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Regularity of Solutions of the Weak Floating Beam Problem

K. DOPPEL and B. SCHOMBURG

This paper describes a weak formulation of the time-harmonic two-dimensional floating beam problem
in a fluid domain of finite depth. This is a simplified version of the floating body problem which was
investigated by F. John in his classic papers [9,10] in 1950. Contrary to the integral equation approach
of F. John we use a Hilbert-space method based on the investigation of a not necessarily positive definite
sesquilinear form. Interior as well as boundary regularity are the main concerns of this paper. Especially
we show that the solutions lie in a weighted H?-space in the neighbourhood of the endpoints of the beam.

Key words: Weighted regularity, floating beam problem

AMS subject classification: 35 D 10, 35 J 25, 76 B 99

1. Introduction and statement of the problem

1.1. We denote by p = (z,y) the elements in the two-dimensional Euclidean
space R?. Let Qs := Rx] — A,0[ be the undisturbed fluid domain with the bottom
surface Sg := R x {—h}. Furthermore, we define for a smooth convex bounded
domain F in {y > —h} with Qs N F # 0 the disturbed (unbounded) fluid domain
Q by _

Q=0s\F.
We call _
Sr=Qnor
the immersed ship hull and
Sp =09\ (51U Ss)
the (unbounded) free fluid surface. Finally, write
{m,p} =051

A Dbasic problem in linear hydrodynamics consists in determining the velocity po-
tential of an inviscid incompressible stationary fluid flow in Q. It is formulated as

follows (cf. F. John [9,10], M. Simon/F. Ursell [18]):

Problem A. (Classical formulation of the floating body problem.) Find all
w € CHQ) N CYQ) such that
0 on Sg
Au=0 in Q, u,=< f on 5
Au on Sp,
where w, denoles the outer normal derivative of u to the domain Q, [ is a given

funclion on the ship hull Sy and A € C.is the wave -number with Im(A) > 0 (cf.
Subsection 1.3).
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1.2. In his paper F. John [10], p.50, expressed the idea that the discovery of a
variational formulation of Problem A could facilitate the existence proof and also
permit the construction of approximate expressions for the solutions. Therefore in
K. Doppel [1], K. Doppel/G. C. Hsiao (2] the following weak formulation of Problem
A was given. Consider the sesquilinear form

(u,v)5=/nVu'Vﬁdp~+/SF uvds

on the Sobolev space H!(2) where ds denotes the line element on Sp. It can be
shown that (-,-)g is a well-defined inner product on H'(2) which is equivalent to
the usual one (-,-); (cf. [2], Section 3, (3] and (6]). Then ax(,-) with

(1.1) ax(u,v) = /nVu'Vi)'dp—/\/sr uvds

is a continuous sesquilinear form on H'((?). Furthermore, for f € L(S;) define (cf.
Section 4 in [2]) the bounded anti-linear form I; on H'(Q) by

(1.2) yv) = [ fods.

Problem B. (Hilbert space formulation of the floating body problem.) For given
f € L*(Sr) and A € C find all u € H'() (weak solutions of Problem A) such that
ax(u,v) = ly(v) holds for all v € H'(R).

Take R{ = [0,00[ and note that Problem B is uniquely solvable for
A € C\R{ (cf. K. Doppel/G. C. Hsiao [2], Theorem 12). In the case A = 0
one has to restrict the functions f to be in the smaller space L2;(€2) and to replace
H'(Q) by Fi(2) which is obtained by the completion of the Schwartz space S(Q)
(cf. M. Schechter [17]) with respect to the norm |¢|; = (J |Vé[*dp)/? (for details
cf. K. Doppel/G. C. Hsiao [2], Theorem 13).

1.3. In this paper we shall study the regularity of weak solutions of Problem
B. Since the corners p;,p; are extremely unpleasant we assume in this note as a
first step that the unbounded fluid domain © has a smooth boundary. To do so we
reformulate Problem A in the following way and call this the floating beam prob-
lem. Let 25 be defined as before and fix an open bounded interval |p,, p.[C R x {0}



Regularity of Solutions 463

Sp L 51 _‘\P'z - SF

Q

///////////////////7/S’V//////////////////f
Fig. 2

and call it the floating beam. If §; = |py, p2[, then @ = Qs and Problem A reduces to

Problem A’. Find all u € C¥(Q) N C*(Q) such that

0 on Sg
(1.3) Au=0 in Q, u,=¢ f on Sr=]p,p
Au on S,

where now f is a given function on the floating beam S;.
Analogously to Problem B we pose

Problem C. (Hilbert space formulation of the floating beam problem.) For given
f € L*S1), St = )p1,p2[ and X € C find all u € H'(Q) (weak solutions of Problem
A’) such that )

(1.4) ax(u,v) = ly(v)

holds for all v € H'(Q).

1.4. In Section 2 we will investigate the regularity of weak solutions of Problem
C away from the corners py, p;. Especially, using a bootstrap argument we will show
(cf. Theorem 2.9):

The solutions u of Problem C are of class C® away from the floating beam.
Furthermore we have (cf. Lemma 2.14 and Theorem 2.15)

The solutions u of Problem C lie in H**(QN B) for each open bounded B C R2.
Especially the restrictions ulsn lie in HY_(99).

1.5. In Section 3 we will study the weighted H*-regularity of solutions of Problem
C in the corners p;, p;. We remark that in this field the pioneering work was done
by V. A. Kondrat’ev [12] in the sixtees. He has attracted the interest of quite a
number of authors to study the singularities of weak solutions of (homogeneous)
mixed boundary value problems at the boundary, especially at corners (P. Grisvard
[7], A. Kufner/A.-M. Sandig [14], W. L. Wendland et al. [20], V. G. Maz’ja/J.
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Rossmann [16], B. Kawohl {11], J. Weisel {19]). As far as we know inhomogeneous
mixed boundary value problems, especially of the Robin-Neumann type as Problem
C, have not been investigated in the literature.

To be more precise, define the weighted Sobolev space H?((2; p) as follows. Let
a be a multi-index, i.e. a = (on,a;),a; € Ny, |a] = a; + a;. For a nonnegative
(positive almost everywhere) measurable function p on Q let us denote by H*(Q; p)
the space of all functions u € H'(Q) such that T, =2 fn [8%u(p)|*p(p)dp < co.

Now take the special weight function p,, € > 0, defined by

(1.5) p(p) = dist(p, {p1,p2})**|6(p)I?,

where ¢ € C§(R?) is an arbitrary but fixed test function such that
{p1,p2} C supp ¢. Then we will use the results stated in Subsection 1.4 to prove
the following weighted H2-regularity (cf. Section 3):

If f € H3%(S)), then each solution of Problem C lies in H*(Q; p.) for all € > 0.

2. Regularity away from the corners

2.1. First we note that it was shown in K. Doppel/G. C. Hsiao [2], Theorem 9,
that Weyl’s Lemma implies the following interior regularity result.

Lemma 2.1. Each weak solution of Problem C lies in C®(Q).

2.2. Let us fix some notations. Let R? = {p = (z,y)| z € R,y < 0} be the
lower halfspace and ' = {(z,y) | y = 0} be its boundary. For a point pp € I" and
R > 0 we define

B(po; R) = {p € R* | [p—pol < R}, B (po; R) = B(po; R) N R?
and
I'(po; R) = I'N B(po; R).
Furthermore, let
Xr(po) := {v € H'(B™ (po; R)) | dist(supp v, dB(po; R)) > 0}.
Note that Xgr(po) N C=(R?) lies dense in Xg(po) with respect to || - |- In the fol-

lowing we need the well-known trace theorem.

Lemma 2.2. Let G C R? be a bounded domain with boundary 0G of class C*.
Then for each s € N there ezists a linear bounded trace operator Ty : H*(G) —
H"%(BG) which is onto and fulfils Tod = ¢log for all ¢ € C=(G). Further-
more, if s > 1 there is a linear bounded surjection Ty : H*(G) — H"%(aG) with

Ti¢ = én lac for all $ € C=(G).

For the proof see J. Wloka [21], Theorems 8.7 and 8.8.
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2.3. The following lemmas hold.

Lemma 2.3. Let R > 0, u € H'(B (po; R)) and f € H*(B~(po; R)) , s € N,
such that

- 9 - - n 00 2 .
/B‘(vo:R)vu Vodp /B'(po:R)fvdp Vv € Xr(po) N C*(R’)

Then we have

u € H**(B(po; R)) VR < R.

For the proof cf. G. Folland [5], Theorem 7.29.

Lemma 2.4. Let G’ be a-bounded domain of class C? in R? such that I'(po; R) C
OG' for a fized R > 0 (cf. Fig. 8). Letu € H'(G') and ¢ € H*(I'(po; R)) with
s=k+1/2, k € Ny, such that

= _ - o 2
(2.1) /G Vu - Vidp = /w YTds  Yv € Xa(po) N C™(R?).
Then we have u € H*?(B~(po; R')) and therefore Tou € H**3/2(T(po; R')) for all
0 < R’ < R. Especially, if € C(T'(po; R)), then u € C*(B~(po; R)).

P2
‘?] S,-.—$

-k
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Proof. Fix R’ with 0 < R’ < R and numbers R, R; such that R > R, > R, >
R’. Next choose a cut-off function ( € C*(8G’) such that 0 < ¢ < 1 and

_J 1 on I'(po; Ry)
€=10 on G\ T(po; R).

Then (3 lies in H*(0G') and by Lemma 2.2 we can find a function
¥ € H***(G') with T1(¥) = (. For @ := u — ¥ we obtain by partial integra-
tion from (2.1)

Vi - Vid
/G’ i - Vidp

vuds = [ - Vodp
/aG' vuds + /G AVvdp — /a ., Tu(w)uds
/;G,(l —()vds + /G AlVidp .

INTY
I

31 Analysis, Bd. 10, Heft 4 (1991)
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for all v € Xg,(po) N C*(R?). Since A¥ € H*(G') we obtain by Lemma 2.3
% € H***(B~(po; R')) and therefore u = & + ¥ € H***(B~(po; R'))

As an immediate consequence we obtain

Lemma 2.5. If u € H¥?(B~(po;R)) for al R* < R, then Tou €
H*+3/%(D(po; R')) holds for all R' < R.

Proof. Fix R',0 < R’ < R, choose R, € |R’, R[ and a domain G of class C? such
that B~ (po; R") C G C B~ (po; Ry) and I'(po; R') C 8G. Then u € H***(G) and by
Lemma 2.2 we get Tou € H**3/2(3G) C H**3/2(T'(py; R')) N

2.4. A direct consequence of Lemma 2.4 is the regularity of the weak solutions
on the bottom surface Sg and on the floating beam S;.

Lemma 2.6. For each solution u of Problem C we have u € C®°(2U Sg).

Proof. Take py € S and choose R € |0, h[. Using the change of coordinates p —
—p~ (0, h) we can apply Lemma 2.4 with = 0 and obtain u € C°(B(po; R) N Q).
Since this is valid for all py € Sg we obtain with Lemma 2.1 u € c*(Qu Sg) 1

On the other hand, we have

Lemma 2.7. For f € H%?%(S;) take a solution u of Problem C and a point
po € St. Then u € H¥(B~(po; R)) for all R > 0 with dist(B(po; R), 00\ 51) > 0.

Proof. Take py € S; and R > 0 as above. Choose € > 0 such that dist(B(po; R+
€,00 \ S1) > 0, and obtain the assertion by applying Lemma 2.4
to:=f€ H¥*T(po; R+¢)) B

2.5. As a consequence of Lemma 2.4 and Lemma 2.5 we obtain the regularity of
the weak solutions of Problem C on the free surface Sg:

Lemma 2.8. Let u be a solution of Problem C. Thenu € C*(QU SF).

Proof. Fix po € Sr and take R > 0 such that I'(po; R) C Sr. Now choose a
domain G C Q (cf. Fig. 3) with

(2) T(po;R) C0G, (32) dist(9G,S1) > 0.
Then (1.4) reduces to

(2.2) /G Vu - Vodp = A/ac utds Vv € Xp(po) N C=(R?)(C H ().

First note that Lemma 2.2 implies ATou.€ H'*(I'(po; R)), and in view of (2.2)
Lemma 2.4 gives u € H?*(B (po;R’')). Suppose now that we have u €
H¥*2(B~(po; R')) for a k' € Ng and all R < R. Then Lemma 2.5 shows ATou €
H¥+3/%(D(po; R')) for all ¥ < R. Applying Lemma 2.5 again we obtain u €
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H¥*+3(B~(po; R')) for all R’ < R. Therefore we obtain by induction on k
u € H*¥B (po;R')) VkeN,VR < R.

Sobolev’s embedding theorem (cf. J. Wloka [21], Theorem 6.2) now shows u €
C=(B~(po; R')) for all R' < R. Since py was arbitrary the assertion follows

2.8. As a consequence of Lemma 2.1, Lemma 2.6 and Lemma 2.8 we have regu-
larity away from the beam:

Theorem 2.9. Each weak solution of Problem C lies in C*(QU Sr U Sg).

2.7. For our main regularity result for the solution of Problem C we need the local
H'-regularity on 89, i.e. du € H'(9Q) for all ¢ € C5°(9N). In view of Theorem 2.9
it is sufficient to prove u € H!(8G), where G C Q is an arbitrary but fixed bounded
domain with C?-boundary such that

S1 C [p1 — (€,0),p2 + (¢,0)] C 8G
for a suitable ¢ > 0 (see Fig. 4) and to show u € H}(G).

p—€¢ p P2 p2te
—O——COmm S O—O0— y=0
G

h
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To this end we consider the Dirichlet form D : H'(G) x H!(G) — C, defined by
D(u,v) = /G Vu- Vodp + /80 uvds

and denote by < -,- > the duality bracket between H~'/*(8G) and H'*(3G). Be-
cause of the fact that D is H'(G)-elliptic by the Friedrichs-Poincaré inequality (cf.
J. Wloka [21], Theorem 2.7) and the Lax-Milgram theorem we have :

Lemma 2.10. (i) For each ¥ € H™Y*3G) there ezists ezactly one
u € H'(G) such that .
D(u,v) =< ¢,v >

holds for all v € H'(G).
(i) There ezists a linear bounded (solution) operator L : H™'/*(8G) — H'(G)

such that
D(L(¢),v) =< ¢,v >

31*
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holds for all p € H='/*(8G) and for all v € H'(G).

Furthermore we have (cf. K. Doppel/B. Schomburg [4], Theorem 11)
Lemma 2.11. Let ¢ € HY*(3G), u € H'(G) such that

(2.3) | /Gvu.vvdp - /ac Yuds Vv e C=(G).

Then we have u € H*(G).

Proof. For the given 1 € H/?(G) there exists a ¥ € H*(G) with |¥ = 1 by
Lemma 2.2. For F := u — ¥ € H'(G) we obtain by (2.3)

/vp.vvdp=/ 1/ﬁds—/ V- Vodp VYo € C=(C).
G 3G G
Partial integration of the last integral gives

/GVF - Vodp = /GAde Yo € C=(G).

Since AY € L*G) the classical regularity theory (cf. J. L. Lions/E. Magenes
{15},Ch.2) shows that F € H*(G) and thereforeu = F + ¥ € H*(G)N

Lemma 2.12. The solution operator £L maps H'/*(8G) continuously into H*(G).

Proof. By the closed graph theorem it suffices to show L(H/%(8G)) C H*(G).
Let ¢ € H'/?(8G). By Lemma 2.10 u := L(#) fulfils

/vu-wdp=/ Juds Vv € H'(G)
G G

where ¥ := ¥ — Tou lies in H'/?(8G) by the Lemma 2.2. Lemma 2.11 gives the
assertion B

Lemma 2.13. The operator £ maps L*(0G) into H¥*(G), i.e. L(L*(8G)) C
H2(G).

Proof. By interpolation theory (cf. J. L. Lions/E. Magenes [15], Theorem 7.7
(p-36) and Theorem 9.6 (p.43)) we have for the Sobolev spaces H*(9G), s € R, and
H*(G),s >0,

(2.4) [H*(8G), H*(8G))j2 = H"**/*(3G), s1 > s2,

(2.5) (H*(G), H*(G))yj2 = H"*/3(G), 51> 5,> 0.
On the other hand Lemma 2.11 and Lemma 2.12 imply
L([HY*(8G), H™V*(DG))1/2) C [HX(G), H' (G2,

so the assertion follows from (2.4) and (2.5), respectively B
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Lemma 2.14. Let ¥ € H'/*(8G), u € H'(G) be such that
(2.6) /G Vu - Vodp = /a _¥uds Vo€ C¥(0):
Then we have u € H¥?*(G) and furthermore Tou € H'(8G).
Proof. For the given ¢ € L?(8G) and a solution u of (2.6) we get
D(u,v) = /;6(1/1 + Tou)ods Vv € H'(G).

Since by Lemma 2.2 ¢ 4+ Tou € L?(3G) we get by Lemma 2.10 L(¢ + Tou) = u, so
Lemma 2.13 implies u € H3/*(G). To continue we get by the properties of the trace
operator T (cf. Lemma 2.2)

To([H*(G), H(G)iy2) C [HY*(G), H'*(G)]yy2
and by (2.4) and (2.5) the second part of the assertion ll

We are able to prove the announced HJ (9Q)-regularity of weak solutions of
Problem C.

Theorem 2.15: For each solution u € H'(Q) of Problem C we have ulsq €
HL _(99).
loc

Proof. Take the domain G as described at the beginning of Section 2.7. Let
u be a solution of Problem C. Because of Theorem 2.9 it is sufficient to prove
u|lsg € H'(8G). Set @t = u|g(€ H'(G)) and define a function 3 : G — C by

unlac on 9G\ (Sr U S)).
It is clear by Lemma 2.2 and Theorem 2.9 that ¥ € L?(dG). Now take a partition

of unity {¢1,42:} C C®(G) with ¢1(p) = 1 for all p € O, where O is an open
neighbourhood of 8G \ (Sr U S1), and supp ¢, N S; = . Let v € C°(G), define
v; = ¢;v, 7 = 1,2 and get by Theorem 2.9
. Vi Vo — AT 077
(2.8) /G @ - Voydp /supp m( Au)vrdp + bupp ¢,naou Trds
= [ wuds,
aG

where the last equality follows from (1.3) and (2.7). On the other hand

/G Vi - Vozdp = /G Vu - V{xgvz)dp,

f on S;
(2.7) Pp=< Au on SFNAG

where xz denotes the characteristic function of G. For the last integral we have by

(1.1), (1.2) and (1.4)

(2.9) [ 7u- Vlgudp,

A/ uv—gx-a-ds+/ f vaxzgds
Sp - S1 .

[, s,
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where the last identity follows again by (2.7). Adding (2.8) and (2.9) we obtain
f Vi - Vodp = / $uds Vv € C2(C).
G oG

Since ¢ € L?*(3G) we can apply Lemma 2.14 and conclude that ulse = itlac €
H'(oG)

3. Weighted regularity in the corners

3.1. In this Section we study the regularity in the points p;, p,. We restrict our
attention to p; and assume without loss of generality p, to be the origin of the R2.
Define in the lower halfspace R? the bounded domain

Gop={pER? |a<p| < b},

where 0 < a < b. If we take a function ¢ € C*(G,;) with supp ¢ C {p€ R? |a <
|p| < b} we obtain by partial integration

2 /G sl = /G (BeB + b0 Ber)dp + /. o (880 = nFa)ds,

where ¢, denotes the tangential derivative along 8G, 4 of ¢ and ¢, the outer normal
derivative of ¢ on 3G, . Another partial integration leads to

Lemma 3.1. For all ¢ € C®(G,;) with supp ¢ C {p € R? | a < |p| < b} we
have )

2/0.,,5 |pzy|2dp = /Ga'°(¢z£¢_w+ byybzz)dp + 2Re /86.,,b bePmds.

If we use the Sobolev seminorms given by

Yo = 3 [

lal=3

[0°¢|*dp, j=1,2,
b

we can rewrite Lemma 3.1 in the following form.

Lemma 3.2. For all ¢ € C*(G,;) with supp ¢ C {p € R?* |a < |p| < b} we
have

19l2c., < 18615, + 1413 o6, + [8nl} o6, ,-

Proof. Since by definition 4[5, , = |$2215.6., + lézyl3G., + léuyl3.6,, Lemma
3.1 implies

1136, < /c‘,,("”"'z +19yl” + 62284y + byybez)dp + 2Re /a our bePruds
/ |A¢f*dp + 2Re / GePneds.
Gap 3Gap

il

The Cauchy-Schwarz inequality gives

|¢|§,c:°_, < ||A¢||g,ca,° + 2||#ello,0G, ol Bnello.a6. ,
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and the assertion follows B
We transfer the situation of Lemma 3.2 to Sobolev space functions.

Lemma 3.3. For all v € H3(G, ) with supp v C {p € R? | a <'|p| < b} we have
|v|2 Gap < "Av”oc + Ivll B8Gap + lvnﬁ.ac,},;

Proof. Fix v € H3(G,s) with supp v C {p € R* | a < |p| < b}. Then there

exists a sequence (@) C C=(Gap) such that Jlv — ¢ills — 0 (k — 00). Now take

7 € CP({p € R?|a < [p| < b}) with p|supp v = 1 and define & = ndx, k € N. For
these functions we have ¢x € C®(G,,), supp ¢x C {p € R?* | a < |p| < b} and

llv = Gells = llrv = ngxlla = lIn(v — x)lls < e(m)llv = dklls — O-
But this implies

(&) v — bkl i <lv - $k~”3 —0 (k = o0)
(3) ||Av—Adllo <2llv—¢klls =0  (k— o0)

and by the trace theorem (using the support properties of v and éc in
{peR*|a<|p| <b})

(i) v - dkhoc.,  —0 (k= o)
(tv)  |vn = (¢x)nhoG., — 0 (k — o0).
Lemma 3.2 and a density argument now give the assertion 8

As a consequence of the preceeding lemmas we obtain the following a priori esti-
mate.

Theorem 3.4. Let p > 0. Then there ezists a constant ¢ = c¢(p) > 0 such that

B, < c(1803g, .., + e, ., + 101306, 0, + 1Vall} 2G,a.,)

holds for all v € H3(G,/2.4,)-

Proof. Fix v € H3(G,j24,). Let £ € C(]p/2, 4p[) such that £ = 1 on [p,2p].
We define 7 = £(| - |) and © = nv. Obviously, 5 € H3(G,) and supp o C {p € R? |
a < |p| < b} with a = p/2,b = 4p. Thus we can apply Lemma 3.3 and obtain

(3.1) 19136, 20s S 186,10, + 151306, /2.0p + 1Pnlt.06,700,
Because of Jv[3 g, ,, < |’7”|2.G‘,,, “= If)lg'Gm‘ we get

lvl36,., S N8%36, ., + 151106,/ + 110G,/

On the other hand we have A = nAv + 2Vy - Vv + Aqu, and therefore for the
right-hand side of (3.1)

”AaIlO,G,,/;'.p S ”nAv”O'Gp/z,ap + 2”VT] . VUHO-Gp/z,op + ”Anvllo-cplz.u -
< c(n)(”Avlloncp/Z,‘p + "vlllvcpn.qa)'
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Furthermore,

Iﬁllvacp/z,cp = ”(nv)‘llouaop/7_‘p = ”7]1)( + 7’”‘”0'30;/2,49
lInewlloac, .0, + InvellosG, 50, < e(Mlvhioc,a,

IA

and analogously
|1~Jn|1,aG,,,_., S c(’])"v"”l'acpli.tp'
Putting altogether the assertion follows il

3.2. We now apply Theorem 3.4 for a special domain. To this end we set for
k € Z (cf. Fig. 5)
Gy = Ga-sg-ss1, Gi = Gyosmtgorer = Gioy UGK U Gy
and finally
Ik = [2"‘,2"‘“] U [_2-k+l’ _2-lc], ik = [2-k-1,2-k+2] U [_2—k+2, _2—k-1]'

Y
lQ—k—lz—k 2—l:+l 2—k+2

/)

Fig. 5

According to Theorem 3.4 we have for p := 1 the following

Corollary 3.5. There ezists a constant ¢ > 0 such that
lol3.00 < € (801G g, + 10 g, + W0l + lIeall )
holds for all v € H¥(Gy).
3.3. We are going to apply Corollary 3.5 to a solution u of Problem C for
sufficiently smooth f. To be precise, we will assume throughout this Section that

f € H3*(S|). Remember that A > 0 is the finite depth of the fluid domain. Let be
£ € C*(]0,00[) a function such that

(3) 0<é(r)<1 ¥relo,oof
(i) &(r)=0 Vr > 1y := max(|p:|, k)/2,

(ii) &(r) =1 Vr € 10, o[
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for a certain ry,0 < ro < r;. Now take a solution u (€ H'()) of Problem C and
define

(3.2) U = ¢u € H'(R?),
where ¢ := £(| - |) € C(R?). Then U is a weak solution of the system
(3.3) AU = uA$p+2Vu -Vé=:& in R?
: _ | ¢f=F on R*
(34) Un= { AU on R-.

Note that & € L?(R?) with ®&(p) = 0 for |p| > ro, F € H}(R*) with F(z) = 0 for
z > ry (cf. Fig. 6).

! A~ - PO =0 ! A~
T7777777 SEER G 777777 S SR

R?

Fig. 6

Furthermore, note that by Lemma 2.7 and Theorem 2.9
Ue H¥G:) YkeZ, UeHGy) VkeZ.

For the function U, introduced above, we now show the following

Lemma 3.6. There is a constant ¢ > 0 such that
(3) T [, P 0eve)idp < ¢ ( S 1o+ 18U () dp
+ [ PV + [ G
R0 A R A
+ [P+ [ P U
+ [ el + [ 1 NUn(p) Pz

+1 2 (23 2
+ [ @l + [ 1))

holds for all € € ]0,1].

+

+

+

+

Proot:. Fix k € Z , set ¢ = 2-* and consider v : Gy — C,p — U(op'). Then
v € H3(Gy) and by Corollary 3.5 we have

(3.6) vlico < e (lAvI5g, + 0l g, + llol} 4, + lleall? 1) -
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Applying the identity 8*v(p’) = o!°lg°U(ap') for all & € N3 to (3.6) we obtain
> [ s1euer)ie

la|=2
< e ([ Nau@fay + [ VU ey
[ ]
1 2d / 2 |2 ’ AYV4 ’
+ [Wenld 4 [ el + [ Wiep)lde
+ /fa‘lU,.,(ap')sz' + /102|U,.(op')|2da:').
0 0

Using the dilation p’ v+ op’ = p we transform the integrals over Go, Go, I to integrals
over Gx, G, Ix and obtain

> [ seu)idp

laj=2
< 1A 2d v 2d
<o ([ Naverd + [ 1VUE)d
. -2 2 2 -1 2
+ [pe e+ [ ol + [ o)
+ /03|Um(p)|2d$ + /a|U,,(p)|2dz).
[k fk
Multiplying the above inequality with o¢, € € ]0, 1[ and using

0<Iip|<2 VpeGi, 0o/2<|p|<40 VYpe Gk

we conclude

37 3 [ U

la|=2

< e ([ w1svere + [ prvve)ie
k. k
«-2 2 c+1 2 1 2
+ L@+ [ U+ [ 1l U )
+ [ WUl + [ ) Pd)
k k

with a generic constant ¢ independent of e. Since each point p € R? lies in at most
three ring sectors Gk we have

Z/ p-32/ 7(p) p—3/ 7(p)dp

keZ keZ

Z/ p)dzr =3 / p)dz =3 (/ 7(p)dz + ./R- T(p)d.’t)

keZ ke€Z

for all 7 € L'(R2)N L'(R™) N L*(R*). Especially, summation over k € Z iri (3.7)
gives the assertion B

and
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Next we show

Theorem 3.7. For all € € ]0,1{ we have

> [, 10U dp < +oo.

lal=2

Proof. First note that by (3.2) U(p) = 0 for all p,|p] > k and by (3.3) & =
AU(p) = 0 for all p, |p| > k. Since U € H'(R?) and ® € L*(R%) we conclude that
the volume integrals on the right-hand side of (3.5) with positive exponent of |p|
are bounded. Analogously we see by (3.4)

Ua(p) =0, p=1(z,0),|z| 2 h.

Since F € H'(R*) by assumption and U € H'(R~) by Theorem 2.15 we see again
that all line integrals on the right-hand side of (3.5) with positive exponent of |p|
are bounded.

So it remains to show that integrals in (3.5) where the exponents of |p| are

negative are finite. The boundary integrals can be estimated with the help of the
famous Hardy inequality (cf. G. H. Hardy et al. [8], A. Kufner [13])

=1 2 2 «+1 2
o, WUz < 2/ [ 16l Ud(p) Pz < oo,

where the last conclusion again follows from Theorem 2.15. Analogously,

S P U Pz < oo

Finally, the remaining integral can be estimated by a generalization of Hardy’s
inequality for domains of arbitrary dimension by V. A. Kondrat’ev (cf. [12], Lemma
4.9). Since U € H'(R?) vanishes for all p,|p| > h there exists for each ¢ € ]0,1[ a
constant ¢ such that

Jo A UG p < eVl ra < 00
and the assertion is completely proved i

Corollary 3.8. Take a test function ¢ € C°(R?) such that p; ¢ supp ¢. Then
for each solution u of Problem C

¥ [ 11607 u(p)dp < +oo

la|=2

holds for all € € ]0,1].

Proof. Without loss of generality we can assume that supp ¢ is contained in
a ball B(0; M) such that M < min(h, [pz|)/4. Then choose a radial symmetric test
function &(|-|) such that &(|p|]) =1 for all p € B(0; M) and supp &(|-|) € B(0;2M).
By Theorem 3.7 we know that | - ['*</29%(£(] - |)u) € L*(R?) for all a,}a| = 2. In
view of the fact that u € H'(Q) the last statement is equivalent to

| . |l+(/7£(| . I)aa‘u (S Lz(Rz_) Ya S Ngy Ial =2.
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Now define the function ¢ by
j= { ¢/&(1-1) on B(0; M)
0

elsewhere
and note that ¢ € C°(R?). Thus
|- 1"*<2(] - N0%u = | - "*/°@¢(1 - 1)0°u € L*(R2) Va € N§,|al =2
and the assertion follows

3.4. Now we are able to prove the following

Theorem 3.9. If f € H¥%(S}), then each solution of Problem C lies in H*((}; p,)
for all € > 0, where p, is defined as in (1.5).

Proof. Without loss of generality we can assume that € € ]0,1[. Now let ¢ €
Cs°(R?) be an arbitrary test function. If supp ¢ N {p;,p2} = 0, then u € H(Q;p,)
by Theorem 2.9 and Lemma 2.7. Assume supp ¢ N {p1,p2} # 0. Let {¢1, 42} be a
partition of unity in C°(R?) with p, & supp ¥, and p; ¢ supp ;. Then there exist
constants ¢, ¢; such that

38) [, 1) dist(p, {p1,p:))**10%u(p)dp

< o [, wle@)lp - p1°u(p) dp
e [ Galo(p)lp - ol 10%u(p) Pdp
R

for all € € ]0,1[ and a € NZ,|a| = 2. Furthermore, since /¢;¢ € CP(R?) for
7 = 1,2, Corollary 3.8 gives

(3.9) > [ Ip = mP* 6 F167u(p) dp < +oo
{a|=2

(3.10) S [ 1= Bl @l 67u(p) Fdp < +oo
la=2

.

for all € € ]0, 1[. Combining (3.8),(3.9) and (3.10) we obtain the assertion B
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