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Weighted LP-Estimates for Pseudo-Differential Operators
with Non-Regular Symbols

J. MARSCHALL

Estimates for pseudo-differential operators with non-regular double symbols a(x,y.f) are pro-
ved in weighted LP- and Sobolev spaces. The results presented here are generalizations of
those by G. Bourdaud [4].
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1. Let w be a positive locally integrable function defined on the n-dimensional Euclidean

number space R™. We say that w € A, i.e. w satisfies Muckenhoupt’s A, condition, if

suP{(l/lBI)/Bw(z) dz ((l/lBl)/Bw_l/(p—l)(z)dl)p_l} .

where the supremum is taken over all balls B C R". Denote by LP(w) the weighted LP-space
and let J? be the Bessel potential of order s € R. The weighted Sobolev space H*P(w) is defined
to be the space of all tempered distributions f such that || fllgsew) = || 7 fllLr(w) < o0 .

Our objevtive is to study the action of pseudo-differential operators of the form

Op(a) f(z) = 1/ [ [ = a(z,,0)1(w) dy e , (M
where f € S(R™), the Schwartz space of rapidly decreasing functions, on L?(w) and H*?(w).
2. Let 0 < 6,,6, <1, 7,7 > 0 and N € N, the set of natural numbers. Denote by Z the

set of integers and by C the set of complex numbers. Define the symbol class SV4, 5,(r1,72, N)
to be the space of all symbols a : R® x R" x R® — C such that for all multi-indices @ € Ng
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with |a] < N it holds that

10g a(z, y,€)| < C(L+ (g

l0ga(, 9, )llan < C(1+ [g]yPrmi-tel @)
0ga(z, - &)llas < C(1 + |g]ybars=lel

18ga(-, - E)llamm < C(1 + [g)orrr+éara=lel

A" denotes the usual homogeneous Hélder-Zygmund space (see Bergh and Léfstrém [3]) and
A™"3 the Hoélder-Zygmund space of product type : f € A™"2 if for some constant C > 0 and
some integers M; > r; and M, > r; it holds that

|AYs AMz f < Clhy|™ |hal™ (3)

where Ai",ll;; denotes the M;-th order difference operator for the i-th factor. Then we have

Theorem 1. Leta € S35 5,(r1,72,N), s€ Randlet N = n+1 and — min{rq, (1 -&)r} <
s < min{ry,(1 - 82)r2}. Then, if 1 < p < 00 and w € A,, Op(a) : H*P(w) — H*P(w) extends

as a bounded operator.

The theorem is proved in Section 4, where we prove an extension of it, Theorem 3. We now
turn to the case s = 0. Let R* be the set of positive real numbers and let w : R* x Rt - R+
and 2 : R* x R* x Rt — R* be two positive functions, which are slowly varying in the

following sense: there exists a constant C > 0 such that
w(ty, t2) < Cw(ny,12), Qta,t2,3) < CQ7y, 72, 73) (4)

whenever 0.57; < t; < 27, i = 1,2,3. Suppose, that the symbol a satisfies for all muiti-indices

a with |a] < n+ 1 the estimates

10ga(z, 4,6)| < C(1+ gyl
1814 88a(z,9,6)] < Cw(lh], 1+ [€]) (1 + |¢])~1e 5)
|82, 02a(z,9,6)] < Cw(lh], 1+ [€]) (1 + |€])~1e
|81,8, Dok, Oga(z,3,6)] < CAIRa, hal, 14+ [E]) (1 + Je]) 7t

Theorem 2. Letw and Q be slowly varying such that {w(277,2%)} € I*(N) and {Q(277,277,
29)} € IY(N). Suppose the symbol a satisfies (5). Then, if 1 < p < 0o and w € A,, the operator
Op(a) : LP(w) — LP(w) is bounded.

Theorem 2 is proved in Section 5. Obviously, both theorems extend earlier results by Coifian

and Meyer (6], Bourdaud (4], Alvarez-Alonso (1], Wang and Li {10}, Miyachi and Yabuta [9) and
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others. The regularity in the £-variable can be further improved. In fact, if we introduce Hélder
regularity in the £-variable, both theorems hold in case N > n. Actually, we prove the theorems

under Bﬁ'mwegula.rity in the £-variable, where Bffw denotes a Besov space.

3. We collect some tools needed for the proofs. First, we need the Littlewood-Paley de-
composition for the weighted Sobolev spaces H*P(w). Choose a smooth non-negative function
¢ : R* — R supported in the annulus {£] 1/4 < [£] < 4} such that 3, 7 e(27k6) = 1, if
€ # 0. Define oy to be pr(€) = (27%€),if k > 1 and @o(€) = 1 = 52, wi(£). If f is a tempered
distribution, denote by Ff the Fourier transform of f and let fi := F~'(¢x Ff). Then it holds

(see Bui [5])
o 1/2
(5 )

k=0

I llto ey ~ (6)

Lr(w)

(a ~ b means that a and b are comparable by some fixed constants).

Lemma 1. Let 1 < p < 00 and w € A,.
(a) Let { fi} be a sequence of functions such that the spectrum of fi (i.e. the support of Ff;)

is contained in the annulus || ~ 2¥. Then for each s € R it holds that

oo 1/2
(Z 4l:a|fkl2)

k=0

WHllHerw) < C

Lo(w)
(b) Let {fi} be a sequeﬁce of functions such that the spectrum of fi is contained in the ball
|€] < €2%. Then for each s > 0 it holds that

Iflgerw) £ C

o 1/2
(E 4*’|fkl2)
k=0

Lr(w)

The unweighted case of part (b) of the lemma is due to Meyer [8]. His proof extends without
any difficulties to the weighted case. Denote by Mf the Hardy-Littlewood maximal operator
defined by Mf(z) = supg(1/|B|) fg|f(y)| dy where the supremum is taken over all balls B with

center z. We need the following vector-valued maximal theorem (see Andersen and John [2]).

Lemma 2. Let 1 < p < o0 and w € Ap. Then for each sequence {fi} of functions it holds

that
o 1/2
(Z |fk|2)

k=0

<C

(i |Mfk|2) "

k=0

l}'(w) Lr(w)

The following lemma is the basic estimate in our theory. For variants of it see Marschall [7].
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Lemma 3. Let the support of the function £ — a(z,y,£) be contained in a fized compact set
independent of x and y. Then for each N > n there ezists a constant Cy > 0 such'that for each
function f and for each R > 1 it holds

|0p(a) f(z)I < Cn sup lla(z.y, R-)lgp M () -

Proof. Let A(z,y,z — y) = 1/(2n)" [e'==¥)€a(z,y,£)df be the kernel of Op(a). Let
¥ = (278, if k€ Z. Then one has

op(@ @) = |[ Kzwz-nfG)ay
< ¥ [IK@uz- vt - 9w dy
keZ
< ¢ (Z 2kn sup |]\'(2, ¥, T = y)'l./)k(l' - y)l) Mf(.’t) .
kZ 7

Denote by F¢ the Fourier transform with respect to the ¢-variable and let R = 2/. Then it
follows that

|K(z,9,2)¥(2)] < ||F7 (e Fea(z,y, )l
2| F (e Fea(z, v, 28)) | -

Now, one has for each ¢ > 0
oo . .
2 2040 sup || F7 (9541 Fea(2,9,2)) e < Cesupsup ¥ F7 (85 Fea(z, 3,2l
j=~1 v y j>0
and since ||[F~1y; llz = J|F~ 40|11 we get the estimate
-1 )
> 2 sup ||F7 (%4 Fa(z, 3, 24))l|r < Csuplla(z,y,2")1ps -
j=—00 v y
The lemma is now an easy consequence of the definition of the Besov space Bl’"’m (see Bergh and
Léfstrom [3]) B

Denote by F; (resp. F,) the Fourier transform with respect to the z-variable (resp. y-variable)

and define

a(z,y,£)w(€)
" F N (piFea(z,y,6))eu(8)
F Y (wiFya(z,9,6))0(£)
F7VF N (9i ® pi Fe Fya(z, 9, 6))ei(€) -

ak(I, Y, E)

ai,~.k(z7 Y, E)

a.;k(z,9,§)

ai,j,k(xi Y, f)
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We say that a € §? 61,6, (T1, 72, N), if for each 1,5,k € Ng one has uniformly in (z,y)

”ak(zry12k')“8ff°° < C
las, k(2,9 2%l < C2n=in -
la.se(z,y, 2% )Mgy < C2Hora=im

< C2kainthr)-in-jr

llai (2, 9,25 )llgy_

It is an easy conseqence of the Littlewood-Paley decomposition for Holder-Zygmund skpaces of
product type-that the inclusion 7 5. (ri,72, N) € 5‘?_61_62(r1,r2,N) holds (see Marschall [7],

Theorem 1.8) . We prove the following theorem, which includes Theorem 1.

Theorem 3. Let a € 5‘?‘51_62(r1,r2,N), s € Rand let N > n and —min{ry,(1 - )} <
s < min{ry,(1 — 82)r2}. Then, if 1 < p < oo and w € Ap, Op(a): H>P(w) - H*P(w) extends

as a bounded operator.
For the proof we need the following lemma, which belongs to the folclore.

Lemma 4. The following statements are true.
(a) If T < 0, then (329 4% (-0 la;1))"/? < C(ZR20 4% lar|?)'/?
(b) If 7 > 0, then (32045 (X524 la;1)%)'/? < C(320 4% |axl)!/? .

4. Proof of Theorem 3. STep 1. Let f € S(R™). We decompose Op(a)f into 9 parts by
using the Littlewood-Paley decomposition of the symbol a and of f. Let us denote by fi the

part of f with spectrum contained in the annulus |£| ~ 2¥. Observe also that

FORO)90) = i [ [ Fepla - €.6 - €.6) Fa(¢) dc de (®)

holds for any symbol & with compact support in the £-variable and any ¢ € S(R™). In this
formula, the spectrum of Op(b) g is related with the spectrum of b with respect to the z-variable
and with £ whereas the spectrum of g is related with the spectrum of b with respect to the

y-variable and with £.

STEP 2. Let
oo k-4k-4

Af=33 ZOP(G-;k)fk

k=0 i=0 ;=0
Since || F~Y(Z5d i)l = [|F~Ywoll,1, we obtain from Lemma 3
k-4 k-4 i
35" Oplaiik) fu(z)

i=0 j=0

33  Analysis, Bd. 10, Heft 4 (1991)
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k—d4 k=4
< Csup 2 Z a;jx(z, y,2" Mfk'(z)
i=0j=0 BlNoo
k 4k-4 )
< CSUP// > iz — 21)pi(y ~ 22) "ak(zh22y2k')||sywdzld22 Mfi(z)
=0 j=0 '
< Csrup ”ak(zy y12k')”Bl""°° Mfk(z) < CMik(I) .

The spectrum of 3"%=4 %24 Op(ai ;&) fi is contained in the annulus [5] ~ 2%, hence by Lemmata
1= 0 ’] 12y n

1 and 2

A

[ fllaarw)y £ C

o W2
(Z 4"’|Mfa|2)

k=0
00 ) 1/2
C (Z 4k.|fk|2)
k=0

STEP 3. Since the proofs of the other estimates are similar, we are brief. Let

LP(w)

IA

< ClfllHor(w) -
Lo (w)

oo k—4 k+3 k46 - oo k-4 o0 .
Af =330 3 Op(aizu) (Z f:) v A =303 D Op(aie) fi -
k=01i=0 j=k-3 =0 k=0 ¢=0 j=k+4

Then we obtain for s < (1 — §;)r,, using Lemma 4(a),

o k46 ~ 2\ 1/2
NA2fllerw) < C|| S ake-(-&)2) (ZMfI))
k=0 =0

LP(w)
<c < C“f”H"(‘-‘z)'z'V(w)
LP(w)

o 1/2
(2 4k(s—(l—62)rg)|f'k|2)

k=0

and for s > —r3, using Lemma 4(b)

00 00 . . 2 1z
s fllgera-taimnyy < C || 34+ | 3™ 2712 M
k=0 =k
Lr(w)
o 1/2
< (Z 4k’|fk|2) < Clifllaer(w) -
k=0 Lr(w)
STEP 4. Let us define
oo k43 k-4 -
Af = Z Z > Oplaijix) fe
k=01=k-3 ;=0
o k+3 k43 k+6
a5 = £ T3 Oplas) (zf,),
k=01=k J=k-
oo k43 0
Aef = Y Op(auk)f;-
k=01=k-3 j=k+
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Since the spectrum of }:f‘:,f_p, zf._'." Op(a; ;i) fi is contained in the ball |5| < c2¥, we use Lemma
1(b) and obtain

A

HAafllgorc-ompw) < Clfllospey, if s> —(1 - 8)ry,
lAs fllppes-s0mipqwy < Clifllgo-0-s2mapu) > if = (1=61)r1 <5 < (1-83)r2,
C”f“”v.p(w), lf - min{rg,(l - 61)7’)} <s.

IA

N A6 Sl fre+t1-60r1 401-02)r2p ()

STeP 5. Finally define

o oo k-4
Arf = 33 Y 0p(ai k) fr s
k=01i=k+4 ;=0
0 oo k+3 k+6
Asf = Z Z Z OP(“: J,k) (z fl) y
k=01i=k+4 j=k-3
Agf = Z z Op(“uk)f) .
k=01i=k+4 y=k+4

The spectrum of 347" 2 Op(a; ;) gk is contained in the annulus |n| ~ 2°. Therefore, we get

Az flltorq)y < Cllfllpe-c-sripy, if s <11,y
”ASfHH"’(W) < C”f"H'-(‘-‘l)'1-(1-‘2)'2-P(w) , if s <min{ry, (1= éy)r2},

”Agf"”'-p(w) < C”f”}p.p(w) ,andincase —rp < s< 1.

Since 35, Aif = Op(a) f, the proof is complete B

5. Proof of Theorem 2. STEP 1. We decompose Op(a) f into 4 parts. Choose a natural
number L such that (4) holds with C = 22L and define

1 &Kt (&
(€)= 2@D) ga—g[ (Z;{j <Po(f))
and P(€) = ¥(297%€), k € No. Note that ¢4 (0) = 1 and [ |z|~2%|F~14(2)|dz < oo . Then we
decompose Op(a) f as follows. Let us set

o) = F7UF; Y (x ® i Fe Fya)pr o) = FVF7 (e ® (1 — i) Fe Fya)pr
af) = F7UF7N((1 - ) @ Y Fe Fya)pr , ol = F7VF7Y((1 - ) ® (1 - $) Fo Fya)px -
Then it holds

Op(a) f = 3- (Op(af") ji + Op(a{?) f + Op(af™) fi + Op(al™) 1) .
k=0

STep 2. Similarly to Step 2 in the proof of Theorem 3 one gets

(a{") fi < Cllflleoqw) -

LP(w)

REE
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STEP3. From [ F~'yx(z)dz = 9x(0) = 1 we get
(@9, = [ [P0tz - 2)F 0y = 22)(a(o1,0,€) = oo, 22, €)n(6) dndza
and hence
loP(z, 5,2 Mgy, < € [IF n(e(lel, 2 dz

C/IF"w(z)|w(2"‘|z|,2")dz .

IA

It follows by induction that w(2/=%,2%) < 22Lilwu(2-*,2%), j € Z and therefore
Iz, 2llsy, < €L 2 [Pl ds w2t 2)
e lz|~2)
i€Z
C [ maa{lal=2%, 1sFHF~ ()| dz w(2, 24
Cw(27k,2%) .

IN

A

Since the spectrum of Op al? f is contained in the annulus || ~ 2¥, we get
k

oo 1/2
(Z w(2-",2‘<)2) Mf

k=0

<C
LP(w)

< Cllfller(w) -
Lr(w)

> opa{®) f
k=0

STEP 4. Analoguosly we get

©0 o 1/2 o } 1/2
> 0p(a®) fi <C (Z w(2™, 7-*)2) (Z(Mfk)z) < ClifllLr(w)
k=0 Lr(w) k=0 k=0 LP(w)
and - -
uz op(a?) f < cYy @k 275 29M flirw) < Cllfllzow) -
k=0 LP(w) k=0

This completes the proof of the theorem Wl

8. Let us add some remarks concerning the sharpness of the theorems. The necessity of
—~(1 - é1)r1 < s < r was shown by Bourdaud [4] for symbols independent of y. By duality, it
follows that —ry < s < (1—§;)r2 is necessary, too. Wangand Li [10] have constructed a counter-
example to the case N < n. The necessity of {w(27*,2%)} € I? goes back to Coifman and Meyer
[6]. They used a modulus of continuity w(t) independent of {2, i.e. functionsw : R* — R* which
are monotone, increasing and concave and such that w(0) = 0. Then w satifies w(r) < 2w(t),
if 7 < 2. In particular, w is slowly varying and it satisfies Tw(t) < w(7t),if 0 < 7 < 1 and
w(t) Sw(rt),if 7> 1.

We prove the necessity of the condition {€2(27%,27%,2%)} € {!. Let Q be slowly varying and

suppose in addition that the functions t; — §Q(t,¢2,13), i=1,2 are moduli of continuity, an
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assumption which is reasonable. Let Q := Q(27%,27%,2%). We suppose that n = 1 and define

a(z,

1,6) =22, le‘zk("”)cpk(f) . Our remarks on moduli of continuity imply that the symbol

a satisfies the inequalities (7) (with w(]h|,2¥) = Q(|h|,27*%,2%)). We may suppose that p(£) = 1
on (1/2,2). If f € S(R) has its spectrum in (1/2,2), then it follows that Op(a) f = 3_52, Q% f.
Hence, if {Q} € !, Op(a) f does not exist as a distribution.
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