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Operator Calculus for Elliptic Boundary Value Problems in Unbounded Domains
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The main result of the paper is the proof of the applicability of hypercomplex methods for
elliptic boundary value problems in outer domains, i.e. domains, which lies outside a closed
compact surface.
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1. Introduction

In the last years operator principles for the solution of elliptic boundary value problems
have got an increasing importance. K. Giirlebeck and W. Sprossig have found in 2] an
operator calculus for several boundary value problems in bounded domains which is based
on quaternionic analysis. The aim of the present paper is to obtain similar results for
unbounded domains.

Let Hbe the quaternionic algebra with the basis e,. e,.e,, e;.Every element a¢ H has
the unique representation a = 2 ;-, a;e; with the real coefficients a;. The conjugate qua-
ternion a is defined by a = a,e, - 2 i, a;€; = Rea - Ima and the norm by }al = (aa)V/2.
Let GC R*be a domain which lies outside a closed compact, sufficiently smooth surface
0G = T. An H-valued function f will be written by f(x) = }_,fi{x)e; with f;: G > R*.
Each point x ¢ R® may be identified with a quaternion of the form x =3, x;e;. The fol-
lowing operator will play an essential role in our considerations: Let u ¢ C{G) n H¥(T),
then we have

Du =33.,9;e;u with 9; = 9/0x;,i=1,2,3,
(Tgulx)=- fG e(x - y)uly)dG,, with e(x) = - x/(4nl x|3),
(Fru)(x)= fr e(x -y)a(y)u(y)dl,, x ¢T,
where a = 22, a;e;, and (a,, o, @,) is the unit-vector of the inner normal at the point y,
(Spu)(x) = 2_];. e(x - y)a(y)u(y)dT,, x €T,

where the integral is to be understand in the sense of Cauchy’s principal value. The pro-
jections Qp ={(/ - Sp)/2 and P = (I + S1)/2 are defined in [9]. By / we want to denote
the identical operator.
The Banach spaces
k,08] < k(8] :
W w (G), Wy n (G) (3€R, keNN),

HA(T) (4 €R), CEy(G), CA(G) (05 ks )
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are defined by their components, which belong to the corresponding scalar- valued spaces.

The space Wzo_’,gsl( G)= L[;]H( G) may be characterized by the inner product

(u,v) 8] = |~ uv(l+|x]2)®dG.
22, ~Jo

We briefly write pg = (1+ |x12)3/2 Notice that L5} (G)= L, ,,(G). The space W,
may be provided with the inner product

(u,v) k5] = (u,v) 18] + > (95u,05v) ,
W2,H L3 H 1s|slsk L2'H

where

Sy1+s2+s3
Sy = 3 s s = _Q— = + +
0% = Tisg0%uze;, 0 oxfroxF2oxgs 151250+ 620 55

Afunction u € C/,(G) is called H-regular if Du = 0 and |u(x)| = 0if | x| = o. By B{x,)
we denote the open ball with the centre in x, and the radius r. We briefly write B.(0) =
B,, 0B (x)=S(x)and GuTl =G.

A simple computation shows the following Lemma 1.1 and Lemma 1.2.

Lemma 1.1: Let u be an H-valued function with d;u; € L,(G). Then

2 3 3 2
IDull, s 3 2 Jo 2105451246

£,1,08]
Lemma1.2: Let u ¢ W, '\, (G), 8 ¢R. Then

2 3 3
IDulif, ,, = onf6§|a,.uj|2dc.

or1.08]
Lemma 1.3 [10]: Let u ¢ Wy (G), 8 < -1. Then

a
fG p§lul*dG s (2{l3] - 1})"fGZ [o;ul?dG.

=1
Lemma 1.4 [10]): The subset {u € Wzk( G): supp u bounded in G} is dense in Wzk(G).

In a similar way to (10] the following lemma can be shown.

Lemma 1.5: The set Cy'p ,(G) ={ve CF(G):u|G = v for some u € Cy'p;(R*)} is
R, I .
dense in W,* (G), m 2 k, and C"y,(G) is dense in W, [FXG), m > k.

2. The generalized Borel-Pompeiu formula

An important connection between the operators Fg, T and D gives the generalized Borel
-Pompeiu formula.

Theorem 2.1: Let ue C(‘,_R_H(G). Then

u(lx),xeG

-Fru(x) + Tg Du(x) = _
r G 0,xeR3\G.
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Proof: Take r such that R*\ G C B,. Then G. = G n B, is a 2-manifold connected
domain with the boundaries ' and I, = S,. For G, we have

Fu(x) = Fra(e) + TaDutx) = | “00 7 0r
(cf. [9]). The function Ix - y|~2 may be developed into the series

Ix =y 172 = 1172 B2 CUOUXI/Ly K with € = cosd = IxI/1y1,059 < x,
where C‘,f. denotes the Gegenbauer polynomials

Colt)=1,Cl(t) =2t and Clay(t) = 20 Cplt) - Co_y(¢t)

and the series ZWC,:(t)ak converges if [t] s1and 0 s a s 1 (see [4]). For every x ¢ G
there exists an r, > 1 such that dist(x, R*\G,_) > I. Then we have for r > ,

[Fp ) s [ tetx - llutyas,,,

< ’/mfsrlyl'z gC,i.(l.\'l/lyl)(I.\'I/Iyl)klu(y)l as,

5’/7‘ |V_2 S max |y J = J max U( —9035!’—)03,
f | d rny ye | (y)' ye l'l_ y)l A
where

Ix1/1y1 s (rg- )/rg<1 and J = AZT’ CA((ro - V) {(ry - D/} < B

3. The operators Tg, Fr-, D

In this section we want to state some properties of the operators T, Fr and D.

Theorem 3.1: The operator Tg: Ly g{G) = Ly (G n B,)is a continuous mapping
for alln > 0.

Proof: Let u ¢ Ly (G). Then

2 .
82| ToullL, ,icnm,) = 872 [ ITul?dy

~ B,
s || S s -yitzdy|zax o« [ | [ lutpdlix - plm2dy|2dx

GnB,|lGnB,., GnB,|G\B,.
< J J Ix -yl 2dy J fu(yi2lx - y|"2dy dx
GnaB. GnBy ., Gn By, .,
+ f f lu(y)I2dy f Ix -yl *dydx
Gn B, C\Bnﬁ \Bnﬁ

s iy, J[ Lttt yi-ayas + S, ul, ;.

3+

30 Analysis. Bd. 10, Heft 4 (1991)
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Furthermore we have

T i - ylzaxdy = [ lu(l® [ Ix-ylt2dxdy s CmullE, -
GnB GnB GnB

n+ n+1 n+

Hence we get

GHB lu(y)I2lx - y1"2dx dy s Cy(mlullZ, ,; and [T ullL, scnm,) S ClmllullLy 4y

n+1

which shows the assertion

Theorem 3.2: The operator T : Lg’:]H(G) —>L[27‘;§](G) (8<-1,0sys3)isacon-
tinuous mapping.

Proof: We have

2
2||TGu||lz_g~r;f](G) = 2!@,8 ie(x ~y)u(y)de| 4G,

5(f}P$+s GJ e(x -y)u(y)derde

B,(x)

f e(x —y)u(y)derde + fp:,‘s
el

aB(x

e(x - yllu(y)?p32dG, dG,

s [pies [ p3le(x-y)dG, [ |
G GnB,(x) GnB(x)

+fp2.s [ piyfle(x -y)¥2dG, [ le(x - )2 Mu(y)?p2 dG, dG,
G G\ B,(x) G\ By(x)

with n + vy > 0, n < 1/2. Furthermore,

f pyile(x - ydG,
GnB(x)

) Joolx -y172dG, =1 if x| <1
‘/(x*(IXI-l)z)YfBl(x)Ix _yl-szy = ‘/(H(lxl—x)z)Y if x| 21
sc(1+[x|?)7Y =cpl?
and,ify>0,

p;zle(x -_y)}3/2'7lde S Y )3/2+n f p:{zlx —y|‘3‘2"de
G B (x) R3\ B (x)

S Yax)3/2+n f 'p,}zlx - )’l-ade S Yemya/2+n pily,
R\ B,(x)

with ¥ > w> 0 (cf.[6]).1f vy = Owe get the same inequality with w = v - v = 0. Now we obtain

2
’/2 " TG u ”LEZY;-?](G)

s [p2sc+1x1D7Y [ le(x - yllu(y)?p2 dG, dG,
G GnBl(x)

* Yemy3rzen [ p2is p320 [ lel(x - y)/2 Mu(y)?p2 dG, dG,
G G\ By(x)
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s ‘/.nffp$.s(l +1x12) Y ix -y 2|lu(y)2p2 dG, dG,
GG
*‘/un)zeffpimlx -y 2 u(y)?p2 dG, dG,
G
= léfpilu(}’»z{‘/znfpfms c(1+|x[3)7YIx -y 2dG,

-1+ 2
*Yomt [P3 ool -y 171Gy Gy 5 Clulita o

because of Fubini’s Theorem and that we can choose 7, w > 0 such that 2(8 - 1/2 + 5 + w)
<-3andd<-18

Theorem 3.3: The operator Fr: LZ'H(I') —-> W;H(G'), k ¢ N, is a continuous map-
ping, where G “is a domain with G~ C G or G°C R®\ G .Besides, Fru ¢ ker D(R3\T).

Proof: We consider the expression
J‘|D,?Fru|2dG; = 1/(‘,()2f ‘ fD,s e(x -y)aly)u(y)dL,|*dG, .
G* G*lr
Because of G*C Gor G° C R?\ G there exists a § > 0 such that dist(G %) = § and | x - yl

2§ forall xe G* and y € I'. Furthermore e(x - y)is a harmonic function in G*and from
[5] we get the estimate

|IDBFru|s Clx - yl"(2*1BD_ C a constant.

If mes G* < © we obtain
JJD,?Frumc'sg"lo,?(e(x —y))|2|a(y)|2d§,!|u(y)]zdl;, dG*s CyllullL, o)

using |a(y)|? = 1, mes[ < o and also mes G* < ®, If G*is unbounded we decompose
G*= G, u G,, where G, = {xe G x| s2supy.rlyl+ 1} and G, = G*\G,.

Then we have mes G, < © and analogously we get
02
JIDEFrui?dG, < C,glullL, per.
1

In G, we have [Dfe(x -y)| s Clx - y|~(2*1BD 5 C*5-1BI4(1 + |x|)"2 and now it follows
the estimate

[1D8Fru|2dG, s («C‘/‘,,)-zi(r* |x|)“mesrr[|u(y)lzd1;,,do2
Gz 2 '
.o 2 - 2
sC "u"Lz(r)Jz(l +1x1)7%dG, = CopllullL, gy
Thus we have shown that | D8 Fru ”7-2.1-!(0') s Cgllu ||§_2-H(r). Hence we get
2 - B 2 2 -
IIFrUIlwzfi{(of) .IBIZ“ D Frullgle sC IIUIILz,ng) , C ,g}gica-

Now we consider

30*
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DFpu =y, i e;9; i e [(x; -y)lx - yI3aly)u(y)dT,
i=1 Jj=1 i
3 3
=Y 2 2 e;ej[[ai((xj -y)lx - yI72)aly)u(y)dT,
i=y j=1

3
=’/.,tij2=le,-eji[(<),~jlx -y -3k -y )x - ylx -yl's)a(y)U(y)dI;, =0
in RA\T®

Lemma 3.1: The operator T D admits an extension to a continuous map from szf(H(G)
into W;*,(G*), k e N\{0}, G * as defined in Theorem 3.3.

Proof: If u ¢ WzkH(G), then tru ¢ Wzk;;/z([‘) C Ly y(T) is a continuous imbedding.
Thus we obtain the continuity of / and Frtr: W, (,(G) > W5 (G*). Let ue Co, g (G),
then by means of the Borel-Pompeiu formula we have T;Du = f.u +u in G and T5Du =
Fru in R®\ G and so we get

"Frullwzl'(H(G *) + "U ”“/Zf‘H(G.)
|Frully,, & < Belwys oy
lw, " e

"TGDU II“’Z{‘H(G.) s
Because Cy g, y(G) is dense in Wz"‘H(G), the operator T; D admits a continuous extensionll

Theorem 3.4:The Borel-Pompeiu formula can be generalized for functions ue VVZ‘H( G).

Proof:Let u ¢ W,',,(G).Then there exists u, ¢ Co' g, (G ) such that

u,inG

|lun—u||W2;'H—>0ifn—>oo and -Fru,,+TGDu,,={o N

Now for every domain G*, incase G- C G and G- C R*\ G we obtain

-Fru, +TgDu, = u, -Fru,+T5Du, =0
¥ ¥ ¥ and 1% ¥
-Fru +T5Du = u -Fru +1zDu =0,

in the sense of VVZ’H(G), respectively. Because the foregoing formulas are true for every
G’ we get for ueW, ,,(G)that - Fru + TgDu = u in Gand -Fru +T5Du =0inR*\G 8

- Analogously to [6: p. 249] the following lemma may be verified.

Lemma 3.2: For each u¢ W;H(G), keN, we have 0, T u e W;H(G) and

(T u)(x) = _a[‘)*"x e(x - y)u(y)dG, o
31
—u(x) i eilx; -yllx -yl "xy, - i )lx -yl"*dS.

1

Proof: The first integral in (3.1) is singular and a simple computation shows the exi-
stence of the integral in the sense of Cauchy’s principal value. Using [6: p. 316] we get
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that this integral is bounded in W;H(G). Obviously, the second integral in (3.1) delivers a
finite value.For u ¢ W;H(G ) there are u, ¢ Cok'R'H(G) such that u, > uin W;H(G). Set
v, = T u,,. Using calculations carried out in [6: p. 249] we obtain for u,, the expression
(3.1). So we have 0, Tsu, € W;H(G) and Tgu, € Wzlf’,[_,s](G), $ < -1,from Theorem 3.2.
There exists the limit of the right-hand side foru, > u in W;H(G) and is equal to the
right-hand side of (3.1). Because of the closure of the operator of differentiation there
exists 9, T u and is equal to the right-hand side of (3.1). Therefore we also get from (3.1)
that O, Tou € W, (G '

Corollary 3.1: The operator T maps W5 (G ) into WE533(G), 3 < -1, ke N, and
into W;;_;(G n B,,) for all n such that Gn B, % 0.

Theorem 3.5: The operator 9, T: W;H( R?) > W;H( R?) is continuous.

Proof: Using Lemma 3.2 we get

3 3
A Tu = -3/ 4 21 Z(:’eiejék fR’ (x; -y)lx -yl u(y)dy
: = =
- u,!(x,- - yIx =y (% - i)l - yI7hdS.
1

Obviously, the relation

- u,!(x, -ylx -y xp - yilx - 171 dS = 4y CUi k) € Wk p(R®)
1

is valid. Now we consider

fR3-3(xi-y;)(A'k—yk)lx-yl'suj(y)dy if i+ k
Ty =
fR;, “(Ix -y172 - 3(x; -y))x -yl *u(y)dy ifi=k
-3x; X lx)® ifitk -9;0,lxI?t
= - UJ = *u
(Ix1?-3x)IxI7% ifi=k - 9;0,lxI™?
and
2
Ty = [ F T2+ 1212k
R

Jioo | ERIEl = FCu) 21+ 1E12) Kd it i+ k
Joo [EHEI T Fw2(1+ 1E1)kaE ifi=k

¢ Joa IFHu (1w 18 A = [ x

wn

Therefore |0 Tu "“VzkH

< C2 u||W2kH, where F u;) denotes the Fourier transforma-
tion of the scalar function u; '
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Theorem 3.6: Let ue L5 4(G). Then DTgu = uin Gand DTgu =0 in R*\G.

Proof: Lemma 3.2 shows that 9;Tg ue Ly 5(G)exists. At first let ue Co g y{G)and
x € G. Set G = G\ B.(x). Then we have D75 u(x) = 0in G, and it remains to consider
the term in B.(x). Using Lemma 3.2 we obtain

(DTBE(x)u)(x

= -Yn Ze €9 k f(x -yilx -yl 2u(y)dB,
Be(x)

Yior S eie; [ uxllxy - 3plx ~yI™)uly)dBy,
Lhj=1 B (x)

3
-ulxy i%:l f(x,- -yillx -y 17 x; - ylx -yl tu(y)dS,
T s‘

3
Yo ique,.ejaf @ilx - ¥1™ = 30x; - y)(x; - yplx -y %)uly) dB,,,

e (x)

3
S ulxy, ,.Z' eie; [(x; - ylx -y (x; - y)lx - yl71ds,.
LT s‘

Because of e;e; + e;e; =0fori,j #0 and i ¥ we get

(DT u)(x) = Yo ;eo T 1x -y +30x; - y2ix - yI"%)u(y)dB,
= B.(x)

+ulxy feo Z(xi -¥iPlx - yl~2dS, = u(x).
S‘ 1=1

If xeR>\G, then DTz u(x) = - [ Dye(x - y)u(y)dG = 0. Since Cg g g(G)is a dense
subset of Ly (G),we have DTgu =uin Gand DTgu =0in R*\G,where ue L, p{G)B

Lemma 3.3: The operator Fi- maps Wzk;;/z(l') into WzkH(G), k e N\{o0}.

Proof: The compactness of I' guarantees the existence of a fixed n such that T C B,
.and dist([,R>\B,,) > 1. Letu ¢ Wk l/"'(I') Then there exists a continuous extension v ¢
w, H(G) with trv = u. If we use the Borel Pompeiu formula we obtain Fru = TgDv - v.
\/thh Corollary 3.1 we obtain Frue W (G n B,) and from Theorem 3.3 we obtainFru e

W, ,(G\ B,,). Thus "FI‘“"W“H(G ”FrU”wk 6B,y * IFrulugeg oy s, B

Theorem 3.7: The operator D: Wz'f;;‘[s]( G) —» WzkH( G), 850, keN, isacontinu-
ous mapping .

Proof: We have

2 2 2
”DU”“/ZI'\'H = Z II()“(DU)"LzyH = az “Daau”’_z,H

$3 3 [=0;0%u;|2dx

lxlsk j=0 & i=1
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$33 [ptlu;l2aG + f$|a 0% u;|2dG
j kG i=t

Jj=0 G
$33 [psluyl2dG + = f|a« 12dG = 3||u|,, Jra12)
j=o0 &G 1slalsk+

from which the assertion follows il

o o q
Theorem 3.8: The operator Ty : D(Wz'f',gsl( G)) - Wz‘ffISJ(G), $<-1, keN\{0}isa
continuous 1-1 - mapping.

Proof: For v e D(\zfzk;[f](G)) there existsa u e Wk [SJ(G) such that Dy = v. Then we
get T Du = u in G for u from the space Cq g(G)and a]so from the space W;'ISS](G)be-
cause the first space is dense in the second one. That means that 7T is a surjective opera-
tor. Furthermore

175V, L8] I 7 Dully,, km-liull km

{fpszlu 124G + = ﬂe)"‘u lsz}
j=o

1slalsk G

3 . 3
s> { Yaasi-ny) 210,u512dG+ S [loxy; |2dG}
j=o G i=1

1slalsk G

s max {Yaqs)- ,),1}2 > Jimioaujwc

=0 oslalsk -1

2
max {%(s| - ,),_1}Ia|§_ 1||()°=Du "LZ,H

max {55/ - ‘)'1}||D“||w i max {¥(5)-,).1} ”"llw i

and
2 2
Iv I = 1Du e

= 9% Du = Do*ul}
locik - ," ""2 H jalsk- " Iz

- >3 [3000,0%y02d0
lxlsk-1 j=o &G i=1

s

o{fp,ﬂu l’dG . Z j|a° |2dc}

Jj=

2 2 - 2
[l 020 = 1 T Du oy 1021 = || T S L22.

For this reason Tgis a 1-1 - mapping B

o
Corollary 3.2: Thus Ty in the pair of Banach spaces (D(WZ"",[,S]( G)). Vc\’/z'_“,[f]( G)) is
continuously invertible, 8 < -1 and k e N\ {0}.

- o . .. . .
Besides the formulas T D = Lin W5 X G) and DTg = 1 in D(W,*L*X G)) are valid.
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4. A decomposition formula of L (G)

First we will give a representation of harmonic H -valued functions. Then we prove a de-
composition formula of L, z(G), which is important for our applications in Section S.

Theorem 4.1: Let u ¢ kerA(G)a W, 5,(G), lul = 0if |x| = @, k e N\{0}. Then there
exist two unique functions u; € kerD(G)n W“‘ {G), i=1,2, such that u = =Tgu, *+ u,

Proof: From Theorem 3.4 we obtain u = - Fru + T5Du in G and from Theorem 3.7 and
Lemma 3.3 we obtain Frue W, k 11(G) nkerD(G). Set u, = Duand u, = -Fru.Then u, =
DTgu,=D(u-u))e Wk x(G)and Du, = DDu = -Au = 0, i.e. u, € ker D(G). Suppose
u=Tguy, + Uy, = TC‘“zz + gy Then Du = uy, = uy, and Tgu,, - Tgup, = To(uy, - uy,)
= u,, - u,, =0. Hence the representation is unique B

Lemma 4.2: The operator trTg Fp: im Pp n W;;;/z(l') - imQrn w‘“‘/z(r
N\{0}, is a bijective mapping.

Proof: We consider the bijective sequence
. F .
im P n W 72T —L— WX, (G) n kerD(G)

L. WX 1(G)n ker A(G) nker D(R\G) ——> im Q- n Wy 13/2(T").

Now we want to show that trTs Frru = 0 implies u = 0. Let T Fru be the solution of the
equation -A(Tg Fru) =0 in G and trT; Fru = 0 on T. Because Dirichlet’s problem has at
most one solution it follows that T5 Fru =0 and Fru =0 and thus v = 0 on . Now we
show that the mapping is surjective.Let h e im Qr n Wz‘f;;/z(l').Then there is the solution
w for the problem -Aw=01in G, trw=hon T, |w| > 0if | x| = o (cf. [5]), and from The-
orem 4.1 we get w = Tow, + w,, whith w; e kerD(G)n W. "2 {G) and w, = Fptrw, i= 1,
2. Using Plemelj-Sokhotzki's formula (cf. [9]) we get -F[-trw = Pr(trw) if x > x, e T(x
e G), and it follows w, = -FrPrtrw = -FrPrh=0,as h e imQr. This means w = T Dw
Tow, = - TgFrw, and trw = h = trT; Fr(-w, ). Altogether for any h € im Q n W""/z(l')
there is one and only one v ¢ im Pp n Wl‘ 1/";(I") such that h = tr T Fr vl

Theorem 4.2: The operator P = Fp(trTg F-)” 'tr T is a projection onto the subspace
kerD(G) n Ly H(G)and Q =1 - P is a projection onto the complementary subspace
DWW, B(G)), 5 < -1.

Proof: We consider the sequence (§ < -1)

(erT Fp) ™t
—_—

T 5] F
Wy g (6) == w6y = w22(r) W, 30— Wy ,(G),

i.e. P and Q map \V;H(G) into itself.

"~ Now we prove that Pu=uiffu e kerD(G)n W,' ;(G). LetuckerD(G)n W, 4(G)
Then we have u = - Fruand Pu = -PFru = - Fp(trTg Fp)trTg Fru = - Fru = u. Conversely,
let ue W, ,,(G)and Pu=u.Then we have u = Fr(trTg Fr) " *trTg u e ker D(G) n W, 4(G)
because of (trT Fr) 'trTgu ¢ im Pra W, ,(T).



Opecrator Calcutus 457

Now we prove that Qu = u iff u ¢ D(W’ LM(G)) n Wl (G) S <-1. Let u belong to
that intersection.Thenave W1 S](G )exists such that u = Dv and trTgu =trTg Dv = trv
= 0.This means Pu =0 and we get Qu =(/ - P)u = u. Conversely, let u ¢ Wl (G) and Qu
= u. Then we have Tgu ¢ W, [aJ(G)and trlgu = trig Qu = (rTg - trTGP)u = (rTg -
trTGFr(trTCFr)"trTG)u z 0 i.e. Tcu eWz‘ }fJ(G) and u =DTsu, ue D( ) |'S'J(G))

(G, 8<-1

Because of the density of W, ,,(G)in Ly y(G)there is a continuous extension of
P onto the subspace kerD(G) n L2 H(G) and of Q onto the subspace D( . [SJ(G)) Fur-
thermore,

P2u = Fp(uTg Fr) tteTg FrltrTg Fr) ' trTqu = Fr(uTg Fr) 7' trTg u = Pu,

Q2u =(I-P)J-Plu=(1-P-P+P?u=(] -Plu=Qu,

QPu=(/-P)Pu=(P-P?u=0, PQu=P(/ -PlJu=(P-P?>u =0,

which show that the statements of the lemma are true

Now we have shown that P and Q are projections. In the following theorem we will
show that P and Q are even orthoprojections. '

Theorem 4.3 (Decomposition Theorem): We have the decomposition
o e
Ly 14(G) = kerD(G)a Ly 4(G) & D(W LR G)), 5 < -1,

where + denotes the orthogonal sum with the inner product of L5 py. The orthoprojections
are P and Q, respectively.

Proof: Take X, = kerD(G)n Ly y(G)and X, = (\X/"LSJ(G)) Letwely 5(G).Then
Pu+Qu=Pu+u-Pu=uie Ly y(G)C X, +X, Obviously X, + X, C L, y(G). Let
ue X, n W2 #H(G)and v e X,. Then there exists a w ¢ W1 [SJ(G)such thatv = Dw and on
account of the GauB-Ostrogradski formula (cf. [9]) we get

fouvdG =, ubwdG = [, DuwdG + [Luawdl =0,

as u € X,,i.e. Du = 0, and trw = 0. Since the subspace X, n WZ‘,H(G) is dense in X, we
also get [, uvdG = 0forue X, and v e X,. As X, is closed in L y4(G), the subspace X,
=L, y(G)® X, isalsoclosedin Ly 4(G) 1

S. Applications

Now we want to apply our operator calculus to the Dirichlet problem and the Stokes pro-
blem.

Theorem S5.1: The Dirichlet problem for outer domains

-Au=finG (fe Lg’"HJ(G), m > 1), tru=gonT ( ge 3/2(1"))

has the unique solution )
u=-FrPrg + Tg FrltrTo Fr)*0rg + To QT f e W H(G) 1 < -1.
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Proof: We consider the sequences (/< -1)

TG F T .
(rTg Fp) W2 4D nimPr —5> Wy (1) 22 w2l 6),

W,242(I) n im O
L573(6) T8 wyt () 2wyt (0 T w2 o),
J/z(l')nmeI-—ﬂ—> W (G)
(cf. Section 3), i.e. u ¢ sz"g](c), Furthermore,

-Au = DDu = D{D(-F-Prg) + DT5 Fr(tT5 Fr)*Qrg + DTG QT f }

DFp(wT5 Fr)™*Qrg + DQTgf = DTgf - DPTf = f

and
tr{-FrPrg + To Fr(ttT5 Fr)*Org + ToQTgf ) = Prg + Org = trg,

because of Q75 f ¢ D(\z/;‘g](G)) and so trT QT f = 0 holds

Now we consider the Stokes problem for outer domains

-Au +(‘/,,)gradp = (p/n)f inG, divu =0 inG, u=0o0nT
and also the problem

u 4 T5QTgp = °4 TgQT5f in G, *,ReQp = ¢/, ReQT5f in G, 5.1
[m]

with u = (0,u,.u,.uy), p = (py.0,0,0), f = (0,f,.F,.f,), fe L g5(G),m>1. Let Tbe a
compact C ®-surface; p, 7 shall be certain physical positive constants.

Remark S.1: Our proofs of the Stokes problem are based on the methods given in [1]
for bounded domains.

Romark 5.2: It is possible to show in an analogous way to [1] that the problem (5.1) is
equivalent to the weak Stokes’ problem

3
Z (grad u;. grad Vi)L2 = 0/ (f,v)L for all V¢ V, (5.2)

with ¥ =(0,u,,uy,uy), ¥ =(0,v,,v,,vy)and V= {D’ € 2 [”(G) 1 < -1,divd = 0} in the fol-
lowing sense: If u,p is a solution of (5.1), then with U = lm u equation (5.2) is fulfilled. If ¥
is a solution of (5.2), then there is a real function p such that ¥, p is a solution of (5.1).

LemmaS.1: If u eW;"1G) nkerdiv(G) 1< -1, pe Ly(G), then Re(Du,Qp)r, ,xc) = O

Proof: We get Re(Du, Qp)L2 1(G) = = Re(Du,p - Pp),_2 G T = Re(Du, p),_2 HG) =
=2, coiuipdG=08

Theorem 5.2 (apriori estimation): Ifu e \2/2[12,(0% kerdiv(G), I <-1, pe L5(G), then

1 1 2 p2 2
{1*2(|1| } ||“|| L tpzlQelly, ,, s wITefl,

Proof: From (5.1) we get Du + ¥, DT5Q Tsp = ¢4, DT;Q T f, ie.
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Du+¥,QTsp = *4QTf and [|Du +%,QplL, ;4 = IP4AQTGf L, -

We now consider (u,v)r, , oo = Re(u,v), ,,-Then we get [ be-

2 2
ullty e = 1125 4
cause of the definition. For that reason we have

1Du +4Qpl;, ,, = 1Du +,QplL, ,,p. = Re(Du + 4 Qp, Du + 4 QP)L, 4
= Re(Du,Du), ., *(¥,)*Re(Qp.QpP)L, ,; * %Re(Du,QP)1, 4y
2 2 2
=1DulL, 4 + )2IQPIL, 5 = C2IQTGF N, 4, s @) W TG NI, 4

Because of u ¢ W’ [Jl(G)and Lemma 1.2 it follows

2 3 2 2~
1Dulz, 4 = 22 Jo Zolosul*d0

_ 1
z§{“2(I1I }”“1" el {‘*z(m-n} bl -

This leads to the desired inequality #

Lemma 5.2: Let L, 4(G) = {u €Ly y(G): Reu = ue, = 0} with the inner product
(u,v)y_-z_H = Re(u,v)Lz'H = Z?:;fc u;v; dG. Then we have the decomposition
~ - o
By 14(G) = grad W G) nkers @1, D(W,H1(G) n kerdivim(G),
= ) H‘L ‘912 H

(8 < -1), where &1, denotes the orthogonal sum with the inner product (-, - )52 P

Proof: By the means of Theorem 4.3 we obtain *
Ly 11(G)n L3 1(G)=kerDa B3 1y(G)® D(WEEXG)) 0 [y 1(G) = X, & X,,

where @ is the orthogonal sum with the inner product of L, g. Thus for every element u €
L, 1(G)there exist u, € X, and u, € X, such that u = u, +u, and (u,,uz),_Q,H = 0 and
so we have Re(u,,uz),_zH = (ul,uz)ZQ'H = 0. Now we want to describe the subsets X,
and X,. We have X, = {u ei:z 1(G): Du = 0}, i.e. curlu = 0 and divu =0 and thus u =
gradq, g € W1 [8](0) and D(gradq) =DDq = -Aq =0 and X, = H'. Besides we have X,
={uels,, H(G) u = Dw, weWz'Ef](G)} i.e.Reu = ReDw =div(lmu)=0and X, = HB

Theorem 5.3: There exist a unique solution u ¢ \2’2"5;](0) n kerdiv(G), I < -1, p e
L2(G)0f(5.1).

Proof : We consider the system

o
Re(Du, ¥, QTgh)p, ,; =0 forallu e W, HNG) o kerdiv(G), 59
, : A 5.3

Re(Qp,‘/nQTGh)Lz'H =0 forallpe 1_-2‘,..,(-6), Imp =0,
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where h ¢ LL"’J(G), m >1, h =(0,h, h,,h,). Hence as
Re(Du"/’nQTGh)LZ H = Re(Du,‘/,]lmQTc h)L2 H = Re(Du,’/nImQTC h)L2 H
and Du ¢ H we obtain

IMQTghe HLImQTsh = gradg, g e W TBX(G), aq = 0.

Furthermore, we have
Re(Qp/nQTa )y, ., = Re(P4QT5)L, 1,7 Vnfo PREQTG H)dG =0 ¥ p e Ly(G)

and we obtain with the Lemma of Du Bois Reymond Re(Q7 h) = 0. This means h =D QT7x h
= D(ImQTg h) = D(gradq) = -Aq = 0. So we obtain the existence of a solution of

o
Du+4,Qp = ¢/,QTof (ueW,"HHG) nkerdiv(G), 1< -1, pe Ly(G)) ¥V Fe L5 (G).

Now we get from {$.3) 7o Du + %, T5Qp = ¢/, T5 QT f and because of ueW1 [”(G)we
obtain u+1, T5Qp = ¢/, T5Q TGf Furthermore the solution of (5.1) is umquely determi-
ned. This immediately follows from Theorem 5.2 and the fact that, if D(p, - p,) = 0 and
Py:p2 € Lo(G), wegetp, =p, B

Remark 5.3 : We also want to mention the interesting papers [7] and [8).
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