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Operator Calculus for Elliptic Boundary Value Problems in Unbounded Domains 

S. BERNSTEIN 

The main result of the paper is the proof of the applicability of hypercomplex methods for 
elliptic boundary value problems in outer domains, i.e. domains, which lies outside a closed 
compact surface. 
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1. Introduction 

In the last years operator principles for the solution of elliptic boundary value problems 
have got an increasing importance. K. GUrlebeck and W. Sprossig have found in [2] an 
operator calculus for several boundary value problems in bounded domains which is based 
on quaternionic analysis. The aim of the present paper is to obtain similar results for 
unbounded domains. 

Let H be the quaternionic algebra with the basis e0 , e1 , e2 , e3 . Every element a E H has 
the unique representation a	a,e1 with the real coefficients a. The conjugate qua-

y 3 ternion a is defined by a = a0 e0 -	a.e1 = Rea - Ima and the norm by lal = (aa)I'2. 

Let G C R 3 be a domain which lies outside a closed compact, sufficiently smooth surface 
àG = F. An H-valued function fwill be written by f(x)	0fj(x)e1 with I',: G	W. 
Each point x € R' may be identified with a quaternion of the form x =	xi e1 . The fol-



lowing operator will play an essential role in our considerations: Let u C C 1(G) n 
then we have 

Du =	16eu with 6 i 6/6x1, 1 1, 2, 3, 

(T u)(x) -	c(x - y)u(y)dG, with e(x) - x/(4itIxI3), 

(Fru)(x) = Jr e(x -y)a(y)u(y)dF, x e F, 

where a =	 ae1, and ((X 1 , a 2 , a3 ) is the unit vector of the inner normal at the point y, 

(Sru)(x) 2fre(x -y)a( y)u(y)dF, X  F, 

where the integral is to be understand in the sense of Cauchy's principal value. The pro-
jections Or r(f Sr)1 2 and P (I + Sr)12 are defined in [9]. By! we want to denote 
the identical operator. 

The Banach spaces 

w2k ',7 J(G) , ,k.[8J(Q) (8cR, k e 

H,.(r) (i eR), C H ( G ), CH 	(O :5 k5 co)
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are defined by their components, which belong to the corresponding scalar- valued spaces. 
The space W2°,81 ( G) = L 53,( 0) may be characterized by the inner product 

( u , V ) [8] _J0 '(1+ lx12)SdG. 
L2, H 

We briefly write Ps (1 + lxi 2 ) S/2 . Notice that 4°h(G)= L2H ( G ) . The space 
may be provided with the inner product 

( U , V )	k,[8] = (u, v) [8] +	 (a5u,a5v) 
W2,H	L2H isIsIsk	L2, H 

where 

c) 'u =	65ue ,	
asj*s2+sa	

, isi = S1 + S 2 + S3. 
axiax:2ax:3 

A function u E C' ( G) is called H-regular if Du 0 and I u(x)l -+ 0 if lxi - co. By Br(Xo) 
we denote the open ball with the centre in x 0 and the radius r. We briefly write Br(0) 
Br, aBr(x) = Sr(X) and G u F = d. 

A simple computation shows the following Lemma 1.1 and Lemma 1.2. 

Lemma 1.1: Let u be an H- valued function with a u E L 2 ( a). Then 

lIDuil 2H	 laul2dG. 

Lemmal.2: Let u €	 € R. Then 

liDuii 2H =	0SG1laIuJidG. 

Lemma 1.3 [10]: Let u E	 < -1. Then 

f0pjul2dG ^(2{li-1})j'o±la1uidG. 

Lemma 1.4 [10]: The subset {u € W21<(G): suppu bounded in	is dense in W21'  G). 

In a similar way to [101 the following lemma can be shown. 

Lemma 1.5: The set Co' H(G) {v€ C(G):ulG = vfor some u ECo"H(R3))iS 
dense in W21H(G), m ^ k, and COmH(G) is dense in VkG), in a k. 

2. The generalized Borel-Pompeiu formula 

An important connection between the operators F0 , T0 and D gives the generalized Borel 
-Pompeiu formula. 

Theorem 2.1: Let u€ Col, RH ( G ) . Then 

Iu(x) , x € 

Fru(x) + T0 Du(x) =	
,€
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Proof: Take r such that R \G C Br . Then G, = G n Br is a 2-manifold connected 
domain with the boundaries I and 1. Sr . For G we have 

Fru(x)Fru(x) f T0Du(x)	
u(x) xEC)

O,x€ R\ 

(cf. [91). The function Ix - y I 2 may be developed into the series 

- y I	=	 C(t){Ixt/IyI}k,with t = cos	IxI/lyl, 0 a k=o 
where C denotes the Gegenbauer polynomials 

C( t) 1, C(t) 2t and C,+ 1 ( t)	2tC(t) - 

	

and the series	C(t)cxk converges if It I a I and 0 a ot a I (see [41). For every x € G 
there exists an r0 > I such that dist(x,	\G,) > I. Then we have for r > 

Fu(x) a J Ie(.v y)IIU(y)IdSr,y 

a 1/4jSrIYI2	C(IxI/Iy(IxI/IyI)kIu(y)l 
k=o 

	

^
IYI 2 dSr, y max lu(y)IJ = J maxlu(y)I	0 as 

Sr	 Y E Sr 

where 

IxI/IyI a (re- l)/ <I and J =	C((r- I)/r){(r- I)/ro}kI 
k=o 

3. The operators T0, Fr. D 

In this section we want to state some properties of the operators TG , Fr and D. 

Theorem 3.1: The operator T0: L2, H (G) -+ L2, H (G n B) is a continuous mapping 
for all n > 0. 

Proof: Let u € L2 H (G). Then 

8it2IjTc u IL.2 H(	B,)	8r2 f TuI2d 
Cr, Br, 

	

a f	5 Iu(y)IIx -yV 2 dy 2dx 
+ 5	.1 Iu(y)IIx yI2dy2dx 

	

CnBr,CBr, 1	 Gr'Br,C\Br,,1 

	

a J .	J Ix -yI2dy J Iu(y)1 2 1x -yL2dydx 

	

-1 C B,, ,	C, , B,,,, 

+ .1	5 u(y)I2dy 5 Ix -yl4dydx 
CnBr, C\ B+, 

a C,(12),2 55 Iu(y)1 2 I.v -yL2dyd.' + C2(n)/2 lu 114 ,.. 

30 Analysis. Bd. 10. Heft 4 (1991)
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Furthermore we have 

fJ' Iu(y)I2Ix-yL2dxdy f Iu(y)12 J Ix_yL2dxdy:,c3(n)IIuII2H 
GnB +1	G,,B.1 

Hence we get 

ff Iu(y)1 2 1x -yI 2dxdy sC3( n )II u I L2H and lI T0 u II	an) C(n)IIuIIL2fl 
On D *1 

which shows the assertion I 

Theorem 3.2: The operator Ta: ( 6 < -1,0 :^ y s 3) is a con - 
tinuous mapping. 

Proof: We have 

2IITG u11C y+ sJ(0) = 2Jp,afe(x -y)u(y)dG2dG 

,fp+8l f e(x -y)u(y)dG 
I
2dG +Jp2+8	f e(x -y)u(y)dGy]2dGx 

G	IGB1(x)	 a	I GB1(x)	 I 

^Jp	5	p 2 Ie(x -y)!dG 5 Ie(x	p -y)IIu(y)I22dGdG 
C	CnB1(x)	 GnB1(x) 

J'p +s 5	p.2 Ie(x - y)13,12 dG 5 Ie(x - y)I1/2 Iu(y)I 2p. dGdG 
C	0\B1(x)	 G\B1(x) 

with i + y > 0, < 1/2. Furthermore, 

5	p. 2 Ie(x - y)IdG 
CnB1(x) 

IfBJ(X ) I. - yL 2 dG1	 iflxl<1 

	

1A i , IxIl 2JB1x) Ix -yI 2 dG = (2)	if lxi a1 
_^ c(1 + ixl 2Y = cp,2 

and, if y > 0, 

5 p 2 le(x y)1 312 *1dG -'51/(,)3/2+n 5 P- 21X -yL321dG 
G\B(x)	 R3\B(x) 

1//+	5 p.,2 lx - yL 3dG ^ t/(4,)3/2*1 
R3\B1(x) 

with '> w>0 (cf.[6]),Ify =Owe get the same inequalitywith = - = 0.Now we obtain 
2 11T

U IIJ(Q) 

'Y 
2

	+ lxI2Y	5 le(x -y)llu(y)l 2 p. dGdG 
0	 GnB1(x) 

+ 1/3/z+ 
5p. + pc, 5 Ie(x - y)l /2 1Iu(y)l2p. 
C	 C\B1(x)
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s, ffp 2 (l + IxI 2)- lx -yI 2 Iu(y)l 2p. dGdG 
Go 

+ 1/(4)2ffp 2 lx -yI12flIu(y)i2p.dGdG 
00 

fp 2 Iu( Y )1 2 {1/fP 2 5 c(1 +Ixi s )- T ix -yL2dG 

+ '/8.21

	

p' + lx yi t+21 dG}dG 	C11u114y]<0 

because of Fubini's Theorem and that we can choose TI, w > 0 such that 2(6 - 1/2 + + w) 
-3 and 6 < - II 

Theorem 3.3: The operator Fr: L2H(F) -4 %,H()' 
k e N, is a continuous map-

ping, where Gis a domain with G C G or GC R3 \ G. Besides, Fr  € ker D(R>\r). 

Proof: We consider the expression 

JIDx Fr uI 2 dG, 1/(4Tt)2f JDxe(x y)(y)u(y)drH2dG,. 

Because of GC Gor C R3 \G there exists a 6>0 such that dist(GF) Sand Ix - yl 
^ 6 for all x E Q • and y E F. Furthermore e(x - y) is a harmonic function in G • and from 
[5] we get the estimate 

DFruI :5 Cix _y(2+II), Ca Constant. 

If mes	< we obtain 

j'JDxFru 2 dG	J((e(x - y ))1 2 k(y )1 2 d &fI u(y)j 2d5 dG ^ C lu llL,jq(G) C.

using l(y)1 2 = 1, mes F < and also mes G * < . If G is unbounded we decompose 

G .= G 1 u G21 where G 1 = 
I 
X E G: lxi s 2 supr l y l + 11 and G, = G\G1. 

Then we have mes G, < o and analogously we get 

J
lDx1 Fru1 2 dG i s CI,I1u11..2H(r). 

In G2 we have ID,e(x - y) l :5 CI'x _yL (2	^ C6 1 ' 4(1 + IxIY 2 and now it follows 
the estimate 

j' lD,Frul 2 dG2 :'(4c7 it ) -2 [(1 + IxlY4mesF1[Iu(y)12d5dG2 

C.. 11u1i21 1(1 + ixiY'dG2 = C2, 11U 11 2
 

62 

Thus we have shown that ll DFr u ll 21.o ^ C ufl 21 ). Hence we get 

ll Fr u ll k Q . ) =	l"IllL2,H ^ C ll u ll 2 1 r	C = max C. 
IIk	 II3Iak 

Now we consider 

30*
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DFru = '/.	i I e.à.	ejf(x -y)Ix - y L 3 ( y ) u ( y ) d 47t
1 = 1	J1	r 
3	3 

=1/4	 eej1fcI((x -y,)Ix -yI3)(y)u(y)d 
1 = 1 j =1  

±eej J'(a j Ix - y 1 3 - 3(x j -y)(x 1 -y1)Ix -y5)a(y)u(y)d	0 

in R3\rI 

Lemma 3.1: The operator TGD admits an extension to a continuous map from 
into W2kH (G_), k € N\{0}, G as defined in Theorem 3.3. 

Proof: If u W2'H(G), then truE w2k ,. /2(r)c L2H(f) is a continuous imbedding. 
Thus we obtain the continuity of! and Frtr: W2H ( Q ) -+ W2H(G). Let u € CORH(G), 
then by means of the Borel-Pompeiu formula we have T0 Du = Fu + u in G and T0Du 
Fr u in R3 \ 0 and so we get

ll Fr u ll w k G + l u ll	k 
lITGDullk

2,H	 H(G ) 
•.	

r	
llull, 2,H	hF u hl	k	 2,H 

W2H(G) 

Because CORH(G) is dense in W2k (G), the operatorT0 D admits a continuous extensioni 

Theorem 3.4:The Bore! -Pompeiu formula can be generalized for functions u € W H( G). 

Proof: Let u E l4H(G).Then there exists u€ CORH(G)SUCh that 

hun - u ll wi — 0 if n-+	and -Fu+ TcDu =	in R 
in G 

3\. 2,H 

Now for every domain G, in case U4 C G and G C R 3 \ G we obtain 

_Fru,2 + TcDun u n	Fru+TGDu,,0 
4	4	4	and	4	4 

Fru +T0 Du = u	Fru +Du 0, 

in the sense of !A.1H(G), respectively. Because the foregoing formulas are true for every 
we get for u € ½ . (G) that -Fru + TQ Du = u in G and -Fru + TDu = 0 in R3 \ U 

Analogously to [6: p. 2491 the following lemma may be verified. 

Lemma 3.2: For each u € W21	 Q H ( G ), k€ , we haveàkTuEW21H(G) and 

ak(TCu)(x) = -Jôk.xe(x -y)u(y)dG
(3.1) 

± e(x j - y)Ix - y I 1 (x k Yk)Ix -yI1dS. 
1=1 

Proof: The first integral in (3.1) is singular and a simple computation shows the exi-
stence of the integral in the sense of Cauchy's principal value. Using [6: p. 316] we get
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that this integral is bounded in W2 (G). Obviously, the second integral in (3.1) delivers a 
finite value. For u € W2kH (G) there are u,, € CO,R,H( G ) such that u 1. - u in W21H(G). Set 
v1, T0 u. Using calculations carried out in [6: p. 2491 we obtain for u the expression 
(3.1). So we have k TGU n E W2ICH(G)and Tr, U,, E W,8 (G), 8< -1,from Theorem 3.2. 
There exists the limit of the right-hand side for u, - u in W2kH(G) and is equal to the 
right-hand side of (3.1). Because of the closure of the operator of differentiation there 
exists T0 u and is equal to the right-hand side of (3.1). Therefore we also get from (3.1) 
that C)k TG U € W2 

k H(G)I 

Corollary 3.1: The operator T0 maps W21'H(G)into W'j 8 (G), 8<-I, k€ N, and 
into W J ,(G n B) for all n such that G  B * 0. 

Theorem 3.5: The operator c) k T: W2H( R ) -+ w2H ( R ) is continuous. 

Proof: Using Lemma 3.2 we get 

à k Tu -'/	eeJà.f5(3 (x1 - y1 )Ix -yI3u(y)dy 
1=1 j=o

7L 7L eeJf3,(x((x -y1 )Ix -y1 3)uj (y)dy 47t ii J=O 

- uj '(x  - y)Ix yI'(xk Yk )IX -yL1dS. 

Obviously, the relation 

- uJ(x i -y)Ix -yI 1 (x -yk)Ix -y1'dS = uj C(i,k)€ W2ICH(R3) 

is valid. Now we consider 

fR -3(x 1 -y)(x Yk )IX - y L 5uj( y ) dy	if i* k 
TIk uJ =

SR  -(Ix - y I 2 - 3(x - y1 ) 2)x -yV 5 u(y)dy if I = 

-3x I xk IxI 5 if 1* k	- aIokIxI 
=	 = 

-(1x1 2 - 3x 1 )1x1 5 if i k	- a.akIxI 

and

Ik uJ II,	S I(7 k u)I 2 (I + II2)kd 
R3

	

f.,,3 ikII2(uj(1 + II 2 ) Icd	if 1* 
= C  I 	+ I 2) kd	if 1= 

S cf	I	(uj)2(1+II2)kd	= 
11 Uj 112 k 

Therefore	Tu Dw2kH< C 112 11 u II w2H' where 9( u) denotes the Fourier transforma-
tion of the scalar function uU
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Theorem 3.6: Let uEL2H(G). Then DTG u = uinG and DTou=0jnR\. 

Proof: Lemma 3.2 shows that aTQ u E L2 , H(G)exists At first let u E C,R,H(G)and 
X  G. Set G G\B(x). Then we have DT0 u(x) 0 in G and it remains to consider 
the term in B(x). Using Lemma 3.2 we obtain 

(DT()u)(x)

eeJ ô Ik f(X -y)Ix -yI3u(y)dB 
B(x) 

ee, I ')k(( -'J -y)Ix -yL3)u(y)dB, 
,ji	B(x) 

3 J'(x -y1 )Ix -yL t(x -y)Ix - y L 1u ( y ) dS1 "It 

= 1/4It ± ejej f ( 1 Ix - y I 3 - 3(x1 -yj )(x -y)tx -yI5)u(y)dB 
B(x) 

eeJ f(X 1 -y)Ix -yL 1 (x -y)Ix -yL'dS 1 . '41t
,,J-i 

Because of e . e + ej ej = 0 for i,j 0 and I*J we get 

(DTB u)(X) = /	e f (-Ix - y I 3 +3(x1 -y) 2 Ix -yL5)u(y)dB 
11 B(x) 

3 + u(x)' 
'47t feo 7E(x -y1 )2 1x -yL 2 dS = u(x). 

S 

If XE R3 \5, then DTGU(X) = -f D,e(x - y)u(y)dG = 0. Since G,R,H(G)is a dense 
subset of L2H(G), we have DTQ u = u in G and DT u = 0 in R3 \,where U E L2 , H( G)• 

Lemma 3.3: The operator Fr maps W2k'2(F) into w2H(G), k € N\{O}. 

Proof: The compactness of F guarantees the existence of a fixed n such that F C B 
and dist(F,R 3\B) >1. Let u E W2k/2(r).Then there exists a continuous extension v  
W2H ( G ) with trv= u. If we use the Borel-Pompeiu formula we obtain Fru = T0 Dv - v. 
With Corollary 3.1 we obtain Fru € w2H( Go B) and from Theorem 3.3 we obtainFru 
W21'H(G\B , ).Thus II Fr u Uw k (0) I}FruIIwk(cB + IlFruIIwk(G\B)I 

Theorem 3.7: The operator	 [ & I	k
 G) - W2H( G), 8 :5 0, k € t'J, is a continu-

ous mapping. 

Proof: We have 

II Du IIv k	=	IIaa(Du)II2H =	DDaauII2,,, 2.H	1.11k
, 

k	 Ixkk 
33 

^ 3	SIaiauiiI2dx 
IakkjoG i = i
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^3± fp 2 Iu 12 d +	J±lauJl2dG 
J =O 0	 IxIsk 0 it 

3	Jp822jQ + fiaxujvzoa = 3llu 11 2 k.i.L8] 
j=o G	 islaisk=i 0	 W2H 

from which the assertion follows U 

	

Theorem 3.8: The operator TG: D(%' 8kG))	8<1, k  N\{O} is  
continuous 1-1 - mapping. 

O, HProof: For v € D(W218 ( G)) there exists a u e W2 ,6 ( a) such that D v. Then we 
get TG Du = u in Gfor u from the space COH(G) and also from the space W2(G)be- 
cause the first space is dense in the second one. That means that T0 is a surjective opera-
tor. Furthermore 

II TG V	k,(8] = T Du 112 k, [ 8 ] = u 112 k,[8] 
2,H	 W2H	W2, H 

=	{fp2IuI2dG +	 JIaujIdG} 
J =o 0	 iIakk G 

^ ± { 1/	,J ±Ià1 uj I 2 dG + >: fIujI2dG} 
j-o	0 i = i	 ,aloclsk C 

^ max('4 181 ,,,l} ±	f ±Ia1axujIdG 

	

jo oslakk -1	j=i, 
2 

= max ['4(1s1,)' 1)	Il2Du IIL2,HIaIk - i 

max [ 14(181 _, ) ,l} Dufl,k-i = max{ 141} li v 2 k-i

	

2,H	 I lW2 

and

li v Ii W2 H 
= Il Du il,k-1 

=	IiDUII2	-	 IiDaxuIlx 
IocIk-,	'-2,H	Iakk- i	L2,H 

=

	

	± f±Iaiiu.,I2dG
IxIk-i jo G i1 

^ ±
I 
fp22j; +	Saula} 

j0 Q	 Ixi'k Q 

= flu	11 ToDu	kC81	Tcvliv28]. 2,H	 2,H	 1 

For this reason T0 is a 1-1 - mapping I 
Corollary 3.2: Thus T0 in the pair of Banach spaces (D('2' 1( G)), W2H( G)) is 

continuously invertible, 6 < -1 and k € 

Besides the formulas T0 E.' = un %JSJ(G) andDT0 I in D(W2' 8 (G))are valid.
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4. A decomposition formula of L2,H(G) 

First we will give a representation of harmonic H- valuedfunctions. Then we prove a de-
composition formula of L2H( G ), which is important for our applications in Section 5. 

Theorem 4.1: Let uEker(G)n%(G),Iul-4Oiflxl-,keN\{O}.Then there 
exist two unique functions U i € kerD(G)r W'(G), 1 1,2, such that 	TG u 2 + u1. 

Proof: From Theorem 3.4 we obtain u = -Fru + TDu in G and from Theorem 3.7 and 
Lemma 3.3 we obtain Fru W H ( G ) n kerD(G). Set u 2 Du and u -Fru.Then u2 
DT u 2 = D(u - u 1 ) €	G) and Du 2 DDu -Su 0 1 i.e. u 2 € ker D(G). Suppose 
u T0 u 2 + u 11 Tu22 + u 21 .Then Du = u 2	u 22 and Tu21 - Tu22 T(u21 - u22)

U21 - u11 0. Hence the representation is unique U 

Lemma 4.2: The operator trToFr: imPr n	 - imQr n	/2 M, k €
N\{0}, is a bijective mapping. 

Proof: We consider the bijective sequence 

imPr n w./2(r) Fr	 kerD(G) 

______ k *' (G)	 ______ ______	 ___ T	

I'2.Hn ker(G) n kerD(R3\G) tr	im Qr o	k +1/2 W2H (F). 

Now we want to show that trTcFru 0 implies u = 0. Let TGFrU be the solution of the 
equation -( TG Fr-u) 0 in G and trTGFru = 0 on F. Because Dirichiet's problem has at 
most one solution it follows that TF-u = 0 and Fru 0 and thus u = 0 on F. Now we 
show that the mapping is surjective. Let h E im Qr n W212(F).Then there is the solution 
w for the problem - w 0 in G, trw hon F, 1 wi - 0 if Ix  - =• (cf. [51), and from The- 
orem 4.1 we get w = T0 w2 + w1 . whith w, € kerD(G) n W2H (G) and w1 = Frtrw, 1 1, 
2. Using Plemelj-Sokhotzki's formula (cf. [91) we get -Frtrw - P'(trw) if x-+ NO € F(x 

G), and it follows w1 -FrPrtrw -FrPrh 0, ash E imQr. This means w TcDw 
ToG w2 - TaFrwz and trw = h = trTF(-w).Altogether for any  € imQr n w2'2(r) 
there is one and only one v € im Pj-. n W22( 1) such that h, trTcFrYU 

Theorem 4.2: The operatorP Fr(trTc Fr)_ trT is  projection onto the subspace 
kerD(G) n L2H(G) and Q = I - P is a projection Onto the complementary subspace 
D(W2 (G)), 8<-I. 

Proof: We consider the sequence (8 < -1) 

%H(-W)— W3/2(F)(trTGFr	wu/'2(r_.L W2H ( G ), 2,H 2.H 
i.e. P and Q map	into itself. 

Now we prove that Pu = u iffu € kerD(G)n W2'H(G). Let u € kerD(G) ri %V.,H(G). 
Then we have u -Fru and Pu = -PFruFr(trTcFr)trTcFru -Fru u.Conversely, 
let u E W' H ( G ) and Pu u.Then we have u Fr(trTQFrY1trTGu E kerD(G)nAH(G) 
because of ( trTQ Fr)_'trTG u € imPr c W2H(F).
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Now we prove that Q  = u 1ff u € D(W(G) n %1H()' 8 < -1. Let u belong to 
that intersection. Then a v € W21( G )exists such that u = Dv and trT u = trTG Dv = try 
• O.This means Pu 0 and we get Our (I - P)u u. Conversely, let u E %4H(G) and Q  
• u. Then we have T0 u W(G)and trTu triG Qu (trT0 - trT0 P)u (trT0 

-Ls trTcFr(trTcFr yl trTc)u 0, i.e. T0 u €''(G)and u DTcu, uE D(W'(G)) 

8< -1. 
Because of the density of W'H(G) in L2,H(G) there is a Continuous extension of 

P onto the subspace kerD(G) n L2H(G) and of Q onto the subspace D(W(G)). Fur- 
thermore, 

P 2 u = Fr(trTcFr) -1 trTcFr(trTcFr) -t trTcu = Fr(trTcFr) -ttrTc, u = Pu, 

Q 2 u = U - P)(1 - P)u = U - P - P + P 2 )u (I - P)u = QU, 

QPu (I - P)Pu (P - P 2)u = 0, PQuP(l -P)u = (P - P 2)u 0, 

which show that the statements of the lemma are true U 

Now we have shown that P and Q are projections. In the following theorem we will 
show that P and Q are even orthoproject ions. 

Theorem 4.3 (Decomposition Theorem): We have the decomposition 

L 2, (G) kerD(G) n L2,H( G ) + D(W''(Q)), 8< -1, 

where denotes the orthogonal sum with the inner product of L 2, H . The orthoprojections 
are P and Q, respectively. 

Proof: Take X1 = kerD(G)riL 2 (G) and X2 D(W'(G)).Let ueL2,H(G).Then 
Pu + Q u Pu + u - Pu = u, i.e. L2 H(s) C X1 + X2 . Obviously X1 + X2 C L 2, H (G). Let 
U € X1 n W21, H(G )and v € X2 . Then there exists a w € W"(G)such that v Dw and on 
account of the Gaul3-Ostrogradski formula (cf. [91) we get 

JGuvdG rJQuDwdG=fGDuWdG+jru(t7dr0, 

as u 6 X1 , i.e. Du = 0, and trw = 0. Since the subspace X1 n W( G) is dense in X 1 we 
also getf 02 d 0 for u € X 1 and vs X2 . As X 1 is closed in L 2, H (G.), the subspace X2 

L 2H (G) X1 is also closed in L2H(C)U 

S. Applications 

Now we want to apply our operator calculus to the Dirichlet problem and the Stokes pro-
blem.

Theorem 5.1: The Dirichiet problem for outer domains 

= fin a (f€ L 2. (G), m > i), tru = gon r ( g € w2(r)) 

has the unique solution 
u -FPg +	 + TC. 	W'(G), 1<-I.
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Proof: We consider the sequences (1< -1) 

L'%(G) -L w2H(r)-5. w2H (r) .----.w2'jf(G), 

W2H(i) fl i mPr -	W22H(G) 

(cf. Section 3), i.e. u E W22 'HE ](G). Furthermore, 

DDu D{D(-FrPrg) + DT0F(trT0 F) -1 Qg + DT0QT,f} 

DFr(trT0 Fr) 1 Qg + DQT0 f DT0 I - DPT0 f = f 
and

tr{-Fr prg +TG Fr(trTQ Fr)'Qg + T0 QTf} Pg+Qgtrg, 

because of QTG f E D(W2"(G)) and so trT0 QT0f = 0 holds U 

Now we consider the Stokes problem for outer domains 

-u +(i/1 )gradp = ( P11 )! in G, divu = 0 in G, u = 0 on r 

and also the problem 

U + /1 TQT0 p = P/1 Tr, QT0 f in G, 1/1 ReQp P/1 ReQTf in G,	(5.1) 

	

with u = (0 1 u 1 ,u2 ,u3 ) 1 p	(p0,0,0,0), f	(0,!,f,f), f E L°(G), m >1. Let rbe a
compact C m-surface; p, shall be certain physical positive constants. 

Rmazk 5.1: Our proofs of the Stokes problem are based on the methods given in [1] 
for bounded domains. 

Remark 5.2: It is possible to show in an analogous way to [1] that the problem (5.1) is 
equivalent to the weak Stokes problem 

	

(grad u 1 . grad vj )	P/(fv)LforallVc V.	 (5.2) 

with ii=(O,u 1 , u 2 , u 3 ), V =(0,v 1 ,v2 , v3 )and v={	w22,Ika), I = -1, divt = o} in the fol- 
lowing sense If u,p is a solution of (5.1). then with U = Im u equation (5.2) is fulfilled. If II 
is a solution of (5.2), then there is a real function p such that Er, p is a solution of (5.1). 

Lemma 5.1: if u	 13(G)n kerdiv(G), 1< -1,pe L2 (G), then Re (Du, Q p) ,<G) = 0. 

Proof: We get Re(DU,QP)L2 1.1<) = Re(Du,p - p) ,1<c) Re(Du,p)L21CI) = 

11JG 6 1 updG 0. 

Theorem 5.2(apriori estimation):ifu e 1](G)n kerdiv(G), / <-1, p€ L 2 (G), then 

fi 
+ 2(1/1 - 1)}

	11 2	
1 +	IIQPH..2H S ll2IITGfIL.2H 

Proof: From (5.1) we get Du + 1/1DT0QTp = P/1 DTG QTQ !, i.e.
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Du + i/i QTp = iQT0 f and II DU + 1/7, Qp l2H II/lQTC'iLL2,H 
2	 2 

, v)L2 H,Re Re (u, V)L2 H .Then we get 
11  

I1L2,K,Re lu IIL,H be- We now consider (u
cause of the definition. For that reason we have 

Il Du H Du +1/flQPlII2 HRe = Re(Du + '/,Qp,Du + '/1QP)L2H L2 

HRe( DU , DU )L2H + ( i/,) 2 Re(Qp,Qp)L2 H + 2/lRe(Du,Qp)L2H 

11 Du .2,H ll	+ ( 1/) 2 IlQpl1	= (p/,)2 
11Q TQ I' 11 2	, (p/, )2 11 TGf 

II I_2H •  2H 	 L2,H 

Because of u E W2iH ,[1I (G)and Lemma 1.2 it follows 

3	3 
Il Du II 2H	JG	I1uj12dG j=1

1	 ______ 
i 1	2(111 - 1 }- ii u iij = {i	2(Ili - 1) 

}1 
Il u Ilv1,L1 

This leads to the desired inequality U 

Lemma 5.2: Let L2H(G)	u E L2H(G): Reu = ue0 01 with the inner product 

( u , v) 2H Re ( u , v )L2H =	 Then we have the decomposition 

L 2,H(G) grad W' 8 (G) n kernz2 D(%i.I (G) r kerdivlm(G)), 

=	 H1 tiq L2 H 

(6 < -1), where	denotes the orthogonal sum with the inner product (, 

Proof: By the means of Theorem 4.3 we obtain 

L2,H(G)nL2,H(G)=kerDnL2,H(G)D(W2t,](G))nL2,H(G)=XlX2, 

where is the orthogonal sum with the inner product of L2,H. Thus for every element u 

L2H(G) there exist U. eX1 and u 2 € X2 such that u = u 1 + u 2 and (ul,u2)½ H = 0 and 

so we have Re ( u 1, u2)L2H = (ul,u2)H 0. Now we want to describe the subsets X1 

and X2 . We have X 1 {u EL 2,H (G): Du = 0), i.e. curlu = 0 and divu = 0 and thus u = 

gradq, q € W2" 1 (G), and D(gradq) = DDq = -q = 0 and X 1 = H 1. Besides we have X2 

= t u eL 2	 ' H(G): u = Dw, we W218 (G)),i.e. Reu = ReDw div(lmu) = 0 and X2 = HE 

Theorem 5.3: There exist a unique solution u €	 n kerdiv(G), 1 < -1, p € 
L 2 (G) of (5.1). 

Proof: We consider the system 

Re(Du,h/TIQTQh)L2H = 0 for all u € /t.[JJ(Q) n kerdiv(G), 

Re(Qp,1/TIQ Tr, h)L2H = 0 for all  € L2H(G), Imp = 0,
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[:nJ where h € L2H(G), m > 1, h (Osh 1 .h 2 ,h 3 )..}-lence as 

Re (Du , 1/QTQh)L2H Re (Du , 1/,) lm Q TQ h)L2H = Re(Du,V1ImQTQh)L2H 

and Du € H we obtain 

lmQTh € H 1,lmQT0 h =gradq,qeW 1(G), A  0. 

Furthermore, we have 

Re(QP,1/1QTGh)L2H = Re (p,'/,,Q  To) H = '/J0 pRe(QT0 h)dG = 0 V  € L2(G) 

and we obtain with the Lemma of Du Bois Reymond Re (Q T0 h) = 0. This means h D Q T h 
D(lm QT h) = D(grad q) - Eiq 0. So we obtain the existence of a solution of 

Du+ 1/Qp P/0QTGI (ue121 jj l( G) n ke r d iv(G) , J<_ l,p€ L2(G))VfeLm1(G). 

Now we get from (5.3) T0 Du + '/ T0 Op = 9111 TcQ Tf and because of u E W'1(G)we 
obtain u + 1/TQp P/11 TcQ Tr, f. Furthermore, the solution of (5.1) is uniquely determi-
ned. This immediately follows from Theorem 5.2 and the fact that,' if D(p 1 - p2 ) 0 and 
p 1 ,p 2 € L 2(G), we get p1 p2I 

Remark 5.3 We also want to mention the interesting papers [7) and [8]. 
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