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On the Volume Infimum for Liquid Bridges 

R. FINN and T. I. VOGEL 

We consider the "Carter conjecture", that any stable liquid bridge in zero gravity, joining two 
parallel plates separated by a distance h and meeting each plate with constant angle, has vo-
lume greater than or equal to h 3/r. We prove the conjecture in the case of the two contact 
angles being equal. 
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1. Mise en scene 
Stability problems for liquid bridges that join parallel plates have been an active 

topic in the engineering literature for at least a century. More recently they have been 
studied from a rigorous mathematical point of view, in papers by Athanathanas (1], who 
considered the case of contact angle -y = 900 on both plates, and by Vogel [11], who 
provided an independent discussion for that case and showed additionally [121 that with 
other choices of -y a wide range of differing kinds of behavior must be expected. The 
studies by both authors assume vanishing gravitational field. A common feature of the 
configurations corresponding to any given contact angle (or pair of contact angles on 
the two plates) is that the bridge is stable if its volume V is large enough, while if V is 
continuously reduced from infinity then instability will occur when a critical value V is 
crossed. In [1] and in [11) it was shown that when ' y = 90° the only stable configurations 
are circular cylinders, and V1 = h3 /7r, where h is the separation distance of the plates. 
This is half the volume occurring in the celebrated Rayleigh calculation [9], the factor 
of two appearing because of the particular boundary condition. 

Independently of the above cited work and at about the same time, W. C. Carter 
[3] made extensive numerical stability calculations on liquid bridge configurations for 
different choices of y, and observed that the greatest lower bound of drop volumes at 
which the bridge is stable always seemed to exceed the value that occurs when 7r/2 
(circular cylinder). Vogel then considered the problem from a theoretical point of view 
[12], see also [10], and gave it informally the designation "Carter conjecture". The 
"conjecture" turned out to be of independent interest for the problem of designing 
"exotic" containers in such a way as to exclude stable liquid bridges joining the two end 
plates, see Finn [6]. In the present paper we intend to prove the statement completely 
for the case of equal angles y on the two plates. From the point of view of direct stability 
considerations, the basic step will be presented in §5 , where we apply earlier results of 
Vogel in order to show that no rotationally symmetric configuration with an inflection 
in its meridian curve can be stable. In addition, every stable connected configuration is 
rotationally symmetric [11]. 

It is remarkable that these theorems are the only ways in which stability consider-
ations are needed for the proof, the remaining steps being entirely geometric. We shall 
show that for any inflectionless equal angle configuration with p = irV/h 3 1, 

1*



4	R. FINN and T. I. VOGEL 

a) the meridian curve must be an unduloid (see below), then 
b) the unduloid must join two inflections at the plates, and finally 
c) the unduloid must be a circular cylinder with p = 1, 

by showing that in any other case p> 1, so that the volume would exceed the critical 
value for a circular cylinder. In this statement, the cylinder is viewed as a limiting 
configuration of approximating unduloids, with inflections at the limit points of those 
of the unduloids. 

The underlying starting point for the entire theory is the observation that any 
equilibrium surface in the absence of gravity necessarily has constant mean curvature 
H (see, e.g., [5], Chapt. 1). It thus suffices to consider solutions of the equation 

(rsin&),.	2rH	 (1.1) 

here is the angle made with the r-axis by a tangent to the meridian curve u(r). At 
points where 0 is an odd multiple of 7r/2, (1.1) is to be interpreted in the form 

sin V, - (cosi'), = 2H ;	 (1.2) 

from this latter form we see immediately that the surface is either a circular cylinder 
of radius 112H, or else the points of verticality on the meridian curve are isolated and 
not inflections, see Fig. 1. 

If we normalize 7P to be r, /2 at an "inner" vertical point P (a, 0), then the 
possible modes of behavior divide as follows, in terms of surfaces introduced originally 
by Delaunay [4] as roulades of the focal points of conics: 

a) H > 0: the solution can be continued to form a periodic curve without double 
points, known as the unduloid, see Fig. la. Exactly two inflections appear in each 
period interval.

Figure la: Unduloid
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b) If = 0: we obtain the well-known catenoid, a minimal surface with the explicit 
representation

r=acosh 

In this case there is only the single (initial) vertical point, see Fig. lb. There are 
no inflections and no double points. 

Figure ib: Catenoid 

c) H < 0: the continuation yields again a periodic curve, known as the nodoid. In 
this case there appear two double points in each period interval, but no inflections, 
see Fig. ic. 

One sees easily that these three cases encompass (up to rigid vertical displacement) 
the totality of solutions of (1.1), and thus, in view of Vogel's symmetry theorem, the 
totality of surfaces that can conceivably form physical bridges between two horizontal 
planes. Since (1.1) is formally invariant under similarity transformations, we can assume 
the planes at u = 0, h, and we shall adjust the surfaces accordingly to achieve the 
prescribed contact angles. 

As noted above, if y = 7r/2, the only stable solutions are circular cylinders, for 
which the jnfimum of stable volumes is V1 = h 3 /7r. We intend to show that any solution 
making equal angles on both planes and having no inflections between the planes bounds 
a larger volume. In the following two sections we show that the meridian curve of any 
solution can be assumed to be an unduloid, with inflections at the heights of the planes.
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a 

Figure ic: Nodoid 

2. Exclusion of catenoids and nodoids 
The most general catenoid making the prescribed angles on the plates is situated 

symmetrically between u = 0 and u = h and has the form 

r=acoshU2	 (2.1) a 
the volume enclosed between the two planes is

(2.2) - 2 a	a) 

We wish to show that for every a, V exceeds h 3 17r. Setting t = h/a, it suffices to show 
that the function f(t) = t + sinht - 2t 3 /7r 2 is positive for positive t. We have 

f(0) = 0, f'(t) = 1 + cosh  - 6t2	f"(t) = sinht - 12 t. 72

Thus, f(0) = 2 > 0, f" < 0 in an interval 0 <t <to 1.1039, with a single minimum 
at tm 0.6458, and f"(t) > 0 for I > to . We find f"(tm) 2z —0.0936> —0.1, and thus 
f(t) > 2 - 0.12 = 1.88 in the interval 0 < I < to. We have proved 

Lemma 2.1: Every catenoid situated symmetrically between the planes u = 0 and 
u = h bounds with those planes a volume exceeding V;. 

We exclude inner loops of nodoids by comparison with a suitable catenoid. At non-
vertical points, a nodoid satisfies (1.1) with H < 0. Again to achieve the prescribed
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data it must be situated symmetrically between the planes. Denoting by P the common 
(inner) vertical point of the nodoid and the catenoid, we write the equation of the 
catenoid in the form

(rsini)r=0 

We select the segments of the two curves that lie above P, and find, under the 
normalization (P) = tb(P) = ir/2, that sin - sin 0 <0 until the next vertical of the 
nodoid. Thus, the nodoid lies outside the catenoid between the two planes. We have 
proved 

Lemma 2.2: Every inner nodoid loop situated symmetrically between the planes u = 0 
and u = h bounds with these planes a volume exceeding V1. 

It remains to consider one of the outer loops of the nodoid, c.f. Fig. 1. On such 
a loop, (1.1) holds with t/ = —ir/2 at the outer vertical r = b. Denoting by r = c 
the position of the horizontal points on the loop, we find rsinb = H(r2 - c2 ), with 
H = — b/(b2 - c2 ), and thus 

2Hr = sin - /sin2 T,& + 4H2 c2 .	 (2.3) 

Writing cos 0 = sin 4 we find that an outer loop joining horizontal points is de-
scribed by the range —7r/2 < 0 < ir/2, and (2.3) takes the form 

= bI— --- cosqS+ j---/1 - k2sin2	 (2.4) 
1+k 

with
2 - 

k = b 	 (2.5) 
b2+c2 

Since dy/dr = tan ik = - cot 4, we obtain from (2.4) 

k cos—	1—k	/1_k2 sin2 
d	

1	yl_k2 sin 2+	1+k	}	
(2.6)


and thus the height change between successive horizontal points is 

	

Ay = 2b{__ —(1-- k)K(k) + 1__ E(k)}	 (2.7) 

where K(k) and E(k) are complete elliptic integrals of the first and second kinds, re-
spectively. 

We find easily that for fixed b 

2b  

	

= +2 11 - E(k)+(l +k)K(k)}> ___
	

>0	(2.8) 

and thus the height change decreases with decreasing k. In fact, since E(0) = K(0) = 
7r/2, this height change tends to zero with k. Also, H = —(1 + k)/2bk becomes more
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negative with decreasing k, and a repetition of the comparison reasoning used above 
to exclude the inner loops of nodoids shows that two non-horizontal portions of outer 
loops with a common vertical do not otherwise intersect (even at the limiting horizontal 
points). Considering now a configuration bounded by two plates of separation h and by 
a surface generated by outer loops of nodoids, we see that by decreasing (if necessary) 
k, and keeping 6 constant, we can achieve a new configuration with smaller or equal 
volume, bounded by the same plates and by a nodoidal surface that meets the plates 
tangentially. It suffices to exclude surfaces with this structure. 

For such surfaces we have Ay = h in (2.7), and thus by (2.8) 6 decreases with 
increasing k. In the limit as k —* 1, the configuration becomes a sphere of radius h/2. 
From (2.7) we see that 6 — cc when k - 0 (since E(0) = K(0) = 7r/2), and from (2.5) 
follows also c - cc. Thus either the sphere lies interior to all other surfaces of the 
family or else there will exist a particular such surface E, which contains the sphere but 
contacts it tangentially at some point p, as indicated in Fig. 2. 

Figure 2: Exclusion of nodoid outer loop 

Denoting by H the mean curvature of E, we clearly have H > —1/b, as otherwise 
the surfaces would have to cross. Denoting by d the r-coordinate of p and integrating 
(1.1) for both surfaces from c to d, we obtain 

d(sin(d) — sin(d)) — c(— sin &(c)) = (H + 11b)(d2 — c2 ) > 0 

and thus sin (d) > sin t,bE(d), a contradiction to the assumed tangency at that point. 
Thus all surfaces of the family have volumes exceeding that of the sphere. But for 
the sphere we calculate easily 7rV/h 3 = > 1. Therefore, outer loops of nodoids 
are excluded. The only possibilities left for consideration are the unduloids. Since by
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Theorem 5.7 below every unduloid with equal angles on the plates and one or more 
inflections is unstable, consideration is reduced to unduloids symmetrically situated 
with respect to the plates, with no inflections between the plates. Throughout the next 
two sections, we shall have to distinguish two cases, designated by "thick" and "thin". 

3. Inflections 
We consider a symmetrically placed piece of unduloid with inflections outside the 

interval 0 < u <h, as indicated in Fig. 3a (thick case) or in Fig. 3b (thin case). 

Figure 3a: Inflections outside interval 
(thick case) 

In the former case, a similarity transformation (uniform contraction) centered at 
(0, h/2) creates a new unduloid, lying entirely interior to the region bounded between the 
original one and the two planes, and with inflections on the planes. The new unduloid 
clearly determines a smaller volume. 

In the thin case, we denote by r the height change from the inner vertical to the 
nearest inflection, and obtain 

E(k) — k	b — a	 1 
r=o	 k=—,	— 

1—k	 b+a	H=a+b 
cf the methods of §4. Letting b decrease toward a we obtain a family of unduloids of 
increasing mean curvature, all vertical at a common (initial) point. Denoting the incli-
nation angles of two meridian curves by 4' and 0, with H,, < Hg,, we obtain immediately 
from the governing equation that sin 4, < sin TJ , and thus the surfaces yield decreasing 
volumes. As b —p a the surfaces tend uniformly to a circular cylinder, and the inflections 
to a height ro = 7ra/2. 

If h > 2r0 , then inflections will have appeared at the heights 0, h on some interme-
diate unduloid, and the original surface can be replaced by this new one with smaller 
volume. If h <2r0 we have since E(0) = 7r/2 that h <ira and thus the volume of the 
limiting cylinder becomes V0 = ira2 h > h 3 /ir. We have proved
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Figure 31b: Inflections outside interval 

(thin case) 

Lemma 3.1: Every unduloid without inflections in the interval [0, h] can be replaced, 
either by another one of smaller volume and inflections exactly at 0, h, or else by a 
cylinder of smaller volume V0 > h3/r. 

In view of Lemma 3.1, it will suffice to consider unduloids with inflections on the 
supporting planes u = 0, h. 

4. Proof of the inequalities 
a) The thick case: In what follows we change notation somewhat from that of 

the preceding sections. Uiiduloids can be characterized analytically as rotation surfaces 
determined by solutions r(r) of the equation system 

(r Si n ij.' ) r = 2rH	 (4.1) 

= tan 	 (4.2) 

with verticals at (r... Va), (rb, v) as indicated in Figs. la; 3a,b. The arcs can be reflected 
in either of the lines V = v or v = Vb, so as to obtain a simply periodic solution curve, 
with an infinity of verticals and of inflections. 

We are interested in the volume V determined by a "bulge segment" between 
two inflections, as indicated in Fig. 3a. Let h denote the change in the u coordinate, 
between the inflections. We shall use the subscript i to denote the value of a quantity 
at an inflection. 

Lemma 4.1: in the thick case, there holds V 2 h 3 /7r, with equality only for the circular 
cylinder.
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Proof. From (4.1) we find that on the initial lower segment of the curve, from r 
to rb, there holds	 __________ 

sin /, + ,Jk2 - cos2 t 
r =

	

2H	
t5 <i/' < 7r/2	 (4.3)


with
ra—rb 1 

= Cos &, H=	.	 (4.4) 
ra+rb 

We have also r = JFF. 

The transformation

cosI' = ksin.,	0<	7r/2 

yields r = (k cos q +	- k2 sin2 ). /2H and, in view of (4.2),	 (4.) 

2H = _ k cos _\/1_k2 sin 2	 (4.6) 

from which

/2
H(v - v) = Hh = k + 

10r 
/1 - k 2 sin2 çtdçb = k + E(k)	(4.7) 

where E(k) is a complete elliptic integral of the second kind. From 

,r/2 
V = r f r2 tan tb do

	
(4.8) 

Jo ao 

we now obtain by formal calculation 

h3  

	

(k + E(k))3 {3k -	
+	E(k) - (1 - k 2 )K(k)} ,	(4.9) 

where (11,/2	dA 

	

K(k) = /	 (4.10)

Jo 1_k2sin2 

is a complete elliptic integral of the first kind. 

The entire range of possibilities is encompassed in the range 0 k 1. The value 
k = 0 corresponds to a circular cylinder, k = 1 to a sphere. Letting V0 be the value in 
the (limiting) cylindrical case, we find V0 = h 3 /ir and thus 

F(k) 4(k+E)3 
(V - V0 ) = 3k -	+	E - (1 - k2 )K - -(k + E)3 (4.11) 

Our problem is thus reduced to showing that F(k)> 0 in 0 < k 1.
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We have clearly F(0) = 0, F(1) 2.0911 > 0. We observe next (cf [7], pp 73-76) 
that

dE - 1 1 ,r/2	Sfl 20	
do	 (4.12) dk22	V1_k2 sin 2 

K— 
1,/2	

___
dK 1 1 	sin2
dk21_k2 	yl_k2 sin'

 (4.13) 

	

k2 10 'r 

/2

dqS=K—E 	 (4.14) 
 ,/1_k2sin2 

ir/2	sin 2o	
0 

i	Vl_k2sin2q5>2'< .	 (4.15) 

We calculate 

	

dF 3 Ic 1	7 + k2 f	do+ K 6	V1_k2sin2. 
2 	__________

d - -p	
12	6E2 

-- k+j

r/2 

V1_k2sin2	2
(4.16) 6	ir/2	 12	7r/2sin

do
 V1_k2sin2	

kEj 
V1_k2 Sin2 

7r/2 

	

6 E2 /	
sin 

dd. 

	

+ 2 Jo	1 - k2 sin2 

	

Since E < 7r/2, we find	6 E2 > 0. Also, the coefficient of k in (4.16) is 2kkir2 

612	ii/2	sin 2	
d	1	6	6	6 

T2 ' 7r2 EK > 1 - - > 0 v'1_k2 sin 2. 

since, by the Cauchy- Bunyakovskii- Schwarz inequality, 

EK>	.	 (4.17) 

We thus obtain from the remaining terms in (4.16) 

dF (1 1 18 
+ — T

2)	

1 42 

	

+ (- + - +	
K 

+ (_7 + 2 + 6 
.2 E2) 

fr/2	
dØ 

V1_k2 S in 2 
> —.5738E +.8579K > 0 

by (4.15) and (4.17), since K > E. We conclude immediately that F> 0 in 0 <k 1, 
which proves the lemma. The function F(k) is illustrated graphically in Figure 4a •



0.2	0.4	0.6	U. 

PA 

1.5 

F
1 

0.5 

On the Volume lnuirrrum for Liquid Bridges	13 

0.0012 
0.0010 
0.0008 
0.0006 
0.0004 
0.0002

0.01 0.02 0.03 0.04 0.05 

Figure 4a: The function F(k) of §4 

4b. Thin case: We study now the situation in which the considered arc lies closer 
to the axis than the inflections, as in Fig. 3b. In this case (4.3) must be replaced by 

r=5__c052,	'</2	 (4.18) 

with	 rb - r0 = Cos ,i	 (4.19) 
r& + ra 

The transformation
cos' = k sin th. 0< d < ir/2,	 (4.20) 

now yields
_k cos o+vl2sinZ
r=	 ø 

and, in view of dr/d?' = tang'. 

H(v - vI) Hh = (—k + E(k)).	 (4.21) 

For the volume	 r/2
V=2[ r 

2 
d dç 

Jo
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we obtain after some computation 

= (—k + E)3 {_3k +	+	E(k) - (1 - k2 )K(k)}.	(4.22) 

Thus, denoting by Vo the volume of the (cylindrical) tube corresponding to k = 0, and 
of height h 0 = lim h(k) we are led to 

4("V 1  
ir \h3 - h VoJ = (—k + E)3 {_3k +	+	E(k) - (1 - k2)K(k)


(4.23) 

2(-k +E)3}—	

1 - - 	
= (_k+E)3 

It suffices to show that Q(k) > 0 in 0 < k < 1; the limiting case k = 1 does not occur 
as a physical drop, and need not be considered. 

The following relations, when derived in the sequence indicated, are easy formal 
consequences of the definitions: 

E(0) = K(0) = 7r/2; E(1) = 1, K(1) = + 00	 (4.24) 

dE	____d2 E 

	

< 0; 
d(k2)2 < 

0	 (4.25) 

	

E(k)> - ( - i) k	 (4.26) 

_____	 _____ dE_E — K	dK 1 
- k 

<0;	= {(E - K) + 1 k2 E};	(K - E) = 1 - kE 
k2 (4.27) 

1
<K - E 

= 1k	
E(t) < In	 (4.28) 2 lil_k2	 Jo 1t2	 1 k 2 

(1_k2)_k(1_k)< E(k)—k<	[(1_k2)lnlk2 +(1_k 2 )J +(1—k). (4.29) 2	 §k2

The last inequality yields good information when k is near unity, but is not satisfactory

when k is small. We improve it as follows:

fo
E(k) - k 

j '
[ K(t) - E(t) +1]

dt
= f 'dt 

T 	1 -

' A

ds +(1 - k) 

1-k sE t dt	 . .1-k	s 

	

=j l2dsjT+(1_k)<j	1	h 
s2 

Jds+(1—k) 
 s 

so that

1 E(k)—k<z—ln----ln	 -In	ds+(1—k).

4 1—k k(2 -k) 

411-k

	

 s	1_s2
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This estimate provides information at both endpoints; however, we do not require its 
full strength in what follows. 

Using (4.24) and (4.28) we find

Q(0)=Q(1)=0	 (4.30)


in the sense of limits from within the interval 0 < k < 1. We have additionally 

	

—3 + k2 + k(E + K) +	- K) - 12	- k) 2 (E - K - k)	(4.31) 
dk - 

from which
= q(1) 0	 (4.32) 

dk	dk 
and

,,dQ 
2k+E+1 2 —Ic2 (K — E) —  24 —(E—k)(K—E+k)2 

dk2
12

k2
	

(4.33)

+.(E_k)2(E_K+ 1_k2E) 

from which
Q"(0) =	-	> 0, Q"(1) = 3 > 0.	 (4.34) 

2	7r 
From the above relations follows immediately that there are intervals about Ic = 0 and 
k = 1 in which Q(k) > 0. We obtain a crude but adequate estimate for the size of these 
intervals by estimating each factor in each term individually. We start with the interval 
0 < k < 0.1 and consider the five terms on the right side of (4.33) in order, using the 
estimates (4.24) through (4.29). We find

2k > 0 

E(k)> E(.05)> 1.569 

	

K - E	E(.05) 1	1	E(.05) 
(1—k2 )> .9975;	

k2 >	2 T2 
In 

1—k2 
> 2 >0.784; 

thus the third term of (4.33) is larger than 0.782 on 0 < k < 0.1. 

	

ir	K — E	7T	1	ir	k 

	

E — k< 2'	k < 4k	 4 T <41k2' 

thus the fourth term of (4.33) is larger than —4.127. 

E—K	717	1	it	1 

	

E — k> .9975—.0475;	
k2 > 4lnl k2 > 41—k2 

> —0.788;


1 —k2 
> E(k)> .9975 . +.002,5 > 1.569; 

thus the fifth term of (4.33) is larger than 2.192. Each of these estimates holds through-
out the interval 0 < k < 0.05; we conclude that Q" > 0.418 throughout this interval. 
From (4.23) we compute Q(0.05) > 0.001.
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The calculation near k = 1 proceeds analogously, although we need a smaller 
interval for success. We obtain, for the interval 0.99 < k < 1, that 2k > 1.98 and 
E(k) > E(1) = 1. Since K > E we have the third term of (4.33) larger than 0. Since 
1 - k2 <e 3 on the interval considered and tln°(1/t) is increasing when t <e°, each 
of the terms of the form (1 - k 2 ) In' (1/(1 - k 2 )) will be majorized at the lower end 
point k = 0.99. Also, 1 - k < 1 - P . It follows that the fourth term of (4.33) is greater 
than —2.425 on the interval. One sees easily that the filth term of (4.33) is positive. 
Adding the terms, we obtain Q" > 0.555 on 0.99 < k < 1, and thus Q(k) > 0 on this 
interval. From (4.23), Q(0.99) > 0.00012. 

0.2	0.4	0.6	0.8

k 

0.01 0.02 0.03 0.04	0.97 0.98 0.99 

Figure 4b: The function Q(k)of4 

The remaining interval 0.05 k 0.99 is compact, and in that interval each of the 
terms in (4.23) can be estimated uniformly together with its derivatives. In Fig. 4b is 
shown a formal graph of the function, obtained by standard computational procedures. 
We see that throughout the interior of the interval Q exceeds its minimum at the end 
points. This assertion can be made rigorous by dividing the interval into a finite number 
of subintervals, in each of which the oscillation of Q is less than its minimum at the 
end points. Q can then be evaluated to sufficient accuracy at each endpoint of the 
subintervals so that the bounds will assure the positivity. We have proved 

Lemma 4.2: In the thin case, there holds V > h 3 /ir, with equality only for the circular 
cylinder.
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Adjoining this information to Lemma 4.1, we have reduced the proof of the "Carter 
conjecture" to Theorem 5.7, to be proved in the following section. 

5. Instability criteria 
This section will be devoted to deriving conditions under which a stationary liquid 

bridge must be unstable. In particular, it will be shown (Theorem 5.7) that in the 
case of equal contact angles, a profile with one or more inflections will be unstable. 
This along with the results of the previous sections will complete the proof of the 
Carter conjecture. We do not restrict ourselves to the case of equal contact angles until 
Lemma 5.6, however, and useful facts will be noted for unequal angles. We begin by 
summarizing the results from [11] which will be required. (The reader should be aware 
that in [11] the planes are being thought of as vertical, whereas in this paper they are 
horizontal.) 

In contrast to the previous sections we will be considering the bridge surfaces non-
parametrically, described by r = f(u), u E [0, h]. This function must satisfy 

	

1"	 1 
M(f) m	

(1+ (f') 2 )312 - 1(1 + ( fl)2)1/2) = H	
(5.1) 

f'(0) = — cotyi 
f'(h)= cot 72 

for some constant H, where M is the rotationally symmetric mean curvature operator 
and -/I and 72 are the contact angles with the planes u = 0 and u = h. Condition 
(5.1) comes from the first variation, so that a solution to (5.1) is a stationary solution 
to the problem, and is the profile of a rotationally symmetric surface of constant mean 
curvature (the Delaunay surfaces, noted before). Not all stationary solutions are stable, 
however. For stability we must consider the second variation. A solution to (5.1) will 
be stable if the following two conditions are met. 

1) The Sturm-Liouville problem 

L(z)	
(	

1:'	\'	z 

(1+(ft)2)3/2) - f(1+(fl)2)1/2 =Z (5.2) 
z'(0) = z'(h) = 0 

for z(u) has precisely one negative eigenvalue, and 
2) 1(u) f(u; fo) may be embedded in a smoothly parametrized family f(u; e) of 

solutions to (5.1) with H = H(e), and and 72 fixed, with H'(Eo)V'(o) > 0, where 
V(e) is the volume of the bridge corresponding to f(u; ). 

A solution of (5.1) will be unstable if either condition is strictly violated, i.e., if 
(5.2) has two or more negative eigenvalues (it must always have at least one negative 
eigenvalue), or if H'(o)V'(o) is negative. 

It is natural to think that if a bridge is unstable, then extending that Delaunay 
surface (by considering planes with a larger separation and if necessary different contact 
angles) will only result in unstable bridges. However, due to the two different possible 
causes of instability, we were unable to prove this (the obvious idea of extending a 

2	Analysis. Bd. 11. I-left 1(1992)
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perturbation to which the smaller section of the unduloid is unstable runs into the 
problem of requiring that the new perturbation be volume conserving). A useful result 
in this direction can be obtained, though. If the original bridge is unstable due to 
(5.2) having at least 2 negative eigenvalues, then taking a larger section of the unduloid 
will result in a bridge which is also unstable for the same reason. The proof will use 
Sturm-Liouville theory. 

Lemma 5.1: Let I be a solution to M (f) = H, with no condition on contact angle. 
Suppose that z solves L(z) = 0, z(uj) = 1, Z'(Ui) = 0, and that z' has k roots in 
(u i , u 2 ). Then the number of negative eigenvalues of (5.2) on the interval [u i ,u 2] is 
k +1. 

Proof: This follows from the oscillation theorem for Sturm-Liouville equations. 
Using the notation of [2], we let 9(u; A) be the phase variable for (5.2), arising from the 
Priifer substitution. The differential equation that 8 satisfies is 

dO	
(A+	1.  

U	1(1 + (f1)2)j sin 2 9+  (1+ (fl)2),j'Cos 
2 9 .	(5.3) 

I 
The initial condition is that 9(u I ; A) = 7r/2, and we are given that 

+kir<8(u2;0):51+(k+1)ir 

From Chapter 10, Section 7 of [2], O(u; A) is strictly decreasing in A for fixed u > 0. 
Those values of A for which 9(u 2 ; A) = 11 + nir, with n an integer, are eigenvalues of 
(5.3). From the Sturm oscillation theorem, lim 8(u 2 ; A) = 0, so that as A goes from 
0 to —oo, it will pass through k + 1 eigenvalues, as desired I 

Lemma 5.2: Let f be as in the previous lemma. Suppose that 0 solves L(0) = 0 and 
is not identically zero. If ct/(u) has k roots in (Y1, y2), then (5.2) has at least k negative 
eigenvalues on [Y], Y21 

Proof: Let z(u) and 0 be as defined in the previous lemma, and let 0'(x) be 
the phase variable for 0. We have that 0(u;0) and 9(u) solve (5.3), and therefore 
cannot intersect unless they are identical. The fact that ' has k zeroes implies that 
0* passes through k odd multiples of M. Assume first that 8*(0) € [ f, f). Then 
we must have 0' ( y2) > (k - 1)r + E . Since 9* and 8(x;0) do not cross, it follows 
that O( y2, 0) > (k - 1)7r +. Lemma 5.1 will then apply, giving the desired result. If 
9* [f, ), we may add or subtract the appropriate multiple of ir to 8. The result 
must still satisfy equation (5.3), and we may proceed as before I	- 

Theorem 5.3: Let 1(u) be the profile of an unduloid defined for all u. Suppose that the 
Sturm-Liouville problem for the operator L defined in (5.2) with boundary conditions 
z'(u 1 ) = z'(u 2 ) = 0 has more than one negative eigenvalue. Suppose that yi u 1 < 
U 2 5 1/2 . Than the Sturm-Liouville problem with boundary conditions z'(y) = z'(y2 ) = 
0 has more than one negative eigenvalue. 

Proof: Let z(u) solve L(z) = 0 with z(u) = 1, z'(u i ) = 0. By Lemma 5.1, z' 
must have a second zero before u 2 . Using Lemma 5.2 with z in place of 4>, the result 
follows •
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Corollary 5.4: A bridge whose profile has two vertical points is unstable. 
Proof: From the appendix of [12] we know that if f(u:) = 0 and F( U 2) = 0 then 

the Sturm-Liouville problem for L with boundary conditions z'(u) = z' ( u2) = 0 has at 
least two negative eigenvalues. The result now follows from Theorem 5.3 I 

Corollary 5.5: A bridge whose profile has two or more inflections is unstable. 
Proof: It is straight-forward to verify that L(f') = 0. Since f" has at least two 

zeroes, the result follows from Corollary 5.2 • 
We now restrict ourselves to drops with equal contact angles, to obtain the stability 

results required to prove the Carter conjecture. From [12] we know that if there are no 
inflections in the profile curve then )lo <0 < A,, and from Corollary 5.5 we know that 
if there are two inflections then A <0. We must now deal with the remaining case of 
one inflection. We first need a technical lemma. 

Lemma 5.6: Suppose that u 1 and u 2 satisfy F(u) = — f'(u2 ) = Cot -y (where f is the 
profile of an unduloid), and that f" = 0 exactly once in (u1, u2). Then 

u2_ u I = J v'a2_ c2 cos2 ede_2a cos 7	 (5.4)


where a and c are the standard quantities for the ellipse generating 1. 
Proof: There are two cases to consider: y < ir/2 and > 7r/2. First assume that 

7 < 717/2. Let C, be the u coordinate of the vertical point of the profile curve between u1 
and u2, and let e2 be the u coordinate of the next vertical point after C, (the geometry 
of the unduloid forces e2 to be greater than u2 ). Since 

U2 u1 = ( - ) -	- u 2 ) +	- u0 ,	 (5.5)


we will need to compute each quantity on the right of (5.5). 
- is half the arclength of the generating ellipse, giving the integral in (5.4). 

The other two terms will be computed using formulas (3.10) and (3.11) from [12], for 
inclination angles 0 and ±a (where = 7 — ir/2 < 0) (the inclination angle is the angle 
the tangent to the meridional curve makes with a vector parallel to the u axis, and is 
7r/2 minus the angle ik of Section 1). We shall assume that f"(ui) < 0 (otherwise we 
could reflect the unduloid across the line u = (ui + u2)/2). 

For - u1, instead of going from u 1 (where the inclination angle is ) to (where 
the inclination angle is 0), we will go from C, to the first point beyond C, which has 
inclination angle -. By the symmetry of the unduloid, this is the same distance, and 
it has the virtue of telling us exactly what R is in formula (3.10) of [12]: We obtain 

1 Cos 2i - U1 = ff J cost - V'cos 2 t + 4RH + 4R2H2 dt 
Now, R in the above formula is the radius at 1 and is therefore a — c, and H is —1/(2a). 
Using these in the above equation yields 

•-0 
- u l	 cost -	Cos 2 t = —a / _____________ 

dt .	 (5.6) 

	

Jo	VIco52t+_1 

2*
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Similarly,
- 1	 Cos 2t 

2	2	 dt 
j,, 2H	 J2 t + 4RH + 4R2H2 

where R is now the radius at e2 and is therefore a + c. Thus 

cost 	
Cos 2t	dt _____________ 

Jcos2t+_1 

From (5.6) and (5.7) we obtain an expression for	- u 1 ) - ( 2 - u2): 

(,—u1)—(2—U2)=
Cos 2 i	 cos2t I cost - 	dt + a] cost +	 dt J 

J
cos2 t + - 1	°	jcos2 t ± - 1 

which is of course 2a sin a = — 2a cos 7, completing the proof in the case y < 7r/2. The 
proof in the other case is similar and is omitted • 

fo

0
u2=—a

 

Theorem 5.7: A liquid bridge with equal contact angles and one or more inflections 
has A <0 (and is therefore unstable). 

Proof: The only case not yet dealt with is when f has exactly one inflection point 
in (0, h). In this case f must be an unduloid (since nodoids and catenoids have no 
inflections). Assume that for this f we have A, > 0. The first step is to show that this 
implies the existence of a liquid bridge with equal contact angles with A, = 0 and with 
one interior inflection. 

Considering the unduloid of which I is a section, we may extend I to be defined 
for all u. Given an u 0 , consider the function z which solves L(z) = 0, z(uo) = 1, and 
z'(uo) = 0. We will define the point conjugate to u0 to be the first u value larger than 
uo for which z'(u) = 0. Denote this conjugate point by C(uo). It is known [12] that 
a profile having contact angles E will have A, < 0 if f is not constant. Thus (using 
Lemma 5.1) for our specific unduloid f, if f' ( u o) = 0, C(u 0 ) will be less than the next 
zero of f'. 

The assumption on I amounts to assuming that C(0) > h, in other words that 
C(0) is greater than the first root of f'(u) - cot = 0, where Yo is the contact angle 
for the original unduloid. By continuity, therefore, as the contact angle varies from 
to there will be an angle i such that for the value u 1 solving 1(u,) = 7c0t7,, 
we have that C(u i ) is the first root of f'(u) - cot , = 0 greater than u 1 . Therefore, 
for -y, we have that (5.2) has A, = 0 on the interval [u,,C(u,)]. By translating and 
rescaling the interval [u i ,C(u i )] to [0, h], we may assume that we have a function I with 
f'(0) = —f'(h) = cot , for some , that f has exactly one inflection point in (0,h), 
and that (5.2) has A 1 = 0 for this 1. We may also assume, by reflecting the graph of I 
across the line u = h/2 if necessary, that f'(u) cot for u E (0, h] 

We will now see that this is impossible. The idea of the proof is similar to the one 
used in the appendix of [12], in that we will exhibit a specific function z satisfying L(z) = 
0, z'(0) = 0, but z'(h) 36 0. Let a0 , b0 , and co be the standard quantities for the ellipse 
generating 1. From Lemma 5.6 we have that h =	/a - c cos2 0 dO - 2a0 cos y. 

(5.7)
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We now consider unduloids with the same mean curvature (hence the same value 
for a), but with differing c's. We translate these to have derivative equal to cot -y at 
u = 0. To be more precise, let g(u; c) be the family of solutions of M(g) = — 1/2a0 with 
g'(O;c) = cot -y for all c. Then as in [12], L(g(0;co)) = 0 and g(0; co) = 0. The proof 
that g'(h; co) 76 0 is essentially the same as the proof of Theorem A.1 in the appendix 
of [12]. Define 6(c) to be the difference between h and the second positive u value 
satisfying f'(u) = - cot y, so that 

6(c) = j .t/a - c2 cos2 OdO - 2a0 cosy - h 

and 6(co) = 0. As in [12],

g(h;co) = —6'(co)g"(h;co) 

Neither of the quantities on the right of the above equation can be zero, so that 
g(h; co) L 0. But this proves that 0 cannot be an eigenvalue of L, since the eigenfunc-
tion z 1 (x) would satisfy the same ordinary differential equation and the same initial 
conditions as gc(u)/gc(4 

Appendix. Characterization of the family of inflectionless pro-
files

Since we have seen that no stable drop with equal contact angles can have an 
inflection, it seems appropriate at this time to describe the family of inflectionless profiles 
(for equal contact angles), expanding on results of [12]. There it is shown that the family 
.F of inflectionless profiles is connected, can be parametrized by H, and for large volumes 
the profiles are uniformly close to arcs of circles. We first deal with equal contact angles 
greater then 7r/2. 

Theorem A.l: For > 7r/2, if H > 2 cos y the infiectionless profile with mean cur-
vature H is a nodoid (2 cos is the mean curvature of the sphere with the appropriate 
contact angles), and if H < 2 cos the profile is an unduloid. 

Proof: The parametric equations for the profiles derived in [12] apply to both 
nodoids and unduloids. To tell which we have, we look for the possibility of an inflection 
if the curve continues (nodoids have no inflections, unduloids must have inflections), 
although of course we don't have an inflection on the interval (0, 1). If 0 is the inclination 
angle, then using the explicit formula for y() in [12], Equation (3.1), we find that 

- 2Hcos2+4RHsiny+4R2H2
(A.1) 

ds - cos +Vcos2 +4RH sin +4R2H2 

Here R is the wetted radius on the plane x = 0. If 0 can get all the way to 7r/2 without 
an inflection occurring, we must have a nodoid. (A.1) tells us that if 4RH sin +4R2H2 
is positive, then no inflection occurs, but if 4RH sin -t+ 4R2 H2 is negative, an inflection 
occurs before 0 gets to 7r/2 (once an inflection occurs, we may no longer use Yo (which 
is for profiles of convex drops) and the derivation for (A.1) no longer applies).
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We are interested in the sign of RH(sin y + RH), where R is always positive and H 
is always negative. In the proof of Theorem 4.2, [12], it is shown that d(RH)/dH < 0 
throughout the family of uninflected convex drops. For the sphere one easily checks 
that RH = - sin -f. Thus for H between 2 cos; -y and cos -t, RH(sin7 + RH) > 0 and 
the profile is a section of a nodoid, and for H < 2 cos -y the profile is a section of an 
unduloid. 

We can now describe the family of uninflected profiles for equal contact angles 
greater than ir/2. The large volume limit is a piece of a cylinder whose mean curvature 
is easily calculated to be cos-t(< 0). From Theorem A.1, the large volume profiles 
which are close to arcs of circles are sections of nodoids, and as the mean curvature 
decreases so does volume until we reach another circular arc (which is the profile of a 
sphere). As we continue reducing mean curvature, we pass through a series of unduloids 
(with volume still decreasing) until we finally reach an unduloid with inflections on both 
boundaries, at which point there is a bifurcation to a symmetric family of unduloids 
with two inflections and two families of one-inflection unduloids (proven in [101). There 
are no more inflectionless unduloids, since the parameter set of H's for .T is an interval 
[121. The fact that volume is decreasing throughout is Theorem 4.2 of [12] • 

We now turn our attention to the case y < ir/2, so that we deal with concave 
rather than convex drops. The large volume limit is again an arc of a circle with H 
approaching cps -y(> 0). 

Theorem A.2: For -y < 7r/2, if H > 0 the uninflected profile is a section of a nodoid, 
and if H <0 the uninflected profile is a section of an unduloid. 

Proof: Again we look for the appearance of inflections on the continuation of the 
profile. Since y	= cos 4' + 2Hy, we want to see whether 

ds

/cos2 4' - sin  -y + (2RH + sin 7)2 = cos 4' + 2Hy (A.2) 

can get to zero. (For a concave drop we use the explicit expression for y i in [12], (3.6).) 
If H > 0 the expression in (A.2) cannot be zero for any 4,, so we must have a piece 
of a nodoid. For H < 0, we must have 0 < 2RH + sin < sin-y, where the first 
inequality comes from the sign of 21on the boundary plane. But then for 4, = 
cos2 4, - sin2 + (2RH + sin 7)2 <0, so we have an inflection before 4' = ir/2. Thus in 
this case the profile is an unduloid i 

The family of uninflected drops in the case < 7r/2 therefore behaves as follows: 
in the large volume limit we have nodoids which are close to a circular arc with H 
close to cos-t(> 0). As H decreases through zero, we pass through the nodoids, and 
at H = 0 the profile is a catenary. As H decreases further the profiles are unduloids, 
until again we reach the limit of the family when inflections appear on the boundary, 
with the same sort of bifurcation as before. We can no longer say that volume decreases 
as mean curvature decreases through the inflectionless family, however. It has been 
observed numerically that for y <7o 31.14° the volume is not decreasing throughout 
the family ([12]), and Langbein ([8]) has derived an transcendental expression of which 
7o is a root. Moreover, it is conceivable that V(H) has more than one local minimum
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even for -y > yo, which would imply that the family of stable drops is not connected, 
although the family of uninflected drops is. This has not been observed numerically, 
however. 
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Book review 

L. de BRANGES, I. GOHBERG and J. R0vTSWAK (eds): Topics In Operator Theory - Ernst D. 
Hellinger Memorial Volume (Operator Theory: Advances and Applications: Vol. 48). Basel - 
Boston - Berlin: Birkhauser Verlag 1990; 448 pp. 

The series "Operator Theory: Advances and Applications" edited by Israel Gohberg belongs to 
the most remarkable editions in the mathematical literature of the last decade. Since the be-
ginning in 1979 up to now more than 50 volumes have been published. The main aims of this 
series include not only publishing recent progress in operator theory and related topics but also 
cultivating traditions and remembering the very roots of operator theory. 

After the volumes 4 and 18 in this series which were dedicated to Otto Toeplitz and lssai 
Schur, respectively, there has been published a volume in honour of Ernst Hellinger who can be 
conceived as one of the founders of operator theory. Hellinger was among the first to demon-
strate the potential of Hilbert's program in analysis, and he championed Hubert's point of view




