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Singular Integral Equations with Monotone Nonlinearity
in Complex Lebesgue Spaces
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By methods of monotone operator theory, existence and uniqueness theorems are proved for
some classes of nonlinear singular integral equations of Cauchy’s type involving large nonline-
arities in weighted complex Lebesgue spaces and also norm estimates of solutions are obtai-
ned.
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0. Introduction

There is a large literature on nonlinear singular integral equations of Hilbert’s and Cauchy’s
type with (in some sense) small nonlinear terms (see [4] and the references therein). In recent
years without smallness assumptions on the nonlinearities existence of solutions in real Lebes-
gue spaces L, is obtained for some classes of nonlinear equations with Hilbert and Cauchy
kernel by means of the theory of monotone operators by mainly German and Soviet mathema-
ticians (see the surveys [1,6,13]).In the present paper by methods of monotone operator
theory existence and uniqueness theorems are proved for three different classes of nonlinear
singular integral equations of Cauchy’s type involving large nonlinearities in weighted complex
Lebesgue spaces Lp(p) and also norm estimates of solutions are obtained.

1. Preliminaries

At first we state some known properties of the Cauchy singular integral operator and the basic
theorems of monotone operator theory in complex Banach spaces, which are used in the sequel.

Let p be a non-negative real measurable function on the whole real axis R, which is al-
most everywhere finite and different from zero. Then /.P(p), p > 1, is the Banach space of all
complex-valued measurable functions u on Rwith finite norm [lul| =(IRQ(.\")Iu(.\')IPd.\')’/P. We
write U € L:,(p) if additionally u is a non-negative function. For p = 1 we simply write Lp and
lI-1l,,, respectively. The dual space to £ (o) is the space L (o' 9) with g = p/(p - 1), the con-
jugate exponent to p, and norm {-Il,.

We introduce the Cauchy singular integral operator (the so-called Hilbert transform)

<

(SuXx) =1ltfsﬂ_‘—§,)-ds, ~eR.
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iThe following basic characteristics are well known (see [7,9]):

ISull, = llull,, (Su,v) = - (u,Sv) for all u,ve £, ' )
ISull < IS Hlull for all we £ (), o(x) = Ix|*, ~1<a<p-1 (2)
where (-, ) and |- || denote the usual scalar product and norm, respectively. From (1) it follows

that (Su,u) = -(u,Su) = -(Su,u) for all ue 4, so that S is a positive operator in £, since
Re(Su,u) =0 forall ue 4. 3)

Let X be a complex Banach space, X' * the conjugate space of X, and <-,-> the pairing
between X~ and X. The following basic theerem of monotone operator theory ([5]; cf. also [3:
Theorem of Browder and Minty]) is well known.

Theorem 1: Ler X be a reflexive separable complex Banach space and A: X—> X~ a mono-
tone, hemicontinuous, coercive and bounded operator. Then the equation Au = f has a solution
u* e X for any fe X*. This solution is uniquely determined if A is strictly monotone.

This theorem implies (cf. [3,5]) the following

Corollary 1: Assume that A: £ (o) - L (0'79), p>1, is a strictly monotone, hemicontinu-
ous and bounded operator. If there exists a real-valued function v = v(t) of the non-negative
argument t with the property lim, . Y(t) = +® such that Re<Au,ud> 2 y(lul)llull for all u ¢
Lp(p), then the operator A has an inverse A% Lq(p" ) > Lp(p) which is strictly monotone,
hemicontinuous and bounded.

Now suppose that F(x,z): R x € — C satisfies the Carathéodory conditions (i.e., F(-,z) is
measurable for allz e C and F(x, ") is continuous for almost all x € R) and let (Fu)(x) = Fx,u(x))
be the corresponding Nemytski operator. Let us write out for the sake of reference conve-
nience all the conditions used below on the function F determining nonlinearity of the investi-
gated equations. Namely, depending on the class of the investigated equations suppose that F
satisfies either the conditions (i) - (iii) or (iv) - (vi) (d,,..., d, - positive constants):

() IF(x,2)l s c(x) + d,p(x)| 2P forae. x e Rand all ze € (ce L")
(i) Re{(F(x,2,)- F(x.z,))(z, - z,)} 2 0 fora.e. x ¢ Rand all z,, z, ¢ C.
(iii) Re{(F(x,2)z} 2 d,0(x)IzIP - D(x) forae. xeRandall ze € (D e £7).
() IF(x.2)] s g(x) + dy((p(x)) *z])P"Vforae. xe Rand all z¢ € (g« £(0).
(v) Re{(F(x,2,)- F(x.2,){z, - 2,)} > 0 fora.e. xc Rand all z,, 2z, ¢ € such that z, # z,.
(vi) Re {(F(x,2)2} 2 d,((e(x)*|z[)* PVl z| - D(x)forae. xe Rand all z¢ € (D¢ £7)).

Let us notice that if the conditions (i) - (iii) are fulfilled , then the Nemytski operator F,
associated with the function F(x, z), is a bounded and continuous, monotone, coercive map-
ping from the whole space Ap(p) into Lq(o"q) (cf. [4,14]) and if the conditions (iv) - (vi) are
fulfilled, then the operator F is a bounded and continuous, strictly monotone, coercive map-
ping from the whole space 4 (o'~ ) into £ (p).
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2. On the positiveness of some singular operators in weighted complex Lebesgue spaces

As is well known, the singular operator S doesn’t act in general from Lp into Lq when p ¥ q,
and therefore it has the property of positiveness only in the case p = ¢ =2, as it can be seen
from (3). In connection with this the lemmas used below are of interest in investigating the
corresponding nonlinear singular integral equations.

Lemmal: Let bep22,
bwe sz/(P_z)(pz/(z"’)) asp>2 and b/Yo,w/fp e A asp=2. (4)

Then the singular operator

(Qui(x) = %I(WW(S) + bs)wlx))uls) ds

S - X

is a bounded and positive mapping from the whole space lp(p) into Lq(p"q). More precisely,
we have

IQull. s 200 /Pbliyy (-2 llo™/Pwllyp -y llull and Re<Qu,ud> =0 Vue £ylo).  (5)

Proof: Using Holder's inequality, we have [lwull, < IIQ"/PWII2P/(p_2)|Iu||, which implies
that wu e 4,. Then, by (1), we get [IS(wu)ll, < llp"/Pw|I2p/(p_2)llull. Hence

1o S(wu)ll, s Ilp"/Pbllzp/(P_z)Ilp"/Pwllzp/(P_z,llull.
Analogously we obtain the estimate
1@ S(bull. s o™ Pbllyp p-2) o™ /PW il iyl

Since |Qull. s IbS(wu)ll. + |wS(bu)ll, for all u ¢ lp(p) the inequality in (5) is proved. Finally,
using (1) we have

{Qu,ud = -2ilm(wu,S(bu)) for all ue Ap(p) (6)
so that the equality in (5) is proved B
Corollary 2: Let be p2 2 and

T (p-2)/
< J(o(.\'))z’(z"’)d.\')p P <o asp>2
- oo

supvrai (p(x)7*2 <o asp=2,
- o

axa+eo

clp) =

Then S: ,(P(p) - Lq(p"q) is a bounded and positive operator, i.e. ISull. s c2()llull and
Re{Su, u> =0 foralluce Kp(p).

We note that, under the assumptions of Corollary 2, we have £,(p) C &, C L (e'™ 9.
Analogously the following lemma is obtained.

Lemma 1 Let be 1 <ps 2,

bwe LZP/(Z_p)(p”(Z'P)) asl<p<2and b¥p,wipek_ asp=2. (7
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Then Q: Lq(p"q) —>£p(p) is a bounded and positive operator, i.e.
Qvll < 2||O'/pb|lzp/(2. p)||p’/‘°W"2p/(2-p)”V”. and Re<Qv,v> =0 Vve KL (o' 9.
There holds the following:
Lemma 2: Let be p2 2 and p(x) = [x|*%, where -1 <a<p-1.If
we L, (20?2 P) asp>2 and wipeh_ asp-=2, (8)

then the singular operator

+co

(Wu)(x) = Tltf wix) + w(s) u(s)ds

) s-x
is a bounded and positive mapping from the whole space £,(p) into £ (o'~ 9), i.e.
IWulls < 2v(p,)llo™2Pwll, (p-pllull and Re<Wu,ud =0 forallue A () (9)

where (see [7])

ctg(n(1 + a)/2p) as-1<a<0
vip,a) = { ctg(n/2p) asO0sasp-2 (10)
ctg(n{p-1-a)/2p) asp-2<a<p-1.

Proof: Since |wull, s ||p“2/Pwllp/(p_2)Ilu Il and (see [7]) IISHl = lIS]l., using (2) we have
IWulle sllo™2Pwll, ., olISull +IISull. lIwull, s 2v(p,a)lle™2Pwll, p-pyllull,

so that the inequality in (9) is proved. Finally, using (1) we have <Wu, u) = 2ilm<{Su,wu)> (cf.
(6)) so that the equality in (9) is proved B

Analogously the following lemma is obtained.

Lemma 2": Let bel < p<2ando(x) = |x|%, where -1 <a<p-11If

we Lp/(z_p)(p”(z"’)) asl1<p<2 and wpekh_asp=2, (11)
then W: £ (o'~ 9) = £ (p) is a bounded and positive operator, i.e.

IWv] s 2v(p,01)”Pz/"’wllp/(z_p)llvll. and Re{Wv,v)> =0 forall ve Lq(p"q),

where (see [7]) v(p,a) = v(q,a(l - @) is determined by formula (10).

3. Existence and uniqueness theorems

Let us first consider some equations which are simpler for investigation.

Theorem 2: Let be p 2 2, b and w satisfy the condition (4) and a be a non-negative a.e.
different from zero function on R satisfying the condition (8). If the function F(x,z) satisfies
the conditions (i) - (iii), then the equation
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Au = xau +2,Qu +A,Fu=f (12)

has a solution u® ¢ £(o) for any function f ¢ L o(0*"9) and for any X, € € and X,, X, ¢ R such
that X;ReX, 2 0, X, # 0. Moreover, if additionally D = 0, then the inequality

™l s (d7 a5t £ 1) P (13)

holds. The solution u® is uniquely determined if either \,ReX, > 0 or the condition (v) is ful-
filled.

Proof: By a shift we can always assume that ReX, 2 0 and X, > 0. From the conditions (i)
- (iil) and the inequality llaull, s llp”2/Pa lo/(p-2)llullusing Lemma 1 we obtain that A: A (o)
- Lq(p"") is a bounded, continuous, monotone and coercive operator. Hence, by Theorem 1,
we infer that the equation (12) has a solution u*e Kp(o) and this solution is uniquely determi-
ned if either ReX, > 0 or the condition (v) is fulfilled. Finally, we note that for D = 0

Xyd, lu™lP s Re<Au™,u"> = Re<f,u*> < IIflJull.
so that thé inequality (13) is true B
Analogously, by using Lemma 2 instead of Lemma 1 there is proved the following

Theorem 2": Let be p2 2 and p(x) = |x|%, where -1 <a <p- 1. Let w satisfy the condition
(8) and let a, F, f,\,,X,, X, satisfy the conditions of Theorem 2. Then the equation

Xyalxu(x) + X, (Wud(x) + A, Flx,u(x)) = £(x)

has a solution u™ ¢ £,(p). Moreover, if additionally D = 0, then the inequality (13) holds. The
solution u”® is uniquely determined if either A;Re X, > 0 or the condition (v) is fulfilled.

Remark 1: The simplest example of a function F satisfying the conditions (i) - (iii), (v) is
F(x,z) = p(x)z|z|P~2, where p is an even number.

We now consider the general nonlinear singular integral equation of Hammerstein's type.
There holds the following

Theorem 3: Let be 1 < p <2 and let b, w satisfy the condition (7), F the conditions (i), Gii)
and (v). Then the equation

u+AQFu=f (14)

has a unique solution u® ¢ Kp(p) for any fe Ap(p) and each fixed X ¢ R. Moreover, if additio-
nally ¢ = 0 and D = 0, then the inequality

lu*ll s &, d, M NIF Nl (15)
holds, and if instead of it the condition

(vii) Re {(F(x,2)2} 2 d((e(x)"*| F(x,2)IP)**P=%) for a.e. x e R and all z ¢ C (d, > 0)
is fulfilled. then there holds the inequality

lu® = £11 s 20110270l o pylo* P Il oy (st )P (16)

6  Analysis. Bd. 11, Heft 1 (1992)
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Proof: From the conditions (i), (iii) and (v), by Corollary 1 we infer that there exists the
inverse operator F71: Kp(p) -> Lq(p"q)and F~tis a strictly monotone, hemicontinuous and
bounded operator. We shall prove that F~! is a coercive operator. Let $ € Lq(p"") andF 71y =
¢. By condition (i), we have

19l = IFell. s llclla + d,llplPt a7
so that [le|| = o if |$ll, = . Hence

Re{F ¢, ¢> 5 d,llellP - DI,
il llell. +d lleliP~*

i.e. F7*is a coercive operator.
We now consider the auxiliary equation

as [Ppll, = o,

Qv = f, where Ov := F v + AQv. (18)

It is easy to see that if v¥e L (p' ¥ is a solution of (18), then u®=F *v"¢ £ () is a solution
of (14). Since @: & j(p*"9) - £ (p) and @ is a strictly monotone, hemicontinuous, coercive and
bounded operator, then by Theorem 1, the equation (18) has a unique solution v e Lq(p"q).
Hence, the equation (14) has a unique (by condition (iv)) solution u*¢ £ (o).

We now prove the inequality (15). Using Lemma 1" and the conditions (i), (iii) (with ¢ = 0
and D =0), by (17), we have

d,llu *I{P s Re<u™ Fu™> = Re<{f,Fu™> s d,lIf lillu*|IP"*
so that (15) is true. Finally, using Lemma 1°, we have
llu™ - £1 20010 Pblp sz pyl0*PW llap sz py IF U *la. (19)

Since Re<u " Fu*> < |If | IFu*|l. and, by condition (vii), Re{u* Fu*> 2 d,[[Fu*llZ, we have
IFu*ll. s(ds*lf II)‘/(q"). Hence, by (19), the estimate (16) is true il

Analogously, using Lemma 2°, we can prove the following

Theorem 3" Let be 1 < ps 2 and o(x) = |x|%, where -1 < a < p - 1. Let w satisfy the con-
dition (11) and F, f and A the conditions of Theorem 3. Then the equation u + \WFu = f has a
uinque solution u® ¢ lp(p). Moreover, if additionally ¢ = D = 0, then the inequality (15) holds,
and if instead of it the condition (vii) is fulfilled, then the inequality

lu® - £11 s 2(p, ) 12Pw I, (5 (ds~ £ )P

holds, where v(p,a) is determined in Lemma 2.

Remark 2: Equations of types (12) and (14), where the role of the operator Q is played by
other singular operators were considered in [8], when p = 1. ‘

Let us consider the corresponding cases that a singular operator enters the equation non-
linearly.

Theorem 4: Let be p 2 2 and let b,w satisfy the condition (4), F the conditions (iv) - (vi).
Then the equation
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u+AFQu-=r (20)

_has a unique solution u" ¢ Kp(p) for any fe Kp(p) and each fixed \ ¢ R. Moreover, if additio-
nally g =0 and D = 0, then there holds the inequalities

lu®- £l s dyd, tiIFl (21

lu™ - Fll s (2d2d, o™ Pbllop sp- ) llo”PWllyp - oy I I)7P72. (22)

Proof: From the conditions of the theorem we infer that
Q: ;(P(p) - Lq(p"q) and F: Lq(p"q) —>lp(o)

and that F is a strictly monotone, hemicontinuous, coercive and bounded operator. Hence, by
Corollary 1, the operator F has an inverse F " !: Kp(p) - Lq(p"q) and F ™' is a strictly mono-
tone, hemicontinuous, coercive (cf. the proof of Theorem 3) and bounded operator. We intro-
duce v = A"}f - u) as a new unknown and apply F ! to both sides of (20). Then we obtain the
equation :

®v = 0, where ®Ov :=F v +AQv - QFf. (23)

Since ©: Kp(p) - Lq(p"q) and @ is a strictly monotone, hemicontinuous, coercive and boun-
ded operator, then, by Theorem 1, the equation (23) has a unique solution v*¢ lp(p). Hence,
the equation (20) has a unique (by condition (v)) solution u™ = f - Av*¢ £ ().

We now prove the inequality (22). Let ¢ =F "'v*. Since F 'v*+AQv* =Qfandg=0,D =
0, then, by (iv), (vi) and (5),

d,IPlT < Re<F¢, > = Re{v*,F v" + AQv™>
< 2d, ||()'‘/l"b[|2,p/(p..2)“0_‘4’“/||2P/(p__2)[|f||||4J“?_l

and fu™ - Il = IXIlv*ll s IX]d,ll$ll7 7" so that the inequality (22) is true. The proof of the
inequality (21) is similar to that of (15) @

Analogously, using Lemma 2, one gets the following

Theorem 4": Let be p 2 2, p(x) = |x|%, where -1 < a < p - 1, and w satisfy the condition
(8), F,fand ) the conditions of Theorem 4. Then the equation u + A\AFWu = f has a unique so-
lution u* € £,(p). Moreover, if additionally g = 0 and D = 0, then the inequalities (21} and

. - - /A p-
Hu* - £ s (2084, v(p, adllo™2Pwl,, oy IF 1) P 7Y

hold, where v(p,a) is defined in (10).
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