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Some Remarks on Trigonometric Interpolation on the 2-Torus

W. SICKEL
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the sequence of Lagrange interpolating polynomials. Then we give a complete characte-
rization of the set of functions f with
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in terms of Besov-Triebel-Lizorkin spaces on T".
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0. Introduction

As usual, R denotes the Euclidean n-space, Z” the set of all lattice points having integer
components, N the set of all natural numbers and N, the set of all non-negative integers.
The aim of the paper is to show that the Besov-Triebel-Lizorkin spaces on the n-torus
T” can be completely characterized by the sequence (/;f )T, of Lagrange interpolating
polynomials. Here I;f is given by

. L (2i+1
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It turns out that for periodic continuous functions f the following equivalences are true
(1<p<oo,s>np):

FeBIT = (STl LALANY T cm. (0cqs)

FeFp o(T") &

L(T")

< oo (]<q<oo),

<§Ds-x/qlf(x) - ]jf(x)l:]q)l/q

The main tools of proof used here are the characterization of the underlying function spa-
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ces via approximation and the L -stability of trigonometric polynomials ¢t of degreet <j
expressed by the following inequalities:
¢ _2nk
27+1

ot 2 F AT e 2 2 W] TG

n
(1 < p < ®) for some constants c,, ¢, > 0, independent of ¢ and j (cf. A. Zygmund (19], P.1.
Lizorkin and D.G. Orlovskij [4]).
The paper is organized as follows:
After collecting some necessary informations about Besov-Triebel-Lizorkin spaces
on T? in the first section, Section 2 deals with our main result concerning the characteri-
zation of the function spaces. Therefore we investigate the uniform boudedness of J; in

- |LP(T")||, 1< p<o.As a complement and more or less to show the great similarity
between approximation via partial sums and approximation via Lagrange interpolating
polynomials the aliasing error f - I;f is also treated in |- {C(T?)||. Finally, in Section 3 we
deal with approximation in stronger norms than -1z (T")” for instance in || - |[Wg (T?)|.

1. Besov-Triebel-Lizorkin spaces

1.1 Notations and definitions. The n-torus T” may be represented by the set

{x eR™ - < xjsm(j= 1,...,n)},

where opposite sides are identified. D, and D, denote the set of all complex-valued infi-
nitely differentiable functions on T and its dual space, respectively. Furthermore we put

F(k) = 2r) "f(e i%%) (k¢ Z", fe D).
Then any f € Dy can be represented by its Fourier series
f= f(k)el** (convergence in D;.)
ke Z_"
(cf. H.-J. SchmeiBer and H. Triebel [14]). The space of continuous functions on T? is de-
noted by C(T"), the space of p-th power integrable functions by LP(T"). If there is no

confusion possible we drop T” in notations.
Let ¢ be an infinitely differentiable function with the properties

P(x) =1if Ix] s 1and $(x) =0if |x| 2 3/2. (1.1)
Further we put

Po(X) = P(x), p(x) = Y(x/2) - P(x), @x) = p,(27"x) (1=2,3,...). (1.2)
Hence, we have

ﬁ(p;(x) =1 (x e R") (1.3)

Definition: Let 0 < g s @ and - < s < ®,
(i) Let1 s p s . Then

B;,q(T")={fED £ |Bpqll = (122159

én%(k)f(k)e““|1_p”")" L oo}_
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(ii) Let 1 < p < . Then
) oo},

Remark 1: All spaces defined above are quasi-Banach spaces (Banach spaces if g 21).
They are independent of the special choice of ¢ in (1.1) (equivalent quasi-norms). These
periodic spaces of Besov-Triebel-Lizorkin type are extensively investigated in the book
by H.-J. SchmeiBer and H. Triebel [14].

q)l/q“_

> e (K)F (k) eikx
kez”

Fp o(T™ = {f €Dy |[|f|Fpqll = “(;oz‘sq P

Remark 2: The above definition can be understand as a uniform approach to different
types of classical function spaces. In particular, we have

® ";:2 = Lp,
(i) £,72 = W,™ (Sobolev spaces) if m ¢ N,
(iii) B, 4 = Ap, o (Besov-Lipschitz classes) if s > 0, and
(iv) BS o, = C® (Hoelder-Zygmund classes) if s> 0
(cf. H.-J. SchmeiBer and H. Triebel [14]).

Remark 3: Of some importance are the embedding relations

(B‘:q v Pfq) c>L,ifs>o . (1.4)
and
B’ oFS )c> Cifs>ap 1.5)
pa v Ipa

(cf. H.-J. SchmeiBer and H. Triebel [14]).

1.2 Characterization via approximation. The spaces defined above are well-adapted to
problems in approximation theory. To show this we recall the following facts. Let
T, ={t e Dy: f(k) = o forall ke 27, 1kl >} (jeN,).
Let X be an appropriate quasi-Banach space. Then we put
E{f,X) = inf If - gIXIl (jeN,).
geT

Proposition 1: Let 0 < g s .
(i) Let 1 s ps o and s>0. Then

2 R /
Bio = {reLpr eIl +( S g a7 <o)

in the sense of equivalent quasi-norms.
(ii) Let

S = 3 3 FeRX (k=Ko ky), j € No). L (16)
lk,|<j (L NES

We can replace E{f,L,) by ||f - S; f|Lp| in (i) if 1 < p < co.
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(iii) Let

Vif(x) = 3§ OF(K)e*> (jeN), 1.7
keZ”

where { is the function from (1.1). Then E;(f,L,) can be replaced by ||f - V,f|L,| in (i).
Proposition 2: Let 1< p,g<® ands > 0. Then
B{gj}j":,, g ¢ T for je N, such that g; =>f in L, and
[ s- 1/¢
ledzpl+ || £0° 1t - 603 I,
J

=1

s - .
Flg ={fely
<

in the sense of equivalent norms. Moreover, we can choose gj = S;f (j eN).

Remark 4: Proofs of Propositions 1 and 2 may be found in H.-J. SchmeiBer and H.
Triebel [14] and W. Sickel [15] (cf. also H.-J. SchmeiBer and W. Sickel [12, 13]).

Remark 5: For later use we mention also that (0<g<c,s20)

If -S;f|Byqll 55=>0 if 1 <p < and ||f - V,f| 0iftspso,

Bp‘,‘q " Jj—=
These are consequences of

A, N A A

f(k) - ij(k) =0if |k;| <j (i=1,...,n) and f(k) - ‘ff(k) =0if |kl <j

and of

sup ||ij|Lp|| 5c||f|Lp|| (1<p<®) and sup ||l§f|Lp|| so"f'ILp" (15 ps )
Jj Jj

2. Trigonometric interpolation

We start with a uniform lattice on T", characterized by the nodes

2nr, 2nr,
xF= (X x0) = (ﬁ,,ﬁ) (-isrsjli=1,...,n),jeNy), re2n

Let .

0 ={kezm-j-1/2sk; - m2j +1) s j+172 (i =1,..,n)} (meZjeN,)
and fe C. Then the function J;f defined by (0.1) is the unique solution of

gx") = £(x7), re Qf and §k) = 0if k¢ Q.

Suppose additionally

g £ (k)| < o 2.1)
€
Then we can rewrite
L= S ( > ,f“(k)eikx)e-imm*l)x (e Ny) (2.2)
meZ™\ kcQ},

(cf. A. Zygmund [19]).
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Remark 6: Formula (2.2) shows the great similarity between Lagrange polanomials
and Whittaker's cardinal series. The latter one is defined as

. (24 +1
. i Ik n sm(—-%xi - kin) )
b= kgnf(2j+1 ),]1 (2(2*1,(,. - k;m) (refo

We have the identity
= F- Jj Ff X)C -im(2j *I)X,
35 (F L FX

where F, F ! are the Fourier transform and its inverse, respectively, and y ,J,, denotes the
characteristic function of QJ, (cf. P.L. Butzer [3], W. Sickel [16]).

Remark 7: If we put A = {f € Dz T, 0 |f (k)| < @}, then B{* <> A, <> B3, (cf.
H. Triebel [17]).

In our investigations'a crucial role is played by the following

Lemma 1: Let1 < p< oo,
(i) There exists a constant ¢ such that

15 £1Lpl s e+ ) ™Pf | BRPI GeNo) (2.3)

ol

holds for all f ¢ BR{P with (k) = 0, k € Q5.
(ii) There exists a constant ¢ such that

I -LEILl s (1 + ) 7PlF|BEP] (e ) (2.4)
holds for all f ¢ B;'{p.

Proof First, note that J; is a projection, that means [;f = f for all f with fk) =0,
ke Qf. Now we split
f-I;f=f-S;f+ L(S;f-f). (2.5)

To prove (2.4) we can use Proposition 1 and (2.3). So, it remains to prove (2.3). Let {p,}
be the system defined in (1.2). We put fi(x) =2, zn tp,(k)f(k)eikx (1eNg). Let2's js
2" ™1, The properties of ¢ guarantee [;(S;f-f) = Z,-, . J(S f; f,) in D,.. Applying (0.2),
using the interpolation property of J; f 5 f(k) = 0if k¢ QJ and f}(k) = 0if |kl > (372)21t

we find
/]
It i-ripl = <o 5 s o))
€Co

o g s oty

where c is independent of j, I, and f. Next we pick out a sequence of meshes {M;} such that

(3255 wezr) = (B ) ez} s e

where (3/2)2!7 s M, s 2/ (¢ mdependent of / and t) holds. Accordmg to M, we apply

(2.6)




556 W. SICKEL

again (0.2). This leads to

(k§g 2mk )

(S;f ‘fi)( 2j +1
Putting (2.7) into (2.6), summing up from t -1 to o the desired inequality (2.3) follows B

s €26, ~hILy|| s €2 5Ly, @)

P)VP

Remark 8: Using Remark S we can sharpen (2.4) a little bit. We have
JVPIf-LE Ll > 0if j > (2.8)

for any fe B;,/P. In case n =1 this was observed first by K.I. Oskolkov [5].

Remark 9: In the one-dimensional case J. Prestin [7 - 10] has proved a result similar

to (2.8), but with B;,,/f’(’l“) replaced by the set of functions with bounded variation.

As a consequence of Lemma 1 one obtains some estimates of the approximation error
in|l-ICIl

Lemma 2: Let p< ® ands >0.
(i) For any f e BJ'{Pu A, there holds

\f-LfIC|| >0asj—> . (2.9)
(ii) There exists a constant ¢ such that
js:;gom +JE\E-LFIC| s c||f|BS 2P| for all fe BS 2P (2.10)
(iii) There exists a constant c such that
jscl;go(l +j)5(log( +j ) " ||f -L;f|C|| s c||f|C5( for all fe C* = B . (2.11)

Proof: (i) Let fe A,. Then (2.9) follows from (2.2) since
|f(x) - LEX s 2| im0 Zkeo,{,lf(k)|'
Let fe BI:,/‘? Then we use the decomposition
F-Lf=f- Vi f +L(V,,,f - ), (2.12)

with V,,, defined in (1.7). From the embeddings B;,/P > BS, , & C (cf. H.-J. SchmeiBer
and H. Triebel [14]) and Remark S we know that

If - Vo f|C}| >0 asj—>o. . (2.13)

Next we apply the Nikol'skij inequality (cf. H.-J: SchmeiBer and H. Triebel [14]) and (2.3).
This yields

150G 2f - OIC I s e DPNLVaf - Ly s clIf - Yo |Bo P
Using again Remark S we find
15;(Vof - FIC || >asj—> . (2.14)

Now, (2.13) and (2.14) complete the proof of (2.9).
(ii) We use the splitting stated in (2.12), Proposition 1,-and (2.3). This yields

If - LEICH S IF - o IC + € lif - Yo £IBIP s 1+ 2 (1£[BEE™)
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For the last step we have used on the one hand the embedding Bp'_'f:*’ c»BJ . =C%and
on the other hand Proposition 3 (see Section 3). This proves (2.10).

(iii) Since the first part of inequality (0.2) remains true if p = 1 (cf. A. Zygmund (19])
we obtain

|1;£(x)| = (7}7{)"

F(xT)etklx =T
DN

€ gke >
1 n . _ r
s sup  |f(x*) (—) . _eik(x-x)
reCr),o'Il | 21 +1 r%& k%é'
cliricl] 35, 1L = ctogt + 7jeic.
ke 6’

Using this with f- V,, finstead of £, the desired inequality follows from (2.12) as in (ii) B

The main result of this paper is formulated in the next

Theorem 1: Let1 < p < ands>n/p.
(i) Let 0 < g s . Then

o e~ ql/q
Bq = {reciie@i+ (B el 4oL ) <o)

in the sense of equivalent quasi-norms.
(ii) Let 1 < g <. Then

(,25‘ <yl () )

in the sense of equivalent norms .

o}

Proof: (i) Comparing the above characterization of B;‘q with Proposition 1 it remains
to prove that

Fi.- {fe C: 1£(0) +

Lp

[F(0) + ( S [+ f- ljflLP”]q)'/q s cl|f| Bl (2.15)
J

=0

with c¢ independent of f. Let 0 < g < ®, Again we use (2.3) and Proposition 1. This leads to
& y q
2 Q=i - Lf L]
j=o
O
s 5[ - S LN+ I - S OIL I (2.16)
Jj=o
O
s c|f|Bygl? + J,.?_OEU +)*A )P - 5 F | BRPI].

We proceed with an estimate of the second term on the right-hand side of (2.16). Using
£(x) = B, zn oK) (k)e'** (1e N,) we find

w 2f1-2 o .
{Z . zr(s-n/P)qz—t( S zln/PIKS}f;f)llLP")q}mln(l,q)/q
=0 j=3t- 15T
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O .
) R T

t=o

(2.17)
< Ci 2—1(s-n/p)min(l.q)( i 2tsq“fr |Lpllq)min(1,q)/q
=r t=o

< ¢ |If|B‘:q“min(LQ)¥
since s > n/p and
sup (S £l Ll = syp [ SLAILp] s c AL

( put ¢_, = 0). Note that ,f=f(0). In view of this fact, Lemma 1 and (2.16), (2.17) the
desired inequality (2.15) follows if g < @, In case ¢ = © one has to modify the above con-
siderations in an obvious way.

(ii) Using Proposition 2 the proof is reduced to establish the inequality

[F(O)t +

Ly|l s c|If|Fg 4. (2.18)

(2[(1 + )51/ (x) - ljf(.\»)|]">‘/"

Step1: In order to prove (2.18) we consider at first the case s > n. Because of F;q C—
A, (cf. Remark 7) we can apply (2.2). This yields

FO0 - 5100 = £ - 5500 - 3 (3 xh0AReix)erixm@i oD,

|tnl>o\ ke ZD

(2.18) is now reduced to a proof of

where x,’;, is the characteristic function of O,{;. With the help of Proposition 1 a proof of
s
< c|]f|FP'q||.

q\17q
]' ) ILP (2.19)

In order to obtain (2.19) we make use of Lizorkin's vector-valued Fourier-multiplier theo-
rem for cubes with sides parallel to the axis (cf. H.-J. SchmeiBer and H. Triebel [14]) and
of

o)
=0

(; [(1 +j)s"1% s ( S Xin(k)f(k)eik")e'ix’"(zj*1)

Im|>0\ ke Z™

i KD M ieat y gt L) 2lg|m| < 20,

m t+1

where
, No, Ny - o |y I 2 1 =1,...,n },
K {X X s N; (( N ] )

KoM fxiixgl s 208 (=1, M\ x: Ixgl s 2670°M (=1, )} (reN)

for appropriate N\,, N, € N,. Let x(K I,\b'N‘, ) be the characteristic function of K

These yields
q)-/q

S kO x(K PN, 1) F(k)eiex
keZn

No. Ny
s .

2tH-2

[o=d
2tsq 2-t

<3

1=0 2Js{m|<2i*%

> ( > x#(k)ﬁ(k)eikx)e-ixm@rn

Im|>o0\ keZ™

2

(2.20)
o 2tn-2 q\w/q
(Erge Y

t=o  j=2'-1
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q )l /q

L

S (kDM k) Alietkx o

keZ?n

[l
Tse>2n
1=0

c,oztsq
P

x
s ¢S 219 f|F, call s clf|Fprgl,
i=0

according to a so-called Lizorkin-type representation of prq (cf. H.-J. SchmeiBer and H.
Triebel (14]).
Step 2: We remove the restriction s > n. Note, that Bp_sp = Fp_sp. Furthermore, we have

S, S,
[";’o‘rqO’F‘P1:91]8 = Fvaq s =(1 - 8)50 *SS‘
. 1.1-9 .9
[Lp(A), L{B)]4 =L, (LA Blg) with P* P P (2.21)
1.1-% .9
[lad 4. 1a£B))]s = 1[4}, B;1s) 7 % '

(cf. Triebel [18]). We shall use (2.21) with A; =j%C, B; = j51C,and A= "qo(Aj ),B = Iq‘(Bj ).
Here C is the complex plane. Considering the linear operator R: prq eip(iq(j“‘/q)c)),
Rf ={f - ij}j‘fo we know from the proof of (i) and from Step 2 that R is bounded if s > n/p
and p =qgor s>nand 1<p,q < Hence, R is bounded as a mapping with respect to the in-
termediate spaces R: F:_q - Lp(lq(j“’/q)c)) (1 < p,q < ©;s>n/p). That means, (2.18)
is true also under these restrictions B

Remark 10: The restriction s > n/p in Theorem 1 seems to be natural. If s < n/p, then
unbounded functions are contained in Bps,q and hence, I;f makes no sense in general.

Remark 11: Parts of the assertions of Theorem 1 and of the Lemmas 1 and 2 are known
if n = 1. We refer to J. Prestin [7,10] and K.I. Oskolkov [S]. Corresponding results in case
of Whittaker's cardinal series are obtained in Sickel [16].

We are also interested in a characterization of function spaces if p = ©. To this end
we can employ an inequality due to Leindler [3]. Let 0 < p < . Then

I 2jl=§2:_ll|f(x) - ST LT

s ¢ E, ;(£,C(TY), (2.22)

where ¢ is independent of f and / € N,. This implies

21+
sup 201 *1/0)] (2-' s |f(x)-ljf(x)|“)’/“ o) s off £IBL M) (2.23)
1eNg j=21
and
2in,
sup 2°! (2-1 S |f(.\')—ljf(x)|”)‘/“‘ o s e FiCsTy) (2.24)
leNg j=21

iflsp<oands >1+14. Extending (2.24) to I~ norms one obtains a characterization of
B;,q('l").

Theorem 2: Letl1 sp<®, 0 < gs © ands >1/min(l,q) + 1/p. Then

BE (T = {f'e C(T): £t
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(I:ZOW“’ (2 ,%h J£0) - £ N «,}

in the sense of equivalent quasi-norms.

Remark 12: Assertions of this type with ;£ replaced by S;f may be found in H.-J.
SchmeiBer and W. Sickel [13].

3. Approximation in Besov and Sobolev norms

In several papers the approximation order of f-;fis studied in stronger norms than || - 1Ll
(cf. R. Haverkamp [2], J. Prestin [7 - 10], S. ProBdorf and B. Silbermann [11]). The results
derived in the preceding section can be generalized in a convenient way. The first step in
doing this is the following characterization of Besov spaces (cf. A. Pietsch [6]).

Proposition 3: Let1 s ps®,0<q,,q, S, and t,s>0.
(i) We have

+ / /
Bl = {r e B0 11180 (S oo (1B 1% % <}

in the sense of equivalent quasi-norms.
(ii) If 1 < p <, then Ej(f, Bp" ql) can be replaced by ||f - ij|Bp"q‘ || in Gi).

As a consequence of this proposition and Theorem 1 we obtain the following

Theorem 3: Let 1<p<®©,0<q,,q, s®, t20 and s > 0. Let additionally s +t > n/p.
Then we have

B = {re B 185+ (ST ™%l - 118, 1T <o)

in the sense of equivalent quasi-norms.

Proof: By Proposition 3 it is sufficient to prove

& \s-1/ / +
17185 g, 11+ (S0 200" 7%l - 11180, 11%) % 5 el 1B 5]

for some constant c, independent of f. Therefore, we use the splitting from (2.5). Again by
applying Proposition 3 it suffices to consider the term IJ»(ij -f). Let 2V s j<2V™. Then
(2.3) implies

S 0L -0 "‘)‘/"'

1
[ 1;(S;f-F) qu” S<Z2 tq,

s QU+ YIS £~ OIL] s e+ (IF - S;FIL N+ 1F - EIL])-

This leads to

(S el - 1518, 1% %
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+ 2 5+ 1/ +
< e(Ir18 5+ (S0 U - SN+ - KAL) < e85
/=
since s +t > n/p ensures that Theorem 1 can be applied B

Remark 13: As a consequence of embeddings for Besov-Triebel-Lizorkin spaces on
the n-torus one obtains characterizations of Bp“fq via approximation by Lagrange inter-

. . . . . o o .
polating polynomials in certain norms. For instance, by B, , <= L, < B, ., one obtains

Theorem 1 as an application of Theorem 3. Furthermore, by Bpr“ C> W; C— B‘:,"c,o (teN)
one can replace Bpt,q in (3.1) by the Sobolev spaces W,5. This improves some results of S.
ProBdorf and B. Silbermann [11] and J. Prestin [7,10].
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