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On Certain Singular Ordinary Differential Equations of the First Order 
in Banach Spaces 

H. UC0wSKI 

We consider in the interval (0, T) certain linear and nonlinear singular ordinary differential 
equations of the first order, where the unknown function takes values in a Banach space 
and 0 is a singular point. Under suitable assumptions we prove that for each of these 
equations there exists a unique solution of the class C 1 in (0, T) which is continuous at 0 or 
bounded in a right hand neighbourhood of 0. Moreover, in the linear case there is introduced 
another version of assumptions which guarantees that every solution of the considered 
linear equations 1105 the properties stated above. 
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1. Preliminaries 

Singular ordinary differential equations have been extensively investigated (see, for instance, 
[3,4,6-8,10-12]). In this paper we consider certain singular ordinary differential equations of 
the first order in Banach spaces. We discuss the existence of solutions of class C1 of these 
equations which are continuous at a singular point or bounded in a neighbourhood of this 
point. In order to formulate the problems in question precisely we introduce some notation. 

Let B be a real Banach space with norm ii ll . The limit and continuity of functions 
with values in B are understood in the strong sense. The same also concerns derivatives and 
integrals of functions of real variables with values in B. Let D C JR be any interval. By 
C(D, B) we denote the linear space of all continuous functions z D - B and C'(D, B) 
denotes the linear space of all functions z D - B which have derivative z' € C(D, B). Of 
course, C 1 (D, B) C C(D, B). If x € C(D, B) is a bounded function, then we define the norm 

11  IID,B SUP[ 11 X(t) IIB: i E D]. 

The set Co(D, B) of all bounded continuous functions with the above norm is a Banach space. 
Clearly, C0(D, B) = C(D, B) for any closed interval D. In case B = JR we omit this symbol 
in the above notation. 

By L(B) we denote Banach space of all bounded linear operators from B into B, where 
the norm IIL(B) is defined in the usual way. The zero element of L(B) is denoted by to 
Finally, C(D, L(B)) and C'(D, L(B)) denote the spaces of operator functions which are the 
counterparts of the spaces C(D, B) and C'(D, B), respectively. 

In section 2 we consider the nonlinear equation 

= f(t,z(t)), Vt E (0,T)	 (1.1)
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(T being a positive constant or T = oo ), where z and f take values in B, a takes values 
in L(B) and t = 0 is a singular point (i.e., a(0) = Jo) . We prove the existence of a unique 
solution z E C ((0, T), B) of this equation which is continuous at 0 or bounded in a right-hand 
neighbourhood of 0. 

In Section 3 the results of Section 2 are formulated for the linear equation 

a(t) z(t)] = b(t) z(t) + c(t), V € (0, T),	 (1.2) 

where 6 and c take values in L(B) and B, respectively. Next equation (1.2) and the equation 

a(t) z'(t) = b(t) z(t) + c(s), Vt E (0, T)	 (1.3) 

are considered in the case where a and 6 are real functions. In this case we obtain more 
general results than these ones mentioned above. 

Finally, in Section 4 there are formulated and proved two Hospital rules for the ratio f/g 
in the case where g is a real function and I takes values in a normed space. These rules were 
used in Sections 2 and 3. 

The employment of a Banach space B instead of the Euclidean space lit is justified because 
this enables as to formulate the results concerning equations (1.l)—(1.3) for various particular 
cases. We give, for instance, the following examples. 

1. Finite or infinite systems of singular scalar equations. In this case we take B = lit" or B 
is a suitable Banach space of infinite sequences. 

2. Certain random singular equations. Then we introduce the complete probability space 
(Il, F, P) and we define B as the Banach space consisting of all random variables 
- il with finite norm

I/q 
Ii 11B I)	(w)jP(dw)	, q E [I,-) or 11  IIB= ess sup IC(w)J. 

Efl 

Systems of random singular equations may be also considered. Theory concerning 
nonsingular random equations can be found, for instance, in monographs [2,14,15]. 

S. Various classes of singular equations with parameter, for instance the case where B 
C[.},0, .\ iJ . Of course, these equations involve random equations as particular cases. 

General assumptions concerning equations (1.1)–(1.3) introduced in Sections 2 and 3 
enable us to formulate assumptions for the above examples without difficulty. Therefore we 
shall not further discuss the examples mentioned. 

There are many papers devoted to singular equations in Banach spaces which are inter-
preted as parabolic equations (see, for instance, [7,8,10) and the references therein). There 
are made general assumptions which require advanced theory (in particular semigroups and 
interpolation spaces). Applying the results of those papers to concrete examples we have to 
show that appropriate assumptions are satisfied. The present paper is devoted to certain 
classical singular ordinary differential equations and we make simple assumptions which can 
be easily verified in concrete examples. The results of the paper are proved with the aid of 
the classical methods of mathematical analysis.
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2. Nonlinear singular equation 

In this section we consider equation (1.1) under the following assumptions. 

(21) a € C 1 ([0,T), L(B)), a(0) = 10 and there exist inverse operators [a(0)J 1 , [a(t))' € 
L(b) for all I € (0, T). 

(2.11) f : [O,T) x B - B is a continuous function which satisfies the Lipschitz condition 

II f(t,r)— f( t , y ) IIn M(i)II X - t JIB, V  E [0, T), z,y E B, 

where M : [0, T) .- [0, co) is a continuous function such that 

0 < M(0) < (i [a'(0)J IIL(B))	= a.	 (2.1 

It follows from assumption (2.1) that 

a-1 E C((0,T), L(B))	 (2.2) 

(see [13 : p.33]). Moreover, for the function a : [0,T) - L(B) given by the formula 
= a(t)/t for i € (0,T) and ao(0) = a'(0) we have 00 € C([0,T),L(B)) and there exists 

the inverse
E C([O,T), L(B)),	 (2.3) 

where o'(i) = ta'(i) for I € (0,T) and a'(0) = [a'(0)]'. This implies that 

lirn 11 ia(t) - [a'(0)]' L(B) 0.	 (2.4)

Now we formulate and prove the following theorem. 

Theorem 1. If assumptions (2.1) and (2.11) are satisfied, then there exists a unique solution 
r of equation (1.1) in the set

C([0, T), B) n C'((O, T), B).	 (2.5) 

Moreover, for the above solution we have

= 20,	 (2.6)

where 20 is a unique solution of the equation 

= Ea'(0)]'f(O,xo).	 (2.7) 

Proof. Assumption (2.11) and the Banach fixed-point theorem imply that there exists a 
unique solution zo e B of the equation (2.7). It is clear that in space C([O,T), B) equation 
(1.1) is equivalent to the equation 

z(t)	[a(t)]	j f(s,x(s))ds, V  E (0,T).	 (2.8) 

Let z he a solution of equation (1.1) in the set (2.5). Then, taking into account (2.8). (2.4) 
and the relation

iim.j f(s,x(s))ds=f(0.z(0))	 (2.9)
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(following from the Hospital rule - Theorem 8, Sec. 4), we find that r(0) = lim 0 2(L) = 
[a'(0)]f(0, z(0)). This implies condition (2.6). 

It remains to prove the existence of a unique solution of equation (1.1) in the set (2.5). 
First consider the equation

	

= f(L, z(i)), Vt E (0, i i],	 (2.10) 

where tj E (0, T) is a constant which will be specified later. In space C([0, Li], B) this equation 
is equivalent to the equation 

z(t) = [a(L)]' j f(s, z(s)) ds, Vt E (0, t 1 ].	 (2.11) 

Denote K0 = {z € C([0, L 1 ], B) : z(0) = 20) and for any z € K0 define the function 
X [0,L 1 ] — B by the formula 

X(t) = [a(t)] —'/ f(s,z(s))ds, Vt e (0,tij,	X(0) = 

In virtue of (2.2),(2.4),(2.7),(2.9) and assumption (2.11) we have 

X € C((0, t 1], B) and lim X(t) = 

which implies that X E K0. Hence, setting Zz = X for z E K0 we define an operator 
Z : K0 - K0 . This definition and assumption (2.11) yield the inequality 

	

(Zx — Zy)(t) iin:5 M(t) 11 a'(L) iIL(B) sup 11 z(s) - y(s) lIB	Vz, y E K0, L E (0, ti]. 
£E(0,tI

(2.12) 
Using condition (2.1) take any 8 E (M(0)/a, 1). Then, by (2.3), there exists a t i € (0,T) 
such that M(t) 11 a'(L) l L(B):5 6 for L E [0, *]. Consequently, by (2.12), we have 

fl Zz - Zy il[o,ti],B_< 6 li z - V li[o,t],n, Vz,y E K0. 

According to the Banach fixed-point theorem there exists a unique solution 21 E K0 of 
equation z = Zr. At the same time 21 is a unique solution of equation (2.10) in the set 
C([0, t 1 ], B) n C 1 ((0, t1 ], B). 

Now consider the problem 

d-L-[a(L)z(t)]	f(L, 2(t)), Vi € [t 1 , t2],	z(L i ) = 

where t2 E (t i , T) is arbitrarily fixed. We can write it in the form 

x'(t) = [a(t)][f(t,z(t)) — d(t)z(t)], Vi E [11,12], 2(u) = 

By the well-known existence and uniqueness theorem (see [5: Sec. 1.1]) there exists a unique, 
solution 22 E C'([t1,i2], B) of the above problem. In general, in the n-th step (n > 2) we 
obtain a unique solution z,, € C'([t_ 1 , t,], B) of the problem 

z'(t) = [a(L)]' 1 [f(t, r(t)) - a'(t)r(L)],	Vt E [L_, La], 
z(t- 1 ) =
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where t, E (t_ 1 ,T) is arbitrarily fixed. Suppose that t, - T as n -+ oo and define the 
function x : [0, T) - B by the formula 

X(t) = z(t), VIE [tn_i ' m], fl = 1,2,... (to =0). 

It is clear that z is a unique solution of equation (1.1) in the set (2.5) 0 

Let us denote by K, (B) the set of all functions x E C((0,T),B) which are bounded in a 
right-hand neighbourhood of 0. We consider the existence of a unique solution of equation 
(1.1) in the set

K1 (B) nC 1 ((0,T), B).	 (2.13) 
The following assumptions are needed: 

(2J11) a E C([0, T), L(B))flC'((O,T), L(B)), a(0) = 1o, and for any I E (0,T) there exists 
an inverse [a(t)]- 1 E L(B) such that 

[a(t)]	IIB)< fl/i, Vt E (0,fl'),	 (2.14) 

where fi > 0 and fi' E (0,T) are certain constants. 

(2.1V) f : (0,T) x B -+ B is continuous function which satisfies the Lipschitz condition 

At , Z ) - At , Y) IIB!5 M(t) II X - it flm Vt E (0,T), z,y E B 

and A-, 0) E K1 (B), where ö is the zero element of B and M E K1 = K1 (R) (i.e. 
B = lit) is a non-negative function such that 

= liinsnpM(t) < 11fl.	 (2.15) 
'—.0+ 

Theorem 2. If assumptions (1111) and (2.IV) are satisfied, then there exists a unique 
solution of equation (1.1) in the set (2.13). 

Proof. We proceed like in the proof of Theorem 1. Namely, using (2.15) and (2.14), take 
any 6 € (fl y , 1) an select i i € (0,fl') in such way that 

0 < tM(t) 11 [a(t)]' I1B ) < 5, Vt E (041).	 (2.16) 

It follows from assumption (2.IV) that for any x € K2 = Co((0, f l ], B) the function u 
(0,tJ - B defined by the formula 

u(t) = 1(1,2(1)), V  E (0,11] 

belongs to K2 as well. This implies that v E K2 for all z E K2, where 

v(t) = j f(s, x(s)) ds, Vt E (0, ti]. 

Let z E K2 fl C'((O, hi, B) be a solution of equation (2.10). Then, using the relation 

0(1)2(1) - a(r)x(r) 
= j f(s, x(s)) ds, Vr, t E (0,11], 

7	Analysis, Iki. H. I left 1(1992)
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we find that
0(1)5(1) = j f(s, i(s)) di, Vt € (0, t. 

This means that in space 1(3 the equation (2.10) is equivalent to equation (2.11). For any 
z € K2 define Zz by the formula 

(Zz)(t) = [a(t)] / 1(8, i(s)) di, Vt € (0, ti].

Using (2.111), (2.IV) and (2.16) and proceeding like in the proof of Theorem I we find that 
1(2 —* K2 and

Zr — Zy II(O,t i ],B!5 6 i — si II(Oj i ),B ' Vr,y € K2. 

According to the Banach fixed-point theorem there exists a unique solution z i E K2 of 
equation z = Zr. At the same time zj is a unique solution of equation (2.10) in the space 
K2 n C 1 ((0, 2 k ], B). The further proceeding is the same as in the proof of Theorem 1 0 

Remark 1. Notice that assumptions concerning the/unction I in equation (1.1) are in some 
sense similar to those of [ii : Sec. 3.61. 

Remark 2. Taking into considerations Lemmas 3.5-3.7 of fis : p. 22,231 and the proof 
of the Theorem I one can find that the condition a € C'([O,T),L(B)) may be replaced by 
the following weaker one : the function a : [0,T) —+ L(B) is continuously differentiable in 
the strong sense (i.e., for any z € B there exists the derivative [a( . )z]' E C([0,T),B)) and 
there holds the inequality (2.14). Then condition (2.1) should have the form 0 < M(0) < 
min(x, 1/fl). 

Remark S. Analoguosly to Remark 2 the condition 

a € C([0,T),L(B))nC'((O,T),L(B)) 

in assumption (2.111) may be replaced by the following weaker one: the function a : [0, T) — 
L(B) is, continuously differentiable in (0,T) in the strong sense and lim.._0+ 11 a(t) IIL(B) 0. 

3. Linear singular equations 

The results of Section 2 can be applied to the linear singular equation (1.2). As a corollary 
of Theorem 1 we obtain the following one. 

Theorem 3. Let assumption (2.1) be satisfied. Suppose that c € C([0,T),B) and let b 
[0,T) —. L(B) be strongly continuous such that 

sup (11 6(t) I j< B) : 2 € [0,]} < a'(0) IIL(R) for some -v € (0,T). 

Then there exists a unique solution z of equation (1.2) in the set (2.5). Moreover, this 
solution satisfies the condition x(0) = [&(0) — b(0)}c(0).
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Proof. Indeed, there exists a function M E C[0, T) such that 

M(0) <II a'(0) IIL(B)	M(t) ^!II 6(t) IlL(B)	Vt E [O,T). 

Hence it follows that the function I defined by the formula 

f(2, z) = b(i)z + c(t), V  E [0,T), z € B 

satisfies assumption (2.11) which implies the assertion 0 

In a similar way we obtain the following theorem as a corollary of Theorem 2. 

Theorem 4. Let assumption (2.IfI) be satisfied. Suppose that c E K1 (B) and let 6 
(0,T) -. L(B) be strongly continuous such that the function 1140 11L(B) is bounded in right-
hand neighbourhood of 0 and limsnpt...., 11 6 ( t) tk(B)< 11fl. Then there exists a unique 
solution of equation (1.2) in the set (2.13). 

Now we consider the linear singular equation (1.3) in the case where a and 6 are real 
functions, whereas z and c take values in the Banach space B. The following assumptions 
are needed: 

(Si) a,b E C[O,T), c € C(O,T),B), 
(3.11) a(0) = O, a(t) >O, Vt E (0,T), 
(3.111) 0(t) < at, Vt E (0,8), where a> 0,  fi E (0,T) are certain constants. 

Theorem 5. If assumptions (3.I)-(3.III) are satisfied, then the following assertions hold. 

1° If b(0) < 0, then there exists a unique solution z of equation (1.3) in the set (2.5). 
Moreover, this olution satisfies the condition 

z(0) = .-c(0)1b(0).	 (3.1) 

20 If b(0) > 0, then in the space C 1 ((0,T), B) there exists a one-parameter family K of 
solutions of equation (1.3) (i.e., the general solution of this equation). Moreover, we 
have lim...0+ x(t) = —c(0)1b(0) for all x E K. 

Proof of V. Let us introduce the functions 

g(t) = b(t)/a(t), V  € (0,T),	 (3.2) 

G(t) 
= j g(s)ds, V  E (0,T).	 (3.3)

The general solution of equation (1.3) is given by the formula 

z(i) = zo(t)(Po(t) + N), Vt E (0,T),	 (3.4) 

where N E B and 
-	 xo(t) = exp(G(t)), Vt € (0,T),	 (3.5) 

P0(t) = I	)-exp(—G(s))ds, Vt E (0,T).	 (3.6) 
Jo a(s) 

7*
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In order to verify this fact we should show the convergence of the integral (3.6). Indeed, in 
view of (3.I),(31II),(3.2) and 6(0) < 0 we have 

tg(t) < b(0)/(2a) = y < 0, V  E (0,fl), 

where Ph E (0, ,6) is a constant. Hence, by (3.3), it follows that 

G(t) ^! N1 +71st, Vt € (0,8i ),	 (3.7) 

Ni € JR being a constant. Relations (3.7) and (3.5) imply that 

lim G(t) =,	thu zo(t) = 00.	 (3.8) 
f 0+

Taking into account the inequality 

[a(t)]exp(—G(t)) N2t 1 , Vt E (0,fl1), N2 = const >0 

(following from the (3.111) and (3.7)) we conclude that the integral (3.6) is convergent and 

tim Po(t)	0.	 (3.9) 

The Hospital rule (Theorem 8, Sec. 4) and the relations (3.9),(3.8),(3.5),(3.6), (3.2),(3.3) 
imply that llm,_ 0+ zo(t)Po(t) = —c(0)1b(0). Hence, by (3.8), it follows that function (3.4) 
with N = V, i.e.

2(t) = zo(i)Po(i), V  € (0,T),	z(0) = —c(0)1b(0)	 (3.10) 

is a unique solution of equation (1.3) in the set (2.5) and this solution satisfies (3.1). 
Proof of 2°. Retaining the definitions (3.2),(3.3) and (3.5) let us introduce the function 

P, (t) = f	xp(—G(s))d,, Vt € (0,T).	 (3.11) 

Then the one-parametric family K of functions 

z(t) = zo(t)(Pi (t) + N), Vt E (0,T), (N € B)	 (3.12) 

is the general solution of equation (1.3). Like in the proof of 1° we get lim j_ 0+[z0(01 = 00. 
Hence, using (3.12),(3.11),(3.2),(3.3),(3.5) and applying the Hospital rule (Theorem 9, Sec. 
4), we conclude that lim,_0.i. z(t) —c(0)1b(0) 0 

Now we consider equation (1.2) under the following assumptions: 

(Sly) a E C 1 [0,T), a(0) = 0, a'(0) i4 0, 0(1) > 0, Vt € (0,T). 
(3.V) b E C[0, T), c € C([0, T), B). 

Of course, assumption (3.IV) implies that a'(0) >0. Writing equation (1.2) in the form 

a(t)x'(t) = [b(t) - o'(t))2(t) + c(t), Vt € (0,T) 

and applying to this equation Theorem 5 we obtain the following theorem.
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Theorem 6. If assumptions (3. IV), (3. V) are satisfied, then assertions 1° and 20 of Theorem 
5 remain valid if we replace 6(0) by 6(0) - a'(0). 

Now we prove the following theorem concerning equation (1.2). 

Theorem 7. We assume that a € C[O,T)flC'(O,T), a(t) >0 for alit E (0,T), a(0) = 0, 
6 E K1 , c € K1 (B), where K 1 and K1 (B) are defined in Section 2. Then the following 
assertions hold. 

1° If a(t) > at, b(t) < 6 for alit € (0,fi) (a > 0, fi E (0,T), 6 E (0,a) being constants ), 
then there exists a unique solution of equation (1.2) in the set (2.13). 

20 Let at < a(i) < alt, b(t) ^! 6 for alit € (0, P), where fi € (0,T), a >0, a'> a, 6> a' 
are certain constants. Then in the space C'((0,T), B) there exists the general solution 
of equation (1.2) and, moreover, this solution belongs to K1(B). 

Proof of 10 Let us introduce the function Po by the formula 

P0(t) 
= j c(s)exp(—G(s))do, V  € (0,T),	Po(0) = 0,	(3.13)

where G is defined by (3.2) and (3.3). In view of the inequalities 

tg(t)<'yS/a, VtE(0,fl) (O<y< 1),

exp(—G(t)) < N3t, Vt € (0,8) (N3 = coast >0) 

we have
lirn Po(t) = 0, (3.14) 

which implies that i' E C([0,T), B)flC'((O,T),B). The function 

xo(t) = (a(t)J	exp(G(t)),	Vt € (0,T) (3.15) 

belongs to C'(O,T) and is a particular solution of the scalar equation 

= b(t)x(t),	Vt € (0,T). (3.16) 

Consequently, the general solution of equation (1.2) is given by the formula 

z(t) = zo(t)[Po(t) + N)	(N E B) (3.17) 

and this solution belongs to C'((O,T), B). 
Now we show that z0 V K1 .	Indeed, suppose that a non-negative function y E K1 r 

C 1 (0,T) isa solution of equation (3.16). This yields the relation 

a(t)y(t) 
= j b(s)y(s) ds.	V 	E (0,T). (3.18)

Take arbitrarily fixed. 1€ (0,8). Then, applying to (3.18) the integral mean value theorem, 
we obtain	 - 

y(i) < (a(1)]_' j 6y(s)ds = 61(a(0]'y(ii ) for some i l € (0,1) 
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which implies that y() :5 vy(Ii). In the same way we find that 

w( Ii) :^, i'y( 12) for some i2 E (0, i) 
and consequently y(i) :5 Y2V( 12) . In general we obtain & decreasing sequence 11,2,... with 
elements from the interval (0,1) such that 

:5 fy(i) :5 ..yflsp[y(j) i E (0, 0], n = 1,2,... 

Hence, by condition 0 < -y < I, we get y(i) = 0. At the same time we have proved that 
y(t) = 0 for all t E (0,fl) which implies that y(t) = 0 for all t E (0,T). This fact and the 
inequality zo(t) >0 for all t E (0,T) yield the relation Z	K1. 

For the function (3.17) we have 11 z(t) IIB^! -o(t) 1 11 N JIB - Po(t) lIE 1. Hence, in view 
of (3.14) it follows that z V Ki (B) for all N E B \ {t). It remains to consider the function 

z(i) = zo(t)Po(t), V  E (0,T).	 (3.19) 

Using the relations 

G(t) - G(s) 
=	

g(z)dz < yIn ! , exp[G(t) - G(,)] < (!), Vt e (0,), 8 € (0,t) 

we obtain

II z(t) lIE < [a( t )]_ 1 exp(G(t)) 
j 

II '(s) J I B exp(—G(,)) d3 

1(t)	C II (0,i3),B	;—g II c 11(0.6),B, V  € (0, fi). 

This means that the function (3.19) belongs to K1 (B) which completes the proof of 1°. 

Proof of 2°. The general solution of equation (1.2) is given by the formula 

	

x(i) = xo(t)[Pi(t) + N] (N € B),	 (3.20) 

where
P, (t) 

= j c(s) exp(—G(s)) ds,	Vt E (0,T) 

and zo(t) is defined by (3.15). One can show that 

exp(G(t)) < N4 0, V  € (0, 0), y = 6/cr' > 1, 

N4 > 0 being a constant. Hence, it follows that 

ro(t) < N4a'i'', Vt E (01fl) 

and consequently lim.... 0+ zo(t) = 0. Further we have 

exp[G(t) - G(s)] 
< (f,	

t E (0, 6), s € (t,i), 

which implies that 

II xo(t)Pi(t) IIB	[a(t)Y [ii c(s) J IB exp(G(t) - G(s)) di 

< [a(t)]' ii c Ikos,s ( y - ]) — ' (t - t'i'') < [cr(y - 1)1 - ' 11 c 

for any i € (0, 3). At the same time we have proved that for any N € B the function (3.20) 
belongs to K1 (B) 0
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4. Hospital rules 

In this section we state and prove two Hospital rules for the ratio f/g in the case where g 
is & real function and f takes values in a real normed space X with norm . These rules 
were used in Sections 2 and 3 of this paper. The proofs of the rules in question are based on 
the corollary from the Hahn-Banach extension theorem (see, for instance, [16 : p. 108]) and 
on the methods used in the case where I and g are real functions (see, for instance, [9: Sec. 
150,151]). Notice that the first Hospital rule formulated below is stated in [1: p.2411 as an 
exercise. 

Theorem 8 (see [1]). Let the following assumptions be satisfied: 

1° The function f : (a, b) - X is strongly continuous, has a weak derivative f,', : (a, b) - X 
and there exists the strong limit lim.... t_ 1(t) = 0 (i being the zero element of X). 

20 For the function g : (a, b) - JR there exists the derivative g' : (a, b) - JR \ {0} and 
11"t—b- g(t) = 0. 

30 There exists the strong limit 11'.b- f,(i)[g'(t)]1 = z 

Then there exists the strong limit

lim f(t)/g(t) = Z.	 (4.1) 

Proof. First of all notice that assumption 2° yields g(t) 96 0 for all t E (a, b) and the. 
strict monotonicity of g. Let us denote 

h(i) = 1(t) - zg(t), V  € (a, b). 

Then, by 3°, for any e > 0 there exists a 6 € (0, b - a) such that 

h(t)/g'(t) 1I !5 e,	Vt E [6 - 6, b).	 (4.2)

We show that for any r, 3 E [6— 6, 6), r < s there holds the inequality 

	

II [h(r) - h(s)][g(r) - g(s))' lI e.	 (4.3) 

Indeed, if h(r)	h(s). then (4.3) is true. In the case where h(r) 0 h(s) there exists a 
bounded linear functional F in X with norm 11 F	1 such that 

F {[h(r) - h(s)][g(r) - g(s)] } = fl [h(r) - h(s)][g(r) - g(s)J' 11 .	( 4.4) 

In view of (4.2) the teal function H = Fh satisfies the inequality H'(t)/g'(t)I < e for all 
I € [6 - 6, 6). Hence, by the Cauchy theorem, it follows that 

[H(r) - H(s)][g(r) - g(s)]	= H'(i)/g'(i)I	e for some I E (r, s). 

Consequently, by (4.4), we get (4.3) which implies that 

II [1( r ) - f(s)][q(r) - g(s)]	- 05 C.	 (4.5) 

Passing to the limit in (4.5) as s	b we obtain, by 1° and 2°, 11 f(r)[.g(r)]	- z 0< 
Since this inequality has been shown for any 7 € [6— 6,1,). relation (4.1) holds 0
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Theorem 9. Let the following assumptions be satisfied: 

10 The function / : (a, b) — X has the weak derivative f	(a, b) — X. 

20 For the function g	(a, b) —+ JR there exists the derivative g' : (a, b) -.- JR \ {0) and
lim,_b_ g(i) = :_ or b.m,_b_. g(i) = 

30 There exists the strong limit lim.._ t_ f,(t)/g'(i)	Z. 

Then there exists the strong limit lim —b_ f(t)/g(t) = Z. 

Proof. It suffices to consider the case 

lirng(i) = c.	 (4.6) 

Then there exists a t 0 E [a, b) such that 9(i) > 0 for all I E (to, b) and we have g'(i) > 0 
for all I E (a, b) which implies that g is an increasing function. Further we use the proof of 
Theorem 8, namely the relations (4.2)-(4.5). Hence it follows that 

	

H [f(s) — f(t i )J[g(s) — g(t j )]' — z 11:5 e, Vs E (1 1 ,b),	 (4.7)

where 11 = max{to, b — 6). Taking advantage of the relations 

f( s )[g( s )1 1 — z = [1(u) — zg(ti)] [g(s))_i 
+ [1 — g(ti)/g(s)] [(f (3) — f(ti))(g(s) — g(i i ))' — z], 0< g(t i )/g(s) < 1, Vs E (t i , b) 

we obtain the inequality 

f(s)[g(s)]' — z	It [1(u) — zg(ii)] II 

+ 11 f(s) - f(t)[(g(s) — g(ii)]' - z fi, Vs E (t i , b).	(4.8) 

By (4.6) there exists a i2 € ( u i , b) such that 

[f(i) - zg(i)] 11 /g(s)	e, Vs E 02,b). 

Hence by (4.7) and (4.8), we have 11 [f(s)[g(s)] — z < 2e for all s E (t2 ,b). At the same 
time we have proved the relation (4.1) and the proof is completed 0 
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