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Singular Integral Equations with Monotone Nonlinearity 
in Complex Lebesgue Spaces 
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By methods of monotone operator theory, existence and uniqueness theorems are proved for 
some classes of nonlinear singular integral equations of Cauchy's type involving large nonline-
antics in weighted complex Lebesgue spaces and also norm estimates of solutions are obtai-
ned. 
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0. Introduction 

There is a large literature on nonlinear singular integral equations of l-lilbert's and Cauchy's 
type with (in some sense) small nonlinear terms (see [4] and the references therein). In recent 
years without smallness assumptions on the nonlinearities existence of solutions in real Lebes-
gue spaces L is obtained for some classes of nonlinear equations with Hubert and Cauchy 
kernel by means of the theory of monotone operators by mainly German and Soviet mathema-
ticians (see the surveys [1, 6,13]). In the present paper by methods of monotone operator 
theory existence and uniqueness theorems are proved for three different classes of nonlinear 
singular integral equations of Cauchy's type involving large nonlinearities in weighted complex 
Lebesgue spaces L(p) and also norm estimates of solutions are obtained. 

1. Preliminaries 

At first we state some known properties of the Cauchy singular integral operator and the basic 
theorems of monotone operator theory in complex Banach spaces, which are used in the sequel. 

Let p be a non-negative real measurable function on the whole real axis R, which is al-
most everywhere finite and different from zero. Then L(p), p > 1, is the Banach space of all 
complex-valued measurable functions Li on Rwith finite norm Ilu II =(fRP .\; ) Iux)I P dx)1 . We 
write u E Z,(p) if additionally u is a non-negative function. For p 1 we simply write 4p and 

II fly , respectively. The dual space to .(p) is the space 4q(p1) with q = p/(p - 1), the con-
jugate exponent top, and norm II' IL. 

We introduce the Cauchy singular integral operator (the so-called Hilbert transform) 

(Su )(.v)J'44ds, xeR.
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The following basic characteristics are well known (see [7,9]): 

fiSu 12 = Dull 2 , (Su,v) = - (u,Sv) for all u,v	 (1) 

IlSull :^ 11S 1111u11 for all u € 41,(p), p(x) = lxl, -1 - a < p - 1	 (2) 

where (, ) and II II denote the usual scalar product and norm, respectively. From (1) it follows 
that (Su, u) = -(u,Su) = -(Su, u) for all u E 4 2 so that S is a positive operator in 4 , since 

Re(Su,u) 0 for all u € L 2 .	 (3) 

Let A' be a complex Banach space, X the conjugate space of X, and K,> the pairing 
between X and X. The following basic theorem of monotone operator theory ([51; cf. also [3: 
Theorem of Browder and Minty]) is well known. 

Theorem 1: Let X be a reflexive separable complex Banach space andA: X-- > X a mono-
tone, he,n,continuous, coercive and bounded operator. Then the equation Au f has a solution 

€ A' for any f c X. This solution is uniquely determined if A is strictly monotone. 

This theorem implies (cf. [3,51) the following 

Corollary 1: Assume thatA: (p) ->f_ (21-q) p> I, is a strictly monotone, hemicontinu-
ous and bounded operator. If there exists a real-valued function y = 1(t) of the non-negative 
argument t with the property lim r y(t) +m such that Re<Au,u> z 1(llulDIiulI for all u 

then the operator A has an inverse A1: 4q(p1 ) -
	(p) which is strictly monotone,

hemicontinuous and bounded. 

Now suppose that F(x,z): R x C - C satisfies the Carathodory conditions (i.e., F(,z) is 
measurable for all z E C and F(x,) is continuous for almost all x E R) and let (Fu)(x) F(x, u(x)) 
be the corresponding Nemytski operator. Let us write out for the sake of reference conve-
nience all the conditions used below on the function F determining nonlinearity of the investi-
gated equations. Namely, depending on the class of the investigated equations suppose that F 
satisfies either the conditions (i) - (iii) or (iv) - (vi) (d1 ,..., d4 - positive constants): 

(i) IF(x,z)l ^ c(x) + di p(x)lzJP 1 for a.e .x c R and all z € C (cc	1(p1q)) 

(ii) Re {(F(x,z) - F(x.z2 ))(z 1 - z2 )} a 0 for a.e .x E R and all z 1 , z2 E C. 

(iii) Re(F(x,z)2} a dp(x)IzJ P - D(x) for a.e .x € R and all z € C (D € 

(iv) IF(x.z)l S g(x) + d3((p(x)) hlzJ)1'(P1) for a.e .x € R and all z E C (g e 

(v) Re f(F(x, z ) - F(x.z2 ))(z 1 - z2 )) > 0 for a.e .x € R and all z , z2 c C such that z 1 tz2. 

(vi) Re [(F(x,z)2) a da ((p(x)) -hIzI)1'(P1)Izl - D(x) for a.e .x € Rand all z € C (fl € 

Let us notice that if the conditions (i) - (iii) are fulfilled , then the Nemytski operator F, 
associated with the function F(x, z), is a bounded and continuous, monotone, coercive map-
ping from the whole space into q(p1 ) (Cf. [4,141) and if the conditions (iv) - (vi) are 
fulfilled, then the operator F is a bounded and continuous, strictly monotone, coercive map-
ping from the whole space 4 (p' -L7 ) into
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2. On the positiveness of some singular operators in weighted complex Lebesgue spaces 

As is well known, the singular operator S doesn't act in general from I.., into 4,, when p 0 

and therefore it has the property of positiveness only in the case p q 2, as it can be seen 
from (3). In connection with this the lemmas used below are of interest in investigating the 
corresponding nonlinear singular integral equations. 

Lemma 1: Let be pa 2, 

b,w€ 42 ,(p - 2)(p(P)) asp> 2 and b/I,w/I	&,, asp = 2.	 (4) 

Then the singular operator 
- 

(Qu)(v) - - -

	

	
ds 

- co 

is a bounded and positive mapping from the whole space ,(p) into 4 ,,( p , -q). More precisely, 
we have 

liQull. :5 2 IIp1/PbII2p/(p2) HIP 1/P It' D ZP,(P _ 2 )IIuII and Re<Qu, u> = 0 V u €	,(p).	(5) 

Proof: Using Holder's inequality, we have IIwuII 2 :^ 
IIp 1 'PwII 2p,(P _ 2) IIuII , which implies 

that wu € 2- Then, by (1), we get 11S(wu)11 2 ^ 119"vII21(2) IIuII. Hence 

IIbS(wu)II. S Dp 1 'PbII 2p,(p _ 2) IIe"'WIIsp/(p _ 2 II uIl. 

Analogously we obtain the estimate 

DuiS(bu)Il. !^ II 9_ i/'1bII 2p,(p _ 2) Jp 1/pwII	II ull. 

Since IIQuU. :5 IIbS(wu)II. + IIwS(bu)II. for all u	,,(p) the inequality in (5) is proved. Finally, 
using (1) we have 

<Qu, u> z -2i lm(wu, S(bu)) for all u € Z,(p)	 (6)

so that the equality in (5) is proved U 

Corollary 2: Let be p 2 and 

Px2/2Pdx)2)/2P <CO
asp>2 

C(P)	\ 
( .

sup vrai (9(X)) _ 1'2 < Co	 asp r2 - 0D CX C - 

Then S:	p) -+ Lq(p1) is a bounded and positive operator, i.e. I lSull. S c 2(p)IIuII and
Re (Su, u> = 0 for all u € 

We note that, under the assumptions of Corollary 2, we have	(p) C 4, C	)

Analogously the following lemma is obtained. 

Lemma 1': Let be I <p !^ 2, 

b,vi- e 42,(2.)(p242P)) as I <p < 2 and bFP, tvFP € L,.,> asp = 2.	 (7)
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Then Q: f.q(P' - ) -+ Z(p) is abounded and positive operator, i.e. 

IIQvII :^ 211p 1 /'Pbfl 2p,,(2 P) IIp1/Pwll 2P/(2P) uvI . and Re<Qv, v> = 0 V v € q(p1 

There holds the following 

Lemma 2: Let be  a 2 andp(x) = xI, where -1 < a < p - 1. If 

	

w€f./(.2)(p2'(2P)) asp>2 and w,peLasp r 2,	 (8) 

then the singular operator 

(Wu)(x) 
=	

w(s))u(s) 
ds 

is a bounded and positive mapping from the whole space	(p) into /..q(p1), i.e. 

IIWu IL. :^ 2v(p, a) IIp_21wIIp1(P2)IIu II and ReKWu, u> = 0 for all u €	,(p)	 (9) 

where (see [7])

ctg(ir(l + a)12p)	as -1 < a < 0 
'(p, a)	ctg(ir/2p)	 as 0 :5 a :5 p - 2	 (10) 

ctg(t(p - I - a)/2p) as p -2 < a < p - 1. 

Proof: Since II wu IL	Ilp2/PwVp,(p2)IIu II and (see [71) IISU I1SI1., using (2) we have 

IIVb'uIL !^ IIp_ 2 *PwII /(	2) IISU II + IlSu IL IIwuIL :5 2v(p,a)flp_ 24wIIP,(p _ 2) IIu II, 

so that the inequality in (9) is proved. Finally, using (1) we have <Wu, u) = 2ilm<Su,wu> (cf. 
(6)) so that the equality in (9) is proved U 

Analogously the following lemma is obtained. 

Lemma 2': Let be  < p !^ 2 andp(x) Ix 1 01 , where -1< a < p - 1./f 

tv €	,(2)(p242P)) as I < p < 2 and wp €	asp 2,	 (11) 

then W: t.q(p)_.p(p) is  bounded and positive operator, i.e. 

IIWvII:^ 2v(p, (X)IIp 2 'PwlI P,(2P) Ilv1L and Re<Wv,v> 0 for all ye 

where (see [71) v(p,a) = u(q,a(1 - q)) is determined by formula (10). 

3. Existence and uniqueness theorems 

Let us first consider some equations which are simpler for investigation. 

Theorem 2: Let be p a 2, b and w satisfy the condition (4) and a be a non-negative a.e. 
different from zero function on R satisfying the condition (8). If the function F(x,z) satisfies 
the conditions (i) - (iii), then the equation
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Au X14u +X 2Qu + X 3 Fu = f
	

(12) 

has a solution u c Z(p) for any function f E 4q(p 1 ) and for any ) e C and X 2 , )  c R such 
that X 3 Re X,

a 0 1 A 3 * 0. Moreover, if additionaIlyT = 0, then the inequality 

Iull	(d2 1xh II f II.)1'(l1)	 (13) 

holds. The solution u is uniquely determined if either A 3 Re),, > 0 or the condition (v) is ful-
filled. 

Proof: By a shift we can always assume that ReX 1 a 0 and A 3 > 0. From the conditions (i) 
- (iii) and the inequality IIauII. :s lIp_ 2/PaIIP1( _2) IIu II using Lemma I we obtain that A: 
_ L q(p') is a bounded, Continuous, monotone and coercive operator. Hence, by Theorem 1, 

we infer that the equation (12) has a solution u	,(p) and this solution is uniquely determi-
ned if either Re X, > 0 or the condition (v) is fulfilled. Finally, we note that for 	= 0 

X 3 d2 IJuII :^ Re<Au,u> = Re<f,u> 5. 11f II.11uII. 

so that the inequality (13) is true U 

Analogously, by using Lemma 2 instead of Lemma I there is proved the following 

Theorem 2': Let be p ^! 2 and p(x) Ix 1 0 , where -1 <a <p - 1. Let w satisfy the condition 
(8) and let a, F, f, X 11 X 2 , A 3 satisfy the conditions of Theorem 2. Then the equation 

X 1 a(x)u(x) + X 2(Wu)(x) + X 3 F(x,u(x)) f(x) 

has a solution u €	(p). Moreover, if additionally D = 0, then the inequality (13) holds. The
solution u is uniquely determined if either A 3 Re A 1 > 0 or the condition (v) is fulfilled. 

Remark 1: The simplest example of a function F satisfying the conditions (i) - (iii), (v) is 
F(x,z) = p(x)zIzl 2 , where p is an even number. 

We now consider the general nonlinear singular integral equation of Hammersteins type. 
There holds the following 

Theorem 3: Let be I < p s 2 and let b, w satisfy the condition (7), F the conditions (i), (iii) 
and (v). Then the equation 

u+AQFu=f	 (14) 
has a unique solution u € .(p) for any f € Z(p) and each fixed A € R. Moreover, if additio-
nally c = 0 and 7) = 0, then the inequality 

0u11 s d1d2111f11	 (is)
holds, and if instead of it the condition 

(vii) Re{(F(x,z)2} ? ds((p(x))-1IF(x,z)IP)1'(Pt) fora.e. x€ Rand all  
€ C (d5 >0) 

is fulfilled, then there holds the inequality 

11u - fIl S 21 XI IIp1/PbII2p,(2p)IIp1/PwII2p,(2_p)(d51If 
II) P '.	 (16) 

6	Analysis. Bd. II. Heft 1(1992)
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Proof: From the conditions (i), (iii) and (v), by Corollary I we infer that there exists the 
inverse operatorF 1 : 4,(p) -+ 4 q(p) and F 1 is a strictly monotone, hemicontinuous and 
bounded operator. We shall prove that F 1 is a coercive operator. Let 4 € 

q(pt-) and F' = 

p. By condition (i), we have 

	

1411. = IIFcpII_ :5 tic Ii.. + d1 iipII t	 (17) 

so that iiii -	if 1I4i1I. -	. Hence 

Re(F'4,4>	d2 ii cp ii	IIDIL -	as 11441. 
11441.	lIcli, +'djI91lP1 

i.e. F 1 is a coercive operator. 
We now consider the auxiliary equation 

= f, where CDv : F 1v +AQv.	 (18) 

It is easy to see that if V€ Lq(pt_) is a solution of (18), then u' = F - 'V* E XPWis a solution 
of (14). Since CD: 4 q (p 1 _q) —> .4p(p) and CD is a strictly monotone, hemicontinuous, coercive and 
bounded operator, then by Theorem 1, the equation (18) has a unique solution VE 

4q(p1). 

Hence, the equation (14) has a unique (by condition (iv)) solution u • € 

We now prove the inequality (15). Using Lemma 1 and the conditions (i), (iii) (with c 0 
and 	= 0), by (17), we have 

d2 IIu 11P :5 Re<u ,Fu > = Re<f, Fu') 5 d1 1 1f II Hu IIP 

so that (15) is true. Finally, using Lemma I . , we have 

11u * - f 1 :^ 20,1 lIp 1 '.bII 2p,(2p) !Ipi'PwII 2p,(2 _ p) IIFuIi_.	 (19) 

Since Re(u,Fu> :^ 11111 VFuII. and, by condition (vii), Re'(u,Fu	d5IIFuII, we have
IIFuII, s(d5'IIf 1)i'(_1). Hence, by (19), the estimate (16) is true U 

Analogously, using Lemma 2', we can prove the following 

Theorem 3': Let be I < p !^ 2 and p(x) xl a , where -1 < a < p - 1. Let w satisfy the con-
dition (11) and F, f and X the conditions of Theorem 3. Then the equation u + XWFu = [has a 
uinque solution u • E (p). Moreover, if additionally c = D = 0, then the inequality (15) holds, 
and if instead of it the condition (vii) is fulfilled, then the inequality 

11u - [II :5 2i(p, a) IIp2'Pw II/( 2p)( d5 II! iI)P 

holds, where v(p, a) is determined in Lemma 2'. 

Remark 2: Equations of types (12) and (14), where the role of the operator Q is played by 
other singular operators were considered in [8], when p = 1. 

Let us consider the corresponding cases that a singular operator enters the equation non-
linearly. 

Theorem 4: Let be  ^, 2 and let b,wsatisfy the condition (4), F the conditions (iv) - (vi). 
Then the equation
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u + XFQu = f
	

(20) 

has a unique solution u -	(p) for any f c 4,(P) and each fixed X E R. Moreover, if additio-



nally g 0 and D 0, then there holds the inequalities 

11u- f 1 :5 d3 d4 [If II	 (21) 

Ilu' - ill s (2d3Pd;hllp-1/PbII	- I, 

	

11 2p/(p_ 2 )IIP	Pwll 2 ,(2) llf ii)'- i)	 (22) 

Proof: From the conditions of the theorem we infer that 

Q:	 and F: q(p1q)_?p(p) 

and that F is a strictly monotone, hemicontinuous. coercive and bounded operator. Hence, by 
Corollary 1, the operator F has an inverse F': p) - q(p1) and F' is a strictly mono-
tone, hemicontinuous, coercive (cf. the proof of Theorem 3) and bounded operator. We intro-
duce v = X(f- u) as a new unknown and apply F' to both sides of (20). Then we obtain the 
equation

	

Vv 0, where cI'v :=F - 'v +XQv - Qf.	 (23) 

Since 1: Z(p) -	q(p1	and 'I is a strictly monotone, hemicontinuous, coercive and boun-
ded operator, then, by Theorem 1, the equation (23) has a unique solution vt	(p). Hence, 
the equation (20) has a unique (by condition (v)) solution u	f -	e 

We now prove the inequality (22). Let 4) F 1v. Since F'v XQv = Qfand g = 0, D = 

0, then, by (iv), (vi) and (5). 

d4 114)112 !^ Re<F4),4)> = Re<v,F'v + XQv> 

S 2d3 li p - */Pb ii	11p_1'Ptv II	2)11f 111411? 

and 11u' - f II	X 11 v'll ^ I X  c13 ll4lI'	so that the inequality (22) is true. The proof of the
inequality (21) is similar to that of (15) U 

Analogously, using Lemma 2, one gets the following 

Theorem 4': Let be p ^ 2, p(x) lxi a , where -1 < a < p - 1, and w satisfy the condition 
(8), F. fand X the conditions of Theorem 4. Then the equation u + XFWu = f has a unique so-
lution u€	(p). Moreover, ifadditionallyg =0 and 	= 0, then the inequalities (21) and 

lu' - f Ii _.^ 1x1(2 d3 'd4 1 v(p, a) lip2'Pw 0p/(p-z) II! 

hold, where ( p , a) is defined in (10). 
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