Some Remarks on Trigonometric Interpolation on the *n*-Torus

W. SICKEL

Let \mathbf{T}^n be the *n*-torus and $(I_i f)_{i=0}^{\infty}$,

$$I_{j}f(x) = \sum_{k_{1}=-j}^{j} \dots \sum_{k_{n}=-j}^{j} f\left(\frac{2\pi k}{2j+1}\right) \prod_{i=1}^{n} \frac{\sin\left(\frac{2j+1}{2}\left(x_{i}-\frac{2\pi k_{i}}{2j+1}\right)\right)}{(2j+1)\sin\frac{1}{2}\left(x_{i}-\frac{2\pi k_{i}}{2j+1}\right)} \quad \left(\begin{array}{c} x = (x_{1},\dots,x_{n}) \in \mathbb{R}^{n} \\ k = (k_{1},\dots,k_{n}) \in \mathbb{Z}^{n} \end{array} \right)$$

the sequence of Lagrange interpolating polynomials. Then we give a complete characterization of the set of functions f with

$$\left(\sum_{j=1}^{\infty} \left[j^{s} \| f - l_{j} f | L_{p}(\mathbf{T}^{n}) \| \right]^{q} \right)^{1/q} < \infty \qquad \text{if } 1 < p < \infty, 0 < q \le \infty, s > n/p$$

and

$$\left\|\sum_{j=1}^{\infty} \left[j^{s} \left| f(x) - I_{j} f(x) \right]^{q}\right|^{1/q} \left| L_{p}(\mathbf{T}^{n}) \right\| < \infty \quad \text{if } 1 < p < \infty, \ 0 < q \le \infty, \ s < n/p$$

in terms of Besov-Triebel-Lizorkin spaces on \mathbf{T}^{n} .

Key words: Periodic spaces of Besov-Triebel-Lizorkin type, Lagrange interpolating polynomials, approximation of functions

AMS subject classification: 41A25, 42A15, 46E15

0. Introduction

As usual, \mathbb{R}^n denotes the Euclidean *n*-space, \mathbb{Z}^n the set of all lattice points having integer components, \mathbb{N} the set of all natural numbers and \mathbb{N}_0 the set of all non-negative integers. The aim of the paper is to show that the Besov-Triebel-Lizorkin spaces on the *n*-torus \mathbb{T}^n can be completely characterized by the sequence $(I_j f)_{j=0}^{\infty}$ of Lagrange interpolating polynomials. Here $I_i f$ is given by

$$\sum_{k_{1}=-j}^{j} \dots \sum_{k_{n}=-j}^{j} f\left(\frac{2\pi k}{2j+1}\right) \prod_{i=1}^{n} \frac{\sin\left(\frac{2j+1}{2}x_{i}-k_{i}\pi\right)}{(2j+1)\sin\frac{1}{2}\left(x_{i}-\frac{2\pi k_{i}}{2j+1}\right)}, \quad x = (x_{1},\dots,x_{n}) \in \mathbf{T}^{n} \quad (0.1)$$

It turns out that for periodic continuous functions f the following equivalences are true (1 n/p):

$$\begin{split} f \in B_{p,q}^{s}(\mathbf{T}^{n}) & \Leftrightarrow \quad \left(\sum_{j=1}^{\infty} \left[j^{s-1/q} \left\| f - I_{j}f \left| L_{p}(\mathbf{T}^{n}) \right| \right]^{q} \right)^{1/q} < \infty \right) & \qquad (0 < q \le \infty), \\ f \in F_{p,q}^{s}(\mathbf{T}^{n}) & \Leftrightarrow \quad \left\| \left(\sum_{j=1}^{\infty} \left[j^{s-1/q} \left| f(x) - I_{j}f(x) \right| \right]^{q} \right)^{1/q} \left| L_{p}(\mathbf{T}^{n}) \right\| < \infty \quad (1 < q < \infty). \end{split}$$

The main tools of proof used here are the characterization of the underlying function spa-

ces via approximation and the L_p -stability of trigonometric polynomials t of degree $t \le j$ expressed by the following inequalities:

$$c_{i}\left(\frac{1}{(2j+1)^{n}}\sum_{k_{1}=-j}^{j}\cdots\sum_{k_{n}=-j}^{j}\left|t\left(\frac{2\pi k}{2j+1}\right)\right|^{p}\right)^{i/p} \leq ||t||L_{p}(\mathbf{T}^{n})|| \leq c_{2}\sum_{k_{1}=-j}^{j}\cdots\sum_{k_{n}=-j}^{j}\left|t\left(\frac{2\pi k}{2j+1}\right)\right|^{p}\right)^{i/p} (0.2)$$

 $(1 for some constants <math>c_1, c_2 > 0$, independent of t and j (cf. A. Zygmund [19], P.1. Lizorkin and D.G. Orlovskij [4]).

The paper is organized as follows:

After collecting some necessary informations about Besov-Triebel-Lizorkin spaces on \mathbf{T}^n in the first section, Section 2 deals with our main result concerning the characterization of the function spaces. Therefore we investigate the uniform boudedness of l_j in $\|\cdot\|L_p(\mathbf{T}^n)\|$, 1 . As a complement and more or less to show the great similaritybetween approximation via partial sums and approximation via Lagrange interpolating $polynomials the aliasing error <math>f - I_j f$ is also treated in $\|\cdot\|L_p(\mathbf{T}^n)\|$. Finally, in Section 3 we deal with approximation in stronger norms than $\|\cdot\|L_p(\mathbf{T}^n)\|$, for instance in $\|\cdot\|W_p^m(\mathbf{T}^n)\|$.

1. Besov-Triebel-Lizorkin spaces

1.1 Notations and definitions. The *n*-torus \mathbf{T}^n may be represented by the set

$$\{x \in \mathbb{R}^n: -\pi \le x_i \le \pi \ (j = 1, ..., n)\},\$$

where opposite sides are identified. D_{π} and D'_{π} denote the set of all complex-valued infinitely differentiable functions on \mathbf{T}^n and its dual space, respectively. Furthermore we put

$$\hat{f}(k) = (2\pi)^{-n} f(e^{-ikx}) \quad (k \in \mathbb{Z}^n, f \in D_{\pi}').$$

Then any $f \in D'_{\pi}$ can be represented by its Fourier series

$$f = \sum_{k \in \mathbb{Z}^n} \hat{f}(k) e^{ikx} \text{ (convergence in } D_{\pi}^{\prime})$$

(cf. H.-J. Schmeißer and H. Triebel [14]). The space of continuous functions on \mathbf{T}^n is denoted by $C(\mathbf{T}^n)$, the space of *p*-th power integrable functions by $L_p(\mathbf{T}^n)$. If there is no confusion possible we drop \mathbf{T}^n in notations.

Let ψ be an infinitely differentiable function with the properties

$$\psi(x) = 1 \text{ if } |x| \le 1 \text{ and } \psi(x) = 0 \text{ if } |x| \ge 3/2.$$
(1.1)

Further we put

$$\varphi_{0}(x) = \psi(x), \ \varphi_{1}(x) = \psi(x/2) - \psi(x), \ \varphi_{1}(x) = \varphi_{1}(2^{-l+1}x) \ (l = 2, 3, ...).$$
(1.2)

Hence, we have

$$\sum_{=0}^{\infty} \varphi_I(x) = 1 \quad (x \in \mathbb{R}^n)$$
(1.3)

Definition: Let $0 \le q \le \infty$ and $-\infty \le s \le \infty$. (i) Let $1 \le p \le \infty$. Then

$$B^{s}_{p,q}(\mathbb{T}^{n}) = \left\{ f \in D^{\prime}_{\pi} : \left\| f \left| B^{s}_{p,q} \right\| = \left(\sum_{l=0}^{\infty} 2^{lsq} \right\| \sum_{k \in \mathbb{Z}^{n}} \varphi_{l}(k) \hat{f}(k) e^{ikx} \left| L_{p} \right\|^{q} \right)^{1/q} < \infty \right\}.$$

(ii) Let 1 . Then

$$F_{p,q}^{s}(\mathbf{T}^{n}) = \left\{ f \in D_{\pi}^{\prime} : \left\| f \left| F_{p,q}^{s} \right\| = \left\| \left(\sum_{l=0}^{\infty} 2^{lsq} \left| \sum_{k \in \mathbb{Z}^{n}} \varphi_{l}(k) \hat{f}(k) e^{ikx} \right|^{q} \right)^{1/q} \left| L_{p} \right\| < \infty \right\}.$$

Remark 1: All spaces defined above are quasi-Banach spaces (Banach spaces if $q \ge 1$). They are independent of the special choice of ψ in (1.1) (equivalent quasi-norms). These periodic spaces of Besov-Triebel-Lizorkin type are extensively investigated in the book by H.-J. Schmeißer and H. Triebel [14].

Remark 2: The above definition can be understand as a uniform approach to different types of classical function spaces. In particular, we have

(i)
$$F_{p,2}^{o} = L_{p}$$

- (ii) $F_{n,2}^{m} = W_{n}^{m}$ (Sobolev spaces) if $m \in \mathbb{N}$,
- (iii) $B_{p,q}^{s} = \Lambda_{p,q}^{s}$ (Besov-Lipschitz classes) if s > 0, and
- (iv) $B_{m}^{s} = C^{s}$ (Hoelder-Zygmund classes) if s > 0

(cf. H.-J. Schmeißer and H. Triebel [14]).

Remark 3: Of some importance are the embedding relations

$$(B_{p,q}^{s} \cup F_{p,q}^{s}) \hookrightarrow L_{p} \text{ if } s \ge 0$$

$$(1.4)$$

and

$$(B_{p,q}^{s} \cup F_{p,q}^{s}) \hookrightarrow C \text{ if } s > n/p$$
(1.5)

(cf. H.-J. Schmeißer and H. Triebel [14]).

1.2 Characterization via approximation. The spaces defined above are well-adapted to problems in approximation theory. To show this we recall the following facts. Let

$$T_j = \left\{ t \in D'_{\pi} : \hat{t}(k) = 0 \text{ for all } k \in \mathbb{Z}^n, |k| > j \right\} (j \in \mathbb{N}_0).$$

Let X be an appropriate quasi-Banach space. Then we put

$$E_j(f,X) = \inf_{\substack{g \in T_j}} \|f - g|X\| \quad (j \in \mathbb{N}_0).$$

Proposition 1: Let $0 < q \leq \infty$.

(i) Let $1 \le p \le \infty$ and s > 0. Then

$$B_{p,q}^{s} = \left\{ f \in L_{p} \colon \left\| f \left| L_{p} \right\| + \left(\sum_{l=0}^{\infty} \left[(1+j)^{s-1/q} E_{j}(f,L_{p}) \right]^{q} \right)^{1/q} < \infty \right\}$$

in the sense of equivalent quasi-norms.

(ii) Let

$$S_{j}f(x) = \sum_{|k_{1}| \leq j} \dots \sum_{|k_{n}| \leq j} \hat{f}(k)e^{jkx} \quad (k = (k_{1}, \dots, k_{n}), j \in \mathbb{N}_{0}).$$
(1.6)

We can replace $E_i(f, L_p)$ by $||f - S_i f| L_p||$ in (i) if 1 .

(iii) Let

$$V_j f(x) = \sum_{k \in \mathbb{Z}^n} \psi(j^{-1}k) \hat{f}(k) e^{ikx} \quad (j \in \mathbb{N}),$$
(1.7)

where ψ is the function from (1.1). Then $E_j(f, L_p)$ can be replaced by $||f - V_j f| L_p ||$ in (i).

Proposition 2: Let $1 < p, q < \infty$ and s > 0. Then

$$F_{p,q}^{s} = \begin{cases} \exists \{g_j\}_{j=1}^{\infty}, g_j \in T_j \text{ for } j \in \mathbb{N}, \text{ such that } g_j \rightarrow f \text{ in } L_p \text{ and} \\ \|g_1|L_p\| + \left\| \left(\sum_{j=1}^{\infty} [j^{s-1/q}|f(x) - g_j(x)]\right]^q \right)^{1/q} |L_p\| < \infty \end{cases}$$

in the sense of equivalent norms. Moreover, we can choose $g_j = S_j f(j \in \mathbb{N})$.

Remark 4: Proofs of Propositions 1 and 2 may be found in H.-J. Schmeißer and H. Triebel [14] and W. Sickel [15] (cf. also H.-J. Schmeißer and W. Sickel [12, 13]).

Remark 5: For later use we mention also that $(0 < q < \infty, s \ge 0)$

$$\|f - S_j f | B_{p,q}^s \| \xrightarrow{j \to \infty} 0 \text{ if } 1 \le p \le \infty \text{ and } \|f - V_j f | B_{p,q}^s \| \xrightarrow{j \to \infty} 0 \text{ if } 1 \le p \le \infty.$$

These are consequences of

$$\hat{f}(k) - \hat{S_jf}(k) = 0$$
 if $|k_i| < j$ $(i = 1,...,n)$ and $\hat{f}(k) - \hat{V_jf}(k) = 0$ if $|k| < j$

and of

$$\sup_{j} \|S_{j}f|L_{p}\| \leq c \|f|L_{p}\| (1$$

2. Trigonometric interpolation

We start with a uniform lattice on \mathbf{T}^n , characterized by the nodes

$$x^{r} = \left(x_{1}^{r}, \dots, x_{n}^{r}\right) = \left(\frac{2\pi r_{1}}{2j+1}, \dots, \frac{2\pi r_{n}}{2j+1}\right) \left(-j \leq r_{j} \leq j \left(j=1,\dots,n\right), j \in \mathbb{N}_{0}\right), r \in \mathbb{Z}^{n}.$$

Let

$$Q_m^j = \left\{k \in \mathbb{Z}^n: -j - 1/2 \le k_i - m_i(2j+1) \le j + 1/2 \ (i = 1, \dots, n)\right\} \ \left(m \in \mathbb{Z}^n, j \in \mathbb{N}_0\right)$$

and $f \in C$. Then the function $I_j f$ defined by (0.1) is the unique solution of

$$g(x^r) = f(x^r), r \in Q_0^J$$
 and $\hat{g}(k) = 0$ if $k \in Q_0^J$.

Suppose additionally

$$\sum_{k \in \mathbb{Z}^n} |\hat{f}(k)| < \infty.$$
(2.1)

Then we can rewrite

$$I_{j}f(x) = \sum_{in \in \mathbb{Z}^{n}} \left(\sum_{k \in Q_{m}^{j}} \hat{f}(k) e^{ikx} \right) e^{-im(2j+1)x} \quad (j \in \mathbb{N}_{o})$$
(2.2)

(cf. A. Zygmund [19]).

Remark 6: Formula (2.2) shows the great similarity between Lagrange polanomials and Whittaker's cardinal series. The latter one is defined as

$$I_j^*f(x) = \sum_{k \in \mathbb{Z}^n} f\left(\frac{2\pi k}{2j+1}\right) \prod_{i=1}^n \frac{\sin\left(\frac{2j+1}{2}x_i - k_i\pi\right)}{\left(\frac{2j+1}{2}x_i - k_i\pi\right)} \quad (x \in \mathbb{R}^n).$$

We have the identity

$$I_j^*f(x) = \sum_{k \in \mathbb{Z}^n} (F^{-1}[\chi_m^j Ff])(x) e^{-im(2j+1)x}$$

where F, F^{-1} are the Fourier transform and its inverse, respectively, and χ_m^j denotes the characteristic function of Q_m^j (cf. P.L. Butzer [3], W. Sickel [16]).

Remark 7: If we put $A_{\pi} = \{f \in D_{\pi}': \sum_{k \in \mathbb{Z}^n} |\hat{f}(k)| < \infty\}$, then $B_{2,1}^{n/2} \hookrightarrow A_{\pi} \hookrightarrow B_{\infty,1}^0$ (cf. H. Triebel [17]).

In our investigations a crucial role is played by the following

Lemma 1: Let $1 \le p \le \infty$. (i) There exists a constant c such that

$$\|I_i f | L_p\| \le c(1+j)^{-n/p} \|f | B_{p,1}^{n/p} \| \ (j \in \mathbb{N}_0)$$
(2.3)

holds for all $f \in B_{p,1}^{n/p}$ with $\hat{f}(k) = 0, k \in Q_0^j$.

(ii) There exists a constant c such that

$$\|f - I_j f |L_p\| \le c(1+j)^{-n/p} \|f |B_{p,1}^{n/p}\| \quad (j \in \mathbb{N}_0)$$
(2.4)

holds for all $f \in B_{p,1}^{n/p}$.

Proof: First, note that I_j is a projection, that means $I_j f = f$ for all f with $\hat{f}(k) = 0$, $k \in Q_0^j$. Now we split

$$f - I_j f = f - S_j f + I_j (S_j f - f).$$
(2.5)

To prove (2.4) we can use Proposition 1 and (2.3). So, it remains to prove (2.3). Let $\{\varphi_l\}$ be the system defined in (1.2). We put $f_l(x) = \sum_{k \in \mathbb{Z}^n} \varphi_l(k) \hat{f}(k) e^{ikx}$ $(I \in \mathbb{N}_0)$. Let $2^t \le j \le 2^{t+1}$. The properties of ψ guarantee $I_j(S_j f - f) = \sum_{l=t-1}^{\infty} I_j(S_j f_l - f_l)$ in D'_{π} . Applying (0.2), using the interpolation property of $I_j f$, $I_j f(k) = 0$ if $k \in Q_0^j$ and $\hat{f}_j(k) = 0$ if $|k| > (3/2)2^{l-1}$ we find

$$\begin{split} \|I_{j}(S_{j}f_{l}-f_{l})|L_{p}\| &\leq c(1+j)^{-n/p} \Big(\sum_{k \in Q_{0}^{j}} \left|I_{j}(S_{j}f_{l}-f_{l})\frac{2\pi k}{2j+1}\right|^{p}\Big)^{1/p} \\ &\leq c(1+j)^{-n/p} \Big(\sum_{k \in Q_{0}^{j}} \left|(S_{j}f_{l}-f_{l})\frac{2\pi k}{2j+1}\right|^{p}\Big)^{1/p}, \end{split}$$
(2.6)

where c is independent of j, l, and f. Next we pick out a sequence of meshes $\{M_i\}$ such that

$$\left\{\left(\frac{2\pi k}{2j+1}\right): k \in \mathbb{Z}^n\right\} \subset M_l = \left\{\left(\frac{2\pi k}{2M_{l+1}}\right): k \in \mathbb{Z}^n\right\} \ (l = t - 1, \dots),$$

where $(3/2)2^{l-1} \leq M_l \leq c 2^l$ (c independent of l and t) holds. According to M_l we apply

again (0.2). This leads to

$$\left(\sum_{k \in Q_0^j} \left| (S_j f_l - f_l) \left(\frac{2\pi k}{2j+1} \right) \right|^p \right)^{1/p} \le c 2^{ln/p} \|S_j f_l - f_l\| L_p \| \le c 2^{ln/p} \|f_l\| L_p \|.$$
(2.7)

Putting (2.7) into (2.6), summing up from t - 1 to ∞ the desired inequality (2.3) follows

Remark 8: Using Remark 5 we can sharpen (2.4) a little bit. We have

$$j^{n/p} \| f - I_j f | L_p \| \to 0 \text{ if } j \to \infty$$
(2.8)

for any $f \in B_{p,1}^{n/p}$. In case n = 1 this was observed first by K.I. Oskolkov [5].

Remark 9: In the one-dimensional case J. Prestin [7 - 10] has proved a result similar to (2.8), but with $B_{p,1}^{1/p}(\mathbf{T}^1)$ replaced by the set of functions with bounded variation.

As a consequence of Lemma 1 one obtains some estimates of the approximation error in $\|\cdot|C\|$.

Lemma 2: Let
$$p < \infty$$
 and $s > 0$.
(i) For any $f \in B_{p,1}^{n/p} \cup A_{\pi}$ there holds
 $\|f - I_j f\| C\| \to 0$ as $j \to \infty$. (2.9)

(ii) There exists a constant c such that

$$\sup_{j \in \mathbb{N}_{0}} (1+j)^{s} \left\| f - I_{j} f \left| C \right\| \le c \left\| f \left| B_{p,\infty}^{s+n/p} \right\| \text{ for all } f \in B_{p,\infty}^{s+n/p}.$$

$$(2.10)$$

(iii) There exists a constant c such that

$$\sup_{j \in \mathbb{N}_{0}} (1+j)^{s} (\log(1+j))^{-n} \| f - I_{j} f \| C \| \le c \| f \| C^{s} \| \text{ for all } f \in C^{s} = B_{\infty,\infty}^{s}.$$
(2.11)

Proof: (i) Let $f \in A_{\pi}$. Then (2.9) follows from (2.2) since

 $\left|f(x)-I_{j}f(x)\right|\leq \sum_{|m|\geq 0}\sum_{k\in Q_{m}^{j}}\left|\hat{f}(k)\right|.$

Let $f \in B_{p,1}^{n/p}$. Then we use the decomposition

$$f - I_j f = f - V_{j/2} f + I_j (V_{j/2} f - f), \qquad (2.12)$$

with $V_{j/2}$ defined in (1.7). From the embeddings $B_{p,1}^{n/p} \hookrightarrow B_{\infty,1}^{\circ} \hookrightarrow C$ (cf. H.-J. Schmeißer and H. Triebel [14]) and Remark 5 we know that

$$\|f - V_{j/2}f\|C\| \to 0 \text{ as } j \to \infty.$$
(2.13)

Next we apply the Nikol'skij inequality (cf. H.-J. Schmeißer and H. Triebel [14]) and (2.3). This yields

$$\|I_{j}(V_{j/2}f - f)|C\| \leq c(1+j)^{n/p} \|I_{j}(V_{j/2}f - f)|L_{p}\| \leq c \|f - V_{j/2}f|B_{p,1}^{n/p}\|.$$

Using again Remark 5 we find

$$\|I_j(V_{j\prime 2}f - f)|C\| \to \text{as } j \to \infty.$$
(2.14)

Now, (2.13) and (2.14) complete the proof of (2.9).

(ii) We use the splitting stated in (2.12), Proposition 1,-and (2.3). This yields

$$\|f - I_j f \|C\| \le \|f - V_{j/2} f \|C\| + c \|f - V_{j/2} f \|B_{p,1}^{n/p}\| \le c(1+j)^s \|f\|B_{p,\infty}^{n/p+s}\|$$

For the last step we have used on the one hand the embedding $B_{p,\infty}^{n/p+s} \hookrightarrow B_{\infty,\infty}^s = C^s$ and on the other hand Proposition 3 (see Section 3). This proves (2.10).

(iii) Since the first part of inequality (0.2) remains true if p = 1 (cf. A. Zygmund [19]) we obtain

$$\begin{split} |I_j f(x)| &= \left(\frac{1}{2j+1}\right)^n \left| \sum_{r \in O_0^j} \sum_{k \in O_0^j} f(x^r) e^{ik(x-x)^r} \right| \\ &\leq \sup_{r \in O_0^j} |f(x^r)| \left(\frac{1}{2j+1}\right)^n \sum_{r \in O_0^j} \left| \sum_{k \in O_0^j} e^{ik(x-x)^r} \right| \\ &\leq c \left\| f \left| C \right\| \left\| \sum_{k \in O_0^j} e^{ikx} \left| L_1 \right\| \leq c \left(\log(1+j)\right)^n \left\| f \left| C \right\| \right\| \end{split}$$

Using this with $f - V_{y/2}f$ instead of f, the desired inequality follows from (2.12) as in (ii)

The main result of this paper is formulated in the next

Theorem 1: Let $1 \le p \le \infty$ and $s \ge n/p$. (i) Let $0 \le q \le \infty$. Then

$$B_{p,q}^{s} = \left\{ f \in C \colon |f(0)| + \left(\sum_{j=0}^{\infty} \left[(1+j)^{s-1/q} \| f - I_j f | L_p \| \right]^q \right)^{1/q} < \infty \right\}$$

in the sense of equivalent quasi-norms.

(ii) Let $1 < q < \infty$. Then

$$F_{p,q}^{s} = \left\{ f \in C \colon |f(0)| + \left\| \left(\sum_{j=0}^{\infty} \left[(1+j)^{s-1/q} |f(x)|^{q} \right]^{1/q} \right| L_{p} \right\| < \infty \right\}$$

in the sense of equivalent norms.

Proof: (i) Comparing the above characterization of $B_{p,q}^{s}$ with Proposition 1 it remains to prove that

$$|f(0)| + \left(\sum_{j=0}^{\infty} \left[(1+j)^{s-1/q} \|f - I_j f | L_p \| \right]^q \right)^{1/q} \le c \|f| B_{p,q}^s \|$$
(2.15)

with c independent of f. Let $0 < q < \infty$. Again we use (2.3) and Proposition 1. This leads to

$$\sum_{j=0}^{\infty} \left[\left[(1+j)^{s-1/q} \| f - I_j f \| L_p \| \right]^q \right]$$

$$\leq \sum_{j=0}^{\infty} \left[(1+j)^{s-1/q} (\| f - S_j f \| L_p \| + \| I_j (f - S_j f \| L_p \|) \right]^q \qquad (2.16)$$

$$\leq c \| f \| B_{p,q}^{s} \|^q + \sum_{j=0}^{\infty} \left[(1+j)^{s-1/q} (1+j)^{-n/p} \| f - S_j f \| B_{p,1}^{n/p} \| \right]^q.$$

We proceed with an estimate of the second term on the right-hand side of (2.16). Using $f_l(x) = \sum_{k \in \mathbb{Z}^n} \varphi_l(k) \hat{f}(k) e^{ikx} (l \in \mathbb{N}_0)$ we find

$$\left\{\sum_{t=0}^{\infty}\sum_{j=2^{t}-1}^{2^{t+1}-2} 2^{t(s-n/p)q} 2^{-t} \left(\sum_{l=t-1}^{\infty} 2^{ln/p} \| (S_j f - f)_l | L_p \| \right)^q \right\}^{\min(1,q)/q}$$

$$s \ c \sum_{I=0}^{\infty} \left(\sum_{t=0}^{\infty} 2^{t(s-n/p)q} 2^{(1+t)qn/p} \|f_{I+t-1}|L_p\|^q \right)^{\min(1,q)/q}$$

$$s \ c \sum_{I=0}^{\infty} 2^{-1(s-n/p)\min(1,q)} \left(\sum_{t=0}^{\infty} 2^{tsq} \|f_t|L_p\|^q \right)^{\min(1,q)/q}$$

$$s \ c \ \|f\| B_{p,q}^s \|^{\min(1,q)},$$

$$(2.17)$$

since s > n/p and

$$\sup_{j} \|(S_{j}f)_{l} | L_{p} \| = \sup_{j} \|S_{j}(f_{l}) | L_{p} \| \le c \|f_{l} | L_{p} \|$$

(put $\varphi_{-1} = 0$). Note that $I_0 f = f(0)$. In view of this fact, Lemma 1 and (2.16), (2.17) the desired inequality (2.15) follows if $q < \infty$. In case $q = \infty$ one has to modify the above considerations in an obvious way.

(ii) Using Proposition 2 the proof is reduced to establish the inequality

$$|f(0)| + \left\| \left(\sum_{j=0}^{\infty} \left[(1+j)^{s-1/q} |f(x) - I_j f(x)| \right]^q \right)^{1/q} L_p \right\| \le c \|f| F_{p,q}^s \|.$$
(2.18)

Step 1: In order to prove (2.18) we consider at first the case s > n. Because of $F_{p,q}^s \hookrightarrow A_{\pi}$ (cf. Remark 7) we can apply (2.2). This yields

$$f(x) - I_j f(x) = f(x) - S_j f(x) - \sum_{|m| > 0} \left(\sum_{k \in \mathbb{Z}^n} \chi_m^j(k) \widehat{f}(k) e^{ikx} \right) e^{-ixm(2j+1)},$$

where χ_m^j is the characteristic function of Q_m^j . With the help of Proposition 1 a proof of (2.18) is now reduced to a proof of

$$\left\| \left(\sum_{j=0}^{\infty} \left[(1+j)^{s-1/q} \left| \sum_{|m|>0} \left(\sum_{k \in \mathbb{Z}^n} \chi_m^j(k) \hat{f}(k) e^{ikx} \right) e^{-ixm(2j+1)} \right| \right]^q \right)^{1/q} \left| L_p \right\| \le c \|f\| F_{p,q}^s \|.$$
(2.19)

In order to obtain (2.19) we make use of Lizorkin's vector-valued Fourier-multiplier theorem for cubes with sides parallel to the axis (cf. H.-J. Schmeißer and H. Triebel [14]) and of

$$Q_m^j \in K_{t+1}^{N_0, N_1} \text{ if } 2^t - 1 \le j \le 2^{t+1} - 2, 2^l \le |m| \le 2^{l+1},$$

where

$$\begin{split} &K_{0}^{N_{0},N_{1}} = \left\{ x \colon |x_{j}| \leq 2^{-N_{1}} \ (j=1,\ldots,n) \right\}, \\ &K_{t}^{N_{0},N_{1}} = \left\{ x \colon |x_{j}| \leq 2^{t+N_{0}} \ (j=1,\ldots,n) \right\} \setminus \left\{ x \colon |x_{j}| \leq 2^{t-1-N_{1}} \ (j=1,\ldots,n) \right\} \ (t \in \mathbb{N}) \end{split}$$

for appropriate $N_0, N_1 \in \mathbb{N}_0$. Let $\chi(K_t^{N_0, N_1}, \cdot)$ be the characteristic function of $K_t^{N_0, N_1}$. These yields

$$\begin{split} & \left\| \left(\sum_{t=0}^{\infty} 2^{tsq} \sum_{j=2^{t}-1}^{2^{t+1}-2} 2^{-t} \right\| \sum_{|m|>0} \left(\sum_{k\in\mathbb{Z}^n} \chi_m^j(k) \hat{f}(k) e^{ikx} \right) e^{-ixm(2j+1)} \Big|^q \right)^{1/q} \Big| L_p \right\| \\ & \leq \sum_{l=0}^{\infty} \sum_{2^j \le |m|<2^{j+1}} \left\| \left(\sum_{t=0}^{\infty} 2^{tsq} \sum_{j=2^{t}-1}^{2^{t+1}-2} 2^{-t} \Big| \sum_{k\in\mathbb{Z}^n} \chi_m^j(k) \chi \left(K_{t+1}^{N_0,N_1}, k \right) \hat{f}(k) e^{ikx} \Big|^q \right)^{1/q} \Big| L_p \right\| \end{split}$$

$$(2.20)$$

$$\leq c \sum_{l=0}^{\infty} 2^{ln} \left\| \left(\sum_{t=0}^{\infty} 2^{tsq} \left| \sum_{k \in \mathbb{Z}^n} \chi \left(K_{t+1}^{N_0, N_1}, k \right) \hat{f}(k) e^{ikx} \right|^q \right)^{1/q} \right| L_p \right\|$$

$$\leq c \sum_{l=0}^{\infty} 2^{l(n-s)} \| f | F_{p,q}^s \| \leq c \| f | F_{p,q}^s \|,$$

according to a so-called Lizorkin-type representation of $F_{p,q}^{s}$ (cf. H.-J. Schmeißer and H. Triebel [14]).

Step 2: We remove the restriction s > n. Note, that $B_{p,p}^{s} = F_{p,p}^{s}$. Furthermore, we have

$$\begin{bmatrix} F_{p_0}^{s_1}, q_0, F_{p_1}^{s_1}, q_1 \end{bmatrix}_{\mathfrak{H}} = F_{p,q}^{s} \qquad s = (1 - \vartheta)s_0 + \vartheta s_1$$

$$\begin{bmatrix} L_{p_0}(A), L_p(B) \end{bmatrix}_{\mathfrak{H}} = L_p([A, B]_{\mathfrak{H}}) \qquad \text{with} \qquad \frac{1}{p} = \frac{1 - \vartheta}{p_0} + \frac{\vartheta}{p_1} \qquad (2.21)$$

$$\begin{bmatrix} I_{q_0}(A_j), I_{q_1}(B_j) \end{bmatrix}_{\mathfrak{H}} = I_q([A_j, B_j]_{\mathfrak{H}}) \qquad \frac{1}{q} = \frac{1 - \vartheta}{q_0} + \frac{\vartheta}{q_1}$$

(cf. Triebel [18]). We shall use (2.21) with $A_j = j^{s_0} \mathbb{C}$, $B_j = j^{s_1} \mathbb{C}$, and $A = I_{q_0}(A_j)$, $B = I_{q_1}(B_j)$. Here \mathbb{C} is the complex plane. Considering the linear operator $R: F_{p,q}^s \to L_p(I_q(j^{s-1/q})\mathbb{C}))$, $Rf = \{f - I_j f\}_{j=0}^{\infty}$ we know from the proof of (i) and from Step 2 that R is bounded if s > n/p and p = q or s > n and $1 < p, q < \infty$. Hence, R is bounded as a mapping with respect to the intermediate spaces $R: F_{p,q}^s \to L_p(I_q(j^{s-1/q}\mathbb{C}))$ $(1 < p, q < \infty; s > n/p)$. That means, (2.18) is true also under these restrictions

Remark 10: The restriction s > n/p in Theorem 1 seems to be natural. If s < n/p, then unbounded functions are contained in $B_{p,q}^{s}$ and hence, $I_{j}f$ makes no sense in general.

Remark 11: Parts of the assertions of Theorem 1 and of the Lemmas 1 and 2 are known if n = 1. We refer to J. Prestin [7, 10] and K.I. Oskolkov [5]. Corresponding results in case of Whittaker's cardinal series are obtained in Sickel [16].

We are also interested in a characterization of function spaces if $p = \infty$. To this end we can employ an inequality due to Leindler [3]. Let $0 < \mu < \infty$. Then

$$\left\| \left(2^{-I} \sum_{j=2I}^{2^{I+1}-1} |f(x) - S_j f(x)|^{\mu} \right)^{1/\mu} L_{\infty}(\mathbf{T}^1) \right\| \le c E_{2J}(f, C(\mathbf{T}^1)),$$
(2.22)

where c is independent of f and $l \in N_0$. This implies

$$\sup_{I \in \mathbb{N}_{0}} 2^{(1+1/\mu)I} \left\| \left(2^{-I} \sum_{j=2I}^{2^{I_{1}}-1} |f(x) - I_{j}f(x)|^{\mu} \right)^{1/\mu} C(\mathbf{T}^{1}) \right\| \leq c \left\| f | B_{\infty,1}^{1+1/\mu}(\mathbf{T}^{1}) \right\|$$
(2.23)

and

$$\sup_{I \in \mathbb{N}_{0}} 2^{sI} \left\| \left(2^{-I} \sum_{j=2I}^{2^{I+1}-1} |f(x) - I_{j}f(x)|^{\mu} \right)^{1/\mu} C(\mathbf{T}^{1}) \right\| \le c \|f| C^{s}(\mathbf{T}^{1}) \|$$
(2.24)

if $1 \le \mu < \infty$ and $s > 1 + 1/\mu$. Extending (2.24) to I_q -norms one obtains a characterization of $B^s_{\infty,q}(\mathbf{T}^1)$.

Theorem 2: Let $1 \le \mu < \infty$, $0 < q \le \infty$ and $s > 1/\min(1,q) + 1/\mu$. Then

$$B_{\infty,q}^{s}(\mathbf{T}^{i}) = \left\{ f \in C(\mathbf{T}^{i}) : \left\| f \right\| C(\mathbf{T}^{i}) \right\|$$

$$+ \left(\sum_{l=0}^{\infty} 2^{lsq} \left\| \left(2^{-l} \sum_{j=2l}^{2^{l+1}-1} |f(x) - l_j f(x)|^{\mu} \right)^{1/\mu} C(\mathbf{T}^1) \right\|^q \right)^{1/q} < \infty \right\}$$

in the sense of equivalent quasi-norms.

Remark 12: Assertions of this type with $I_j f$ replaced by $S_j f$ may be found in H.-J. Schmeißer and W. Sickel [13].

3. Approximation in Besov and Sobolev norms

In several papers the approximation order of $f - I_j f$ is studied in stronger norms than $\|\cdot|L_p\|$ (cf. R. Haverkamp [2], J. Prestin [7 - 10], S. Prößdorf and B. Silbermann [11]). The results derived in the preceding section can be generalized in a convenient way. The first step in doing this is the following characterization of Besov spaces (cf. A. Pietsch [6]).

Proposition 3: Let $1 \le p \le \infty$, $0 \le q_0$, $q_1 \le \infty$, and $t, s \ge 0$.

(i) We have

$$B_{p,q_0}^{s+t} = \left\{ f \in B_{p,q_1}^t : \|f\|B_{p,q_1}^t\| + \left(\sum_{t=1}^{\infty} [j^{s-1/q_0} E_j(f, B_{p,q_1}^t)]^{q_0}\right)^{1/q_0} < \infty \right\}$$

in the sense of equivalent quasi-norms.

(ii) If
$$1 \le p \le \infty$$
, then $E_j(f, B_{p,q_i}^t)$ can be replaced by $||f - S_j f| |B_{p,q_i}^t||$ in (i).

As a consequence of this proposition and Theorem 1 we obtain the following

Theorem 3: Let $1 \le p \le \infty$, $0 \le q_0$, $q_1 \le \infty$, $t \ge 0$ and $s \ge 0$. Let additionally $s + t \ge n/p$. Then we have

$$B_{p,q_0}^{s+t} = \left\{ f \in B_{p,q_1}^t : \|f\|B_{p,q_1}^t\| + \left(\sum_{j=0}^{\infty} [(1+j)^{s-1/q_0} \|f-I_jf|B_{p,q_1}^t\|]^{q_0}\right)^{1/q_0} < \infty \right\}$$

in the sense of equivalent quasi-norms.

Proof: By Proposition 3 it is sufficient to prove

$$\|f|B_{p,q_1}^t\| + \left(\sum_{j=0}^{\infty} [(1+j)^{s-1/q_0} \|f - I_j f|B_{p,q_1}^t\|]^{q_0}\right)^{1/q_0} \le c \|f|B_{p,q_0}^{s+t}\|$$

for some constant c, independent of f. Therefore, we use the splitting from (2.5). Again by applying Proposition 3 it suffices to consider the term $I_j(S_j f - f)$. Let $2^{\nu} \le j < 2^{\nu+1}$. Then (2.3) implies

$$\begin{split} \|I_{j}(S_{j}f-f)\|B_{p,q_{1}}^{t}\| &\leq \left(\sum_{l=0}^{\nu+1}2^{ltq_{1}}\right\|\sum_{k\in\mathbb{Z}^{n}}\varphi_{l}(k)I_{j}(S_{j}f-f)(k)\mathrm{e}^{\mathrm{i}kx}\left|L_{p}\right\|^{q_{1}}\right)^{1/q_{1}}\\ &\leq c(1+j)^{t}\|I_{j}(S_{j}f-f)|L_{p}\| \leq c(1+j)^{t}\left(\|f-S_{j}f|L_{p}\|+\|f-I_{j}f|L_{p}\|\right). \end{split}$$

This leads to

$$\left(\sum_{j=0}^{\infty} [(1+j)^{s-1/q_0} \| f - I_j f | B_{p,q_1}^t \|]^{q_0}\right)^{1/q_0}$$

. .

$$\leq c \left(\left\| f \left| B_{p,q_{0}}^{s+t} \right\| + \left(\sum_{j=0}^{\infty} \left[(1+j)^{s+t} (\left\| f - S_{j} f \left| L_{p} \right\| + \left\| f - I_{j} f \left| L_{p} \right\| \right) \right]^{q_{0}} \right)^{1/q_{0}} \right) \leq c \left\| f \left| B_{p,q_{0}}^{s+t} \right\|$$

since s + t > n/p ensures that Theorem 1 can be applied

Remark 13: As a consequence of embeddings for Besov-Triebel-Lizorkin spaces on the *n*-torus one obtains characterizations of $B_{p,q}^s$ via approximation by Lagrange interpolating polynomials in certain norms. For instance, by $B_{p,1}^o \hookrightarrow L_p \hookrightarrow B_{p,\infty}^o$ one obtains Theorem 1 as an application of Theorem 3. Furthermore, by $B_{p,1}^t \hookrightarrow W_p^t \hookrightarrow B_{p,\infty}^t$ ($t \in \mathbb{N}$) one can replace B_{p,q_1}^t in (3.1) by the Sobolev spaces W_p^t . This improves some results of S. Prößdorf and B. Silbermann [11] and J. Prestin [7,10].

REFERENCES

- BUTZER, P.L.: Λ survey of the Whittaker-Shannon sampling theorem and some of its extensions. J. Math. Res. Exp. 3 (1983), 185 -212.
- HAVERKAMP, R: Approximationsgüte der Ableitungen bei trigonometrischer Interpolation. Math. Z. 179 (1982), 59 - 67.
- [3] LEINDLER, L.: On summability of Fourier series. Acta Sci. Math. (Szeged) 29 (1968), 147-162.
- [4] LIZORKIN, P.I., and D.G. ORLOVSKIJ.: Some interpolation formulas for trigonometric and exponential polynomials and estimates connected with them. (Russian.) Trudy Sem. Sobolev Math. Inst. Akad. Nauk SSSR, Sib. Otd. 1 (1976), 60 - 71.
- [5] OSKOLKOV, K.I.: Inequalities of the "large sieve" type and applications to trigonometric approximation. Anal. Math. 12 (1986), 143 - 166.
- [6] PIETSCH, A.: Approximation spaces. J. Approx. Theory 32 (1981), 115 134.
- [7] PRESTIN, J.: Approximation in periodischen Lipschitz-Räumen. Thesis. Rostock: Wilhelm-Pieck-Universität 1985.
- [8] PRESTIN, J.: Trigonometrische Approximation von Funktionen beschränkter Variation. Math. Nachr. 122 (1985), 29 - 43.
- [9] PRESTIN, J.: Trigonometric interpolation of functions of bounded variation. In: Constructive Theory of Functions. Proc. Int. Conf. Varna 1984. Sofia: Publ. House Bulg. Acad. Sci. 1984, 699 - 703.
- [10] PRESTIN, J.: On the approximation by de la Vallee' Poussin means and interpolatory polynomials in Lipschitz norms. Anal. Math. 13 (1987), 251 - 259.
- [11] PRÖSSDORF, S., and B. SILBERMANN.: Projektionsverfahren und die näherungsweise Lösung singulärer Gleichungen (Teubner-Texte zur Mathematik: Vol. 12). Leipzig: B.G. Teubner Verlagsges. 1977.
- [12] SCHMEISSER, H.-J., and W. SICKEL: On strong summability of multiple Fourier series and smoothness properties of functions. Anal. Math. 8 (1982), 57 - 70.
- [13] SCHMEISSER, H.-J., and W. SICKEL: On strong summability of multiple Fourier series and approximation of periodic functions. Math. Nachr. 133 (1987), 211 - 236.
- [14] SCHMEISSER, H.-J., and H. TRIEBEL.: Topics in Fourier Analysis and Function Spaces. Leipzig: Akad. Verlagsges. Geest & Portig 1986, and Chichester: Wiley 1986.
- [15] SICKEL, W.: Periodische Räume: Maximalungleichungen, Fouriersche Multiplikatoren und Beziehungen zur starken Summierbarkeit mehrdimensionaler trigonometrischer Reihen. Thesis. Jena: Friedrich-Schiller-Universität 1984.
- [16] SICKEL, W.: Characterization of Besov-Triebel-Lizorkin spaces via approximation by Whittaker's cardinal series. Preprint. Jena: Friedrich-Schiller-Univ. 1990, 1 - 20.
- [17] H.TRIEBEL: Fourier Analysis and Function Spaces (Teubner-Texte zur Mathematik: Vol. 7). Leipzig: B.G. Teubner Verlagsges, 1977.
- [18] H.TRIEBEL: Interpolation Theory, Function Spaces, Differential Operators. Am-

·· .

37 Analysis, Bd. 10, Heft 4 (1991)

562 W. SICKEL

sterdam-New York- Oxford: North-Holland Publ. Comp. 1978, and Berlin: Dt. Verlag Wiss. 1978.

[19] ZYGMUND, A.: Trigonometric Series, Vol. 1 and II. Sec. ed. Cambridge: Cambr. Univ. Press 1977.

Received 13.o2.1990; in revised form 30.01.1991

Dr. Winfried Sickel Institut für Mathematik der Friedrich-Schiller-Universität Universitäts-Hochhaus, 17. OG D (Ost) – 6900 Jena