k} - r(y_j) \delta_{\varphi(y_j)} \right\| \longrightarrow \text{ as } k \to \infty. \end{split}$$

Thus T_0 is strongly exposed.

(b) Suppose now that $\operatorname{card} Y = \infty$. Let T_0 be exposed by a functional ξ , i.e. $\xi(S) \leq \xi(T_0) = 1$ for all contractions S. There exists a sequence $\{U_j\}_{j=1}^{\infty}$ of disjoint non-empty open subsets of Y. Let $g_j \in C(Y)$ be such that $||g_j|| = 1$, and $\sup g_j \subset U_j$ for all $j \in \mathbb{N}$. Now we define operators R_j by $R_j f = g_j T_0 f$. Put $\gamma_j = \xi(R_j)$ and let $k \in \mathbb{N}$. The operator $\sum_{j=1}^{k} R_j$ is a contraction. Thus $\sum_{j=1}^{k} \gamma_j = \xi(\sum_{j=1}^{k} R_j) \leq 1$. Therefore $\lim_{j \to \infty} \gamma_j = 0$. Consider the operators $T_j = T_0 - R_j$. We have $||T_0 - T_j|| = 1$, i.e. $\{T_j\}$ does not converge to T_0 . But $\xi(T_j) = \xi(T_0) - \xi(R_j) = 1 - \gamma_j \Rightarrow 1 = \xi(T_0)$ as $j \to \infty$. Thus T_0 is not strongly exposed

Theorem 4: The following statements are true.

(a) If card $Y < \infty$, then all extreme points of the positive part of unit ball of the space $\mathfrak{L}(C(X), C(Y))$ are strongly exposed.

(b) If card $Y = \infty$, then there are no strongly exposed points in the positive part of the unit ball of the space $\Re(C(X), C(Y))$.

Proof: Let T_0 be a positive contraction in $\mathfrak{L}(C(X), C(Y))$. Then (Tf)(y) = 0 for $y \in Z$ and $(Tf)(y) = f(\varphi(y))$ for $y \in Z$.

(a) Suppose that card $Y < \infty$. We define a functional ξ_0 by

$$\xi_{\mathbf{o}}(S) = \sum_{y_j \in \mathbb{Z}} m_{y_j}^{S} \{\{\varphi(y_j)\}\} - \sum_{y_j \in \mathbb{Z}^{\mathsf{b}}} (S I_X)(y_j).$$

This functional exposes T_0 since $\xi_0(S) \leq \operatorname{card} Z = \xi_0(T_0)$. Suppose now that $\xi_0(S_k) \to \xi_0(T_0)$ as $k \to \infty$, for some sequence of positive S_k . We have

$$\left\|m_{y_j}^{S_k} - \delta_{\varphi(y_j)}\right\| \xrightarrow[k \to \infty]{} 0 \text{ for } y_j \in \mathbb{Z} \text{ and } (S_k 1)(y_j) \xrightarrow[k \to \infty]{} 0 = (T_0 1)(y_j) \text{ for } y_j \in \mathbb{Z}^{c}$$

Therefore $||S_n - T_0|| \to 0$ as $n \to \infty$, i.e. T_0 is strongly exposed.

(b) Suppose that a functional ξ exposes a positive contraction T_0 , i.e. $\xi(S) \le \xi(T_0) = 1$ for all positive contractions S. If card $Y = \infty$, then using arguments from the proof of Theorem 4/(b) we get that T_0 is not strongly exposed. Consider now the case card $Z^c = \infty$. Let $\{U_j\}_{j=1}^{\infty}$ be a family of disjoint non-empty open sets and let g_j be such that $0 \le g_j \le 1$, $\suppg_j \subset U_j$, $||g_j|| = 1$. Fix $x_0 \in X$. We define operators R_j by $(R_j f)(y) = g_j(y)f(x_0)$. Put $\gamma_j = \xi(R_j)$ and let $k \in \mathbb{N}$. Since $\sum_{j=1}^{k} R_j$ is a positive contraction, using the same arguments as in the proof of Theorem 3/(b) we obtain $\gamma_j \to 0$ and $\xi(T_j) \to \xi(T_0)$ as $j \to \infty$, where $T_j = T_0 + R_j$, though $||T_j|| \le 1$, $T_j \ge 0$, and $||T_j - T_0|| \le 1$. Thus T_0 is not strongly exposed

Theorem 5: If Y does not carry a strictly positive measure, then there are not exposed points in the unit ball and in the positive part of the unit ball of $\mathfrak{L}(C(X), C(Y))$.

Proof: First consider the case of the whole unit ball. Suppose that ξ_0 exposes an extreme contraction $T_0 \in \mathfrak{L}(C(X), C(Y))$. We define a functional m on C(Y) by $m(h) = \xi_0(hT_0)$, $h \in C(Y)$. Suppose that there exists a non-zero h_0 , $0 \le h_0 \le 1$ and $m(h_0) \le 0$. Then $\xi_0((1 - h_0)T_0) = m(1 - h_0)$ $\ge m(1) = \xi_0(T_0)$. Since $||(1 - h_0)T_0|| \le 1$, we have $(1 - h_0)T_0 = T_0$. Fix $x_0 \in X$. Because $||(1 - h_0)T_0|$ $\pm hf(x_0) \| \le \|f\|$ for all $f \in C(X)$. The operator $(1 - h_0)T_0$ is not extreme. This contradictions proves that m(h) > 0 for all $h \in C(Y)$ with $0 \le h \le 1$. Therefore if there exists an exposed point in the unit ball, then Y carries a strictly positive measure, what ends the proof for the unit ball.

Now consider the positive part of the unit ball. Suppose that a functional ξ_0 exposes a positive contraction T_0 . The operator T_0 is of the form $T_0(f \setminus y) = 0$ for $y \in Z$ and $T_0(f \setminus y) = f(\varphi(y))$ for $y \in Z$. Using arguments presented in the first part of the proof one can see that the clopen set Z carries a strictly positive measure. Fix $x_0 \in X$ and put $Rf = 1_Z c f(x_0)$, $f \in C(X)$. We define a functional n on $C(Z^c)$ by $n(h) = -\xi_0(hR)$, $h \in C(Z^c)$. Let $0 \le h \le 1$ and $h \ne 0$. Then because $T_0 + hR$ is a positive contraction and $hR \ne 0$ we have $\xi_0(T_0) > \xi_0(T_0 + hR) = \xi_0(T_0) - n(h)$, so n(h) > 0. Therefore n is a strictly positive measure on $Z^c \blacksquare$

4. The case of L^{∞} - and L^{1} -spaces

Let (Q,\mathfrak{B},μ) be a σ -finite measure space. Denote by $L^{\infty}(\mu)$ the space of all essentially measurable functions on (Q,μ) , with essential supremum norm. The space $L^{\infty}(\mu)$ is the dual of the AL-space $L^{1}(\mu)$, and is isomorphic to C(X), where X is the Stone representation space of β/N (N denotes the ideal of measure zero sets). In this case the space X must be hyperstonian (see [26: Chap. II, Sec. 9]). Thus X is also Stonean (extremally disconnected). Since μ is σ -finite, there exists a strictly positive $f \in L^{1}(\mu)$. Hence X carries a strictly positive measure. Let $(Q_i, \mathfrak{B}_i, \mu_i)$ be σ -finite measure spaces, i=1,2. Consider now extreme operators in $\mathfrak{L}(L^{\infty}(\mu_1), L^{\infty}(\mu_2))$. We can identify this space with the space $\mathfrak{L}(C(X), C(Y))$, where X and Y are suitable hyperstonean spaces. Note that the representation of an extreme operator in $\mathfrak{L}(L^{\infty}(\mu_1), L^{\infty}(\mu_2))$ by means of a measurable transformation φ is not always possible (see [18: p. 152]). The extreme positive contractions in the space $\mathfrak{L}(L^{\infty}(\mu_1), L^{\infty}(\mu_2))$ can be characterized as operators which carry characteristic functions, or equivalently, which are multiplicative (see [24: Theorem 2.2]). The set of extreme contractions in $\mathfrak{L}(L^{\infty}(\mu_1), L^{\infty}(\mu_2))$ coincides with the set of all lattice homomorphisms taking the function 1 into itself, multiplied by functions of absolute value one (see [18, 20]). Using Theorem 2 and 3 we obtain the following

Theorem 6: Extreme positive contractions and extreme contractions in $\mathfrak{L}(L^{\infty}(\mu_1), L^{\infty}(\mu_2))$ are exposed. Moreover the exposed operators are strongly exposed if and only if $L^{\infty}(\mu_2)$ is finite-dimensional.

Let us consider extreme operators in $\Re(L^1(\mu_1), L^1(\mu_2))$. The extreme contractions can be characterized as those operators whose adjoints are extreme contractions in $\Re(L^{\infty}(\mu_2), L^{\infty}(\mu_1))$ (see [18]). As we mentioned above, in general extreme operators cannot be represented by measurable transformations. But in some cases this is possible, for example, if μ_2 is a σ -finite Borel measure on \mathbb{R} (see [18: Theorem 2]). Also extreme positive contractions are characterized by duality.

Theorem 7: Let μ_2 be a σ -finite Borel measure on \mathbb{R} . Then extreme positive contractions and extreme contractions in $\Re(L^1(\mu_1), L^1(\mu_2))$ are exposed. Moreover the exposed operators are strongly exposed if and only if $L^1(\mu_1)$ is finite-dimensional.

Proof: Let T_0 be an extreme operator in $\mathfrak{L}(L^1(\mu_1), L^1(\mu_2))$. Then T_0^{\bullet} is also extreme, so exposed. Suppose that the functional ξ_0 defined on $\mathfrak{L}(L^\infty(\mu_2), L^\infty(\mu_1))$ exposes T_0^{\bullet} . We define a functional η on $\mathfrak{L}(L^1(\mu_1), L^1(\mu_2))$ by $\eta(T) = \xi_0(T^*)$. It is easy to see that η exposes $T_0 \blacksquare$

Acknowlegement: The paper has been written while the author was a research fellow of the Alexander von Humboldt - Stiftung at the Mathematisches Institut of the Eberhardt - Karls University, Tübingen.

REFERENCES

- [1] AMIR, D. and J. LINDENSTRAUSS: The structure of weakly compact sets in Banach spaces. Ann. Math. 88 (1968), 35 46.
- [2] ARENS, R.F. and J.L. KELLEY: Characterization of the space of continuous functions over a compact Hausdorff space. Trans. Amer. Math. Soc. 62(1947), 499 - 508.
- [3] ARGYROS, S.: On compact space without strictly positive measures. Pac. J. Math. 105 (1983), 257 272.
- [4] BLUMENTHAL, R.M., LINDENSTRAUSS, J. and R.R. PHELPS: Extreme operators into C(K). Pac. J. Math. 15 (1965), 747 - 756.
- [5] COMFORT, W.W. and S. NEGREPONTIS: Chain conditions in topology. Cambridge: Cambr. Univ. Press 1982.
- [6] ELLIS, A.J.: Extreme positive operators. Quart. J. Math. Oxford 15 (1964), 342 344.
- [7] GAIFMAN, H.: Concerning measures on Boolean algebras. Pac. J. Math. 14(1964), 61 73. [8] GENDLER, A.: Extreme operators in the unit ball of $\mathfrak{G}(C(X), C(Y))$ over the complex
- field. Proc. Amer. Math. Soc. 57 (1976), 85 88.
 [9] GREIM, P.: An extremal vector-valued L^p-function taking no extremal vectors as values. Proc. Amer. Math. Soc. 84 (1982), 65 - 68.
- [10] GREIM, P.: Strongly exposed points in Bochner L^P-spaces. Proc. Amer. Math. Soc. 88 (1983), 81 - 84.
- [11] GREIM, P.: A note on strongly extreme and strongly exposed points in Bochner L^p-spaces. Proc. Amer. Math. Soc. 93 (1985), 65 - 66.
- [12] GREIM, P., KOPPELBERG, S. and M. RAJAGOPALAN: Extremally non nice operator into CK and continuous mappings into the Hilbert cube. Math. Z. 188 (1985), 439 - 447.
- [13] GRZASLEWICZ, R.: Extreme positive contractions on finite-dimensional 1^P- spaces. Can. J. Math. 37 (1985), 682 - 699.
- [14] GRZASLEWICZ, R.: Exposed points in the unit ball of B(H). Math. Z. 193 (1986), 595 596.
- [15] HERBERT, D.J. and H.E. LACEY: On supports of regular Borel measures. Pac. J. Math. 27 (1968), 101 · 118.
- [16] IONESCU TULCEA, A. and C.IONESCU TULCEA: A note on extreme points. (unpubl.).
 [17] IONESCU TULCEA, A. and C. IONESCU TULCEA: On the Lifting Property I. J. Math. Anal. Appl. 3 (1961), 537 546.
- [18] IWANIK, A.: Extreme contractions on certain function spaces. Colloq. Math. 40 (1978), 147 - 153.
- [19] KELLEY, J.L.: Measures on Boolean algebras. Pac. J. Math. 9 (1959), 1165 1177.
- [20] KIM, C.W.: Extreme Contraction Operators on 1[∞]. Math. Z. 151 (1976), 101 110.
- [21] MAHARAM, D.: An algebraic characterization of measure algebras. Ann. Math. 48 (1947), 154 167.
- [22] MOORE, L.C. Jr.: Strictly increasing Riesz norms. Pac. J. Math. 37 (1971), 171 180.
- [23] MORRIS, P.D. and R.R. PHELPS: Theorems of Krein-Millman type for certain convex sets of operators. Trans. Amer. Math. Soc. 150 (1979), 183 - 200.
- [24] PHELPS, R.R.: Extreme positive operators and homomorphisms. Trans. Amer. Math. Soc. 108 (1965), 263 - 274.
- [25] ROSENTHAL, H.P.: On injective Banach spaces and the spaces $L^{\infty}(\mu)$ for finite measures μ . Acta Math. **124** (1970), 205 248.
- [26] SCHAEFER, H.H.: Banach Lattices and Positive Operators. Berlin-Heidelberg New York: Springer-Verlag 1974.
- [27] SHARIR, M.: Characterization and properties of extreme operators into C(Y). Israel J. Math. 12 (1972), 174 - 183.
- [28] SHARIR, M.: A counterexample on extreme operators. Israel J. Math. 24 (1976), 320 328.
- [29] SHARIR, M.: A non-nice extreme operator into C(Y). Israel J. Math. 26 (1977), 306 312.
- [30] PHELPS, R.R.: Extreme points in function algebras. Duke Math. J. 32 (1965), 267 277.

Received 10.10.1989; in revised form 08.03. 1991

Dr. Ryszard Grząślewicz Politechnika, Institute of Mathematics Wb. Wyspiańskiego 27 P - 50-370 Wrocław