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A Remark on Interpolation with Generalized Parameters 

J. PUHL 

We Study a generalized form of the Lions-Peetre interpolation spaces (AoA i )eq , where the 
parameter 9 and q are substituted in a natural way by suitable sequences u and lattices a, re-
spectively. A reiteration theorem is proved and applications to generalized Lorentz spaces are 
given. 
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1. Introduction 

In this paper we study a generalized form of the Lions-Peetre real interpolation spaces (An, Al)eq. 
By discretization these spaces can be defined to consist of all x E F(A) Ao + A1 such that 

l/q 
{ >2_ekK(2k,z,A)c} =	 < 00, 

where K(t,x,A) = K(t,x,Ao,A i ) = inf=50+ (IIxoIAojI + t II x 1l AjII) is the usual K-functional 
(see [1,p.411). If we replace the sequence (20')kEz and the sequence space l q (Z) by more 
general and appropriate sequences u = (uk)kEZ and sequence spaces a, respectively, then we 
obtain more general interpolation spaces (Ao, Al)s,a, which consist of all z E E(A) such that 

II(ukK(21, x, A))kEzIa II < 00. The parameter u plays the role of the main parameter, whereas a 
is some kind of fine parameter. 

Several authors have studied generalized interpolation spaces. Let us mention the interpo-
lation with a parameter function W (cf.[4, 5, 11]). In our setting this method corresponds to the 
special case u = (11(2')) and a = lq (Z). A more general form of interpolation - including 
our definition - was treated by NILSSON (cf.[6]) and BRUDNYI AND KRUGLJAK (cf.[2, 31) . We 
use their fundamental result concerning reiteration. 

The main result of the paper is a reiteration theorem (see Theorem 3.9), which, in its turn, 
is a special case of the general theorem of BRUDNYI AND KRUGLJAK and NILSSON (see Theorem 
3.8). Moreover, we discuss the equivalence theorem, the power theorem, interpolation between 
intersection and sum and give an application of our results to generalized Lorentz spaces. 

CoNVENTIONS, if no confusion can occur we use the notation u = (Uk) for any sequence 
with N or Z as indexing set, otherwise they will be written as it = (Uk)kEN, u = (uk)kEZ
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or u = (Uk)k>O, respectively. The equivalence a, x bk means that ca :5 b,, :5 c2ak for all k 
and some positive constants c1 and c2. Two quasi-normed spaces A and B are considered as 
equal and we write A = B, whenever their quasi-norms are equivalent. Finally we will write log 
instead of 1092. 

2. Interpolation spaces 

Let a be a quasi-Banach space of real valued sequences with Z (resp. N) as index set.This space 
is called a Z-lattice (reap. N-lattice) if it has the following monotonicity property: 

II(xk)Ia tI :5 II(ya)JaI	whenever •JzaI !^ 1 Ykj	for all k € Z (reap. k € N). 

By a(u), where u = (Uk) is a positive sequeace, we denote the space of all sequences (xk) € a, 
such that (zkuk) € a. When equipped with the quasi-norm II(xk)Ia(u)II = II( zk uk)IaII the space 
a(u) becomes a Z-lattice. Let a and b be Z-lattices. A sequence ( xk) belongs to the quotient 
a'ob if (xkyk) € b for all ( yk) € a. When equipped with the quasi-norm 

II(zk)1a 'ob II = irif{c: II(xkYk)I b II < cJ(y,,)afl} 

the space a'ob becomes a Z-lattice. A sequence (zk) belongs to the product aob if there are 
(Yk) € a and (zk) € b such that zk = ykzk . When equipped with the quasi-norm 

J(xk)Iaob Il = inf {II(yk)Ia fl II(zk)I b I : Zk = YkZk} 

the space aob becomes a Z-lattice. Note the following simple fact: 

a(u) c b(v) .. (uvk) E aob.	 (1) 

The use of the notation a(u) will be normalized by II ek J a il x 1. By a = a a+ we denote the 
canonical decomposition of a Z-lattice a into the sum of two N-lattices. This decomposition is 
generated by the following conventions concerning sequences: 

Let x = (zk)k>O, p = (Yk)k>o be N-sequences, then we put 

XEB Y = (zk)k

I

Ez, where zk= 
Yk	for k>O 
Z__ for k<O 

and vice versa, if x = (Xk)kEZ we put x+	(Xk)k>O and x = (x_.k_1)k>O. Obviously
X = ® 

By S (reap. S_) we denote the right (resp.left) shift operator acting on the lattice a, i.e. 
S+((xk)) = (Xk_1) (reap. S_((xk)) = ( xk+1)) . Observe, that in the case of an N-lattice we 
have to set x_ 1 = 0. Let a be an N-lattice. By D we denote the double sequence operator 
D ((--k)) = (x Ik/2)) and by T, the subsequence operator T((xk)) = (z,(k)), where W : N -i N 
satisfies 0 < p(k + 1)— p(k) no for all k € N.
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Definition 2.1: A Z-lattice (resp. N-lattice) a is called admissible if the 

(i) right and the left shift operators have spectral radius 1. 

(ii) double sequence operator D and all subsequence operators T, are bounded in a+ and a, 
respectively. 

Observe that a = lq(Z) is an admissible Z-lattice. 

A positive sequence v = (vk) is said to be quasi-geometric if the sequences (vk/vk+1) and 

(vk+1/vk) are bounded from above. We further assume that v0 = 1. The set of these sequences 
will be denoted by Qz and QN if the indexing set is Z or N, respectively. For quasi-geometric 
sequences the following quantities make sense: 

(i) Let v = (vk) € Qz . We put ik = suplEZ .!.• Observe that 1 k+j VkVj. The Boyd indices 
are defined by	 -	 - 

log 6k	 logv 
= lun —r-- and /3(v) = hm 

	

k—.—oo a	 k—co 

(ii) Furthermore, let v = (vk) E QN. We put i=(ik), where iJ = sup 1 >0	and v = (a), 
where Rk = sup1 >0 —. Observe that yk = v, 5kj !^ VkV,, and	:5 I*IJ (k,j ^! 0).
Moreover, we introduce

y(v)= Um logvk and 7(v)= tim log 2k 

	

k—.00 k	 k—.00 k 

respectively. Obviously we have 

lim=O	 Y( =y(v)<0and limk=0=v)<0. 
k—.00	 k—.00 

Now we fix some standard basic notations concerning interpolation spaces. Let A0 , A 1 be two 
qua si-Banach spaces. We say that (Ao, A 1 ) is a compatible pair if there is a Hausdorif topological 
vector space A such that the injections A -i A (i=1,2) are continuous. A compatible pair 
will be denoted by A = (A0 , A,). For a pair A we put (A) = A0 + Ai, .(A) = Ao fl A1. 

Furthermore, for x E E(A) we define the K- functional 

K(t,z,A) =	ml (II xol AoII + tIIxiIAilI) z=xO+xi 

and for x € (A) we define the J-functional 

J(t,z,A) = max(IIxIAojI,tIIxIAiII). 

Definition 2.2: Let a be an admissible Z-lattice and u E Qz, —1 < (u) </3(u) < 0. 

(i) For a pair A = (Ao, A 1 ) of quasi-Banach spaces we define the K-space Au,a;K to consist of 
all x € E(A) such that (K(2',x,A)) E a(u). Put II Z l Au,a;KII = II(K(2',x,A))Ia(u)II. 

(ii) The J-space A,5 j is defined to consist of all z E E(A) that may be written as 
x = Ek xk,zk € £(A) (convergence in (A) ) with (J(2k,xk,A)) E a(u). We put 

IkIAu,a;jII = 1x=>i,	II(J ( 2', X k, A))Ia(u)II.
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Remark 2.3: (i) The imposed conditions —1 < (u) ç 0(u) < 0 guarantee that the spaces 
are non-trivial. (ii) For u = (2_8k) and a = 1, 0 < e < 1, 0 < q oo, we recover the Ag,q-scale 
of Lions-Petree (see [1]). (iii) Let Q(O, 1) denote the class of functions p on (0, oo) such that for 
some e> 0, p(t) t is non-decreasing and p(t) t-1 is non-increasing. The interpolation space 
with the parameter function p E Q(0, 1) is defined to be 

Ap,q;K = { E E(A): (I(K(t,,A)/(t))	) 
1 1q 

< } \Jo  

(cf. [11]). These spaces also generalize the Lions-Peetre real interpolation spaces AG, (put 
p(t) = t°). On the other hand, an easy computation shows that 

2kf I 

J(K(t,x,A)/p(t)) q	x (ukK(2k,x,A))c, 

where Uk = 1/p(2k) and u = ( Ut) E Qz, —1 < a(u) < 13(u) < 0. This implies that 
Ap,q;K = A( 1 1p(21)),q;K• The interpolation spaces A,,a;K recover also the interpolation spaces 
with a parameter function. 

Lemma 2.4: Let a be an admissible Z-lattice. Let p and q with 0 <p < 1 and 0 < q :5 1, then 
there is a constant C such that 

(i)	II({E pLi_1dIIxjIQ}hIQ)kEZIaII :^ C IR)tzIaIl 

()	 _ C II(xt)trIaII. 

PROOF: Put p = l/q and assume a to be r-normed. Then it follows from 

{pb_1dI1xj1}h/ 
= {	

p(1_Q)L1I(pIJIxj+)c}I/ < {	
(I_Q)PIJI}1/P'{ 2 p 'I x,+tI } 

that

!^ Cl IKI:pIiIIxj+kI)IaII :5 Cl {(plI(z,+k)IaII)r}'T 
3	 i	 j 

Choose po with 1 <P0 < i/p. Since the spectral radius of the shift operator is 1 we can find a 
constant C2 such that max(II S II, II S -II) <C2 p for each j E N. Consequently, 

P0 i 1({pI2_1I1x11}u/)1a11 ^ C1 C2 {(p IjI liiiI(zt)IaIIY)" 
3	 3 

= dc2 {(ppo)LI}h/'nII(xt)IaII 
j 

^ C II(t)t€zIaII. 

To prove (ii) observe that p_k/q{>O_oPiIx3Iq}lIQ for k < 0. Combined j=O
with (i), (ii) follows 
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Using Lemma 2.4 and the definition of the Boyd indices a straight- forward calculation shows 
that

II({(mi.n(1,2t')IzjIY}"7)Ia(u)II < C II(z ,)Ia( u)II, o < q:5 1. 

Applying this statement the proof of the equivalence of the K- and J-method given in [1, Theorem 
3.11.3] immediately carries over (see also (6, Lemma 2.5]). 

Theorem 2.5 (The equivalence theorem): Let a be an admissible Z-lattice and u E Qz, 
—1 <a(u) :5 3(u) < 0. Then we have A,,,a;K = A,,,aj. 

In the sequel we shall write Au,a instead of A,,,a;K or A,, ,a;j. In the following theorem we 
summerize some properties of A,,,8. 

Theorem 2.6: Let A = (Ao,4 1 ) be a given couple. Then 

(i) (Ao,Ai )ua_ a+ = (Ai)Ao)u.,a+a_, where u = (2_ku_k). 

(ii) A,, ,8 c A,,,8 if (u'vk) E a'ob. 

(iii) Au,a is a quasi-Banach space. 

PRooF: (i) is an immediate consequence of K(2',z,A0,A1 ) = 2 c K(2_ ) ,x,Aj ,A.0) and the 
boundness of the right shift operator. (ii) follows from (2.1). (iii) Without loss of generality we 
may suppose that A0,Aj,(A),a, and A,, ,8 are q-normed (0< q <1). Let	 <00. 
It suffices to show that	CO x3 converges in A,, ,8. Since Y(A) is complete and 
II x,I E ( A )II ^ IkI,,,alI there is x	xj E (A). We choose a subsequence (nk) such that 

{EZ-'i	 < 112k• For fixed > 0, we find Yk°" and y" with	= Yk0' + 
Iy"IAo :5 '+f	

and	lI y "I A iII :5jj	.	Hence there are	Y' =	k^k,, y°" E A.0,
Ul 2T

1/11 Ek>k0 y' €A 1 and we get K(21, E' 	xi , A) :5 IIy°"IA0II+2'IIy"IA1II ,where Ic0nko 

is arbitrary, but fixed. A straight-forward calculation gives II(u:K(2',x, A ))Ia II ^ nko + I 
where the constant C is independent of k0 and the proof is complete U 

3. The reiteration theorem 

As an easy consequence of the boundness of the double sequence operator D and the subsequence 
operators T, we obtain 

Lemma 3.1: Let a be an admissible N-lattice, and let N = U° Ak, Ak j4 0 be any disjoint 
decomposition of N with max(Ak) increasing and max(Ak) - min(Ak) < no for all k E N. If 

Clxk y, c2xkfof all iE Ak and kEN, 

then
OlII(xk)kENIaII 15 I(i)kII !^ C2IKX0keNIaII, 

where 01 , C2 are constants independent of (xk)kEN and (y,)jEN.
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Lemma 3.2: Let  = (Ut) E QN with (u) <0. Put Ak = {j EN: ak log u2 <a(k+1)}, 
where a = log i11 . Then we have 

(i) a > 0. 

(ii) At 54 0 for all k E N. 

(iii) W(k) = max(At) is increasing. 

(iv) max(At) - min(Ak) :5 no, where no is independent of k. 

PROOF: (i) a > 0 is an immediate consequence of k = +00. (ii) Suppose, on 
the contrary, that At = 0 for some k0 E N. Since the number jo = max{j : log u3 < ako} 
exists, we can infer log u, 0 <ako < a(ko + 1) log u301 . This yields the desired contradiction 
or < log ±' ^ logi = a. (iii) can be proved by similar arguments. (iv) Put b(k) = min(At). 

Ujo 

Since ak 5 log u,(k) ,logup(k) < a(k + 1) we obtain log u,(k)/u,J,(k) < a and hence we get 
0 < 1/i < u,/(k)/u,(k)	 Because lim._.+00 , = 0 there is a constant no such that 
(k)—(k)< no for all kENt 

Remark 3.3: if we suppose 5(u) < 0, the same statement as in the preceeding lemma holds 
true for At = {j EN : ak — log u3 < a(k+ 1)} where a = log 1 . To see this consider tz' 

and apply Lemma 3.2. 

Lemma 3.4: Let a be an admissible N-lattice, and u, v € QN, -y(u) < 0. Moreover, let 
K : R -p R be an increasing function satisfying K(2z) < 2K(x). Then (v k K(2k ))kEN € a 
implies

C1 II(vkK(2k ))kE NIaII 15 Il( tJ[IOS Uk ] K(uk))kENIaII	C2 II(vkK(2'))kENIaII, 

where Ci , C2 are constants independent of K. 

PROOF: By Lemma 3.2 it turns out that 

Ak={jEN:ak< log u,<a(k+1)}960,	a= log ii1. 

For j € At we have

mv v tl K(210/ 1) !^ v 0511,j K(u,) :5 Mv1K(2'), 

where m,, = (ma<<1+[01,ii), M = ma <j<i+[al2i+[]	Applying Lemma 3.1 we ob-
tain

0im0II(v[0k]K(21))IaII !^ II(t [1ogu1 K(thk ))IaIl :5 02M, II(v[k]K(2))IaII. 

Repeating the same reasoning we can substitute II(v1t1K(2))IaII by I(vkK(2'))IaII and the 
desired result is proved
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Proposition 3.5: Let b be an admissible Z-lattice, and ao(u°), a 1 (u 1 ) be Z-lattices. Moreover, 
let  E Qz, -1 < a(v) ^ /3(v) < 0. Put  = (Uk) = ( U°k/ U ), and  = ( wk)kEZ = (UVflogu))kz. 

Then we have

(ao(u°),a1(u'))b = cd(w), 

where

for '(u-) <0	 b	for 7(u+ ) < 0 
c = b-	for 7(u) <0 , and d = b	for y(n) < 0 

(a,a)b for u x 1	 (4,at)5b for u	1 

PROOF: Note that K(t,x, so, a i )x K(t,z_,a,afl+K(t,z+,4,a) immediately implies 

(a ea , a eat)ob =	 Therefore it is sufficient to prove that 

b+ (w)	for 7(u) < 0 
(ao(u°),aj(u'))b =	b(w)	for 7(u) < 0 

(aO ,a l )b(w) for Uk 1 

where ao(u°), and aj (u') are N-lattices. (i) We consider the case 'y(u) < 0. According to 
Lemma 3.2 we put Ak = {j E N : ok < log u3 < c(k -f 1)}. Let z E (ao(u0 ),al(u 1 ))5 b. From 
the definition of the K-functional it follows CK(2",z,ao(u°),ai(u1)) ^! luqxj l for all j E Ak. 
Therefore we get

O II( tt[ek] K (2°" , z,ao(u°),ai(u')))IbII ^! II(w,x,)IbII 

and by Lemma 3.4 it follows z E b+ (w). On the other hand, let x E b(w). For some 0 < r 1 
we have K(t,x,ao(u°),ai(u1)) :5 K(t,zi,ao(uO),ai(uI))}h/, where x3 = ( x j)IEA, = 
(XA(l)x:)IEN. Using the estimate 

K(2, xJ ,ao(u0),a j (u 1 )) =	inf	{II(( u?y?),EA)IaoII + 2lI((uy),EA1)IaII} 

x	inf	{II((u?y?) IEAI )IaoII + 20_3) II((u?y )IEA, )I a II } a,2yOyl 
= K(2'',(u10xl):EAI, ao,ai) 

< min(1,2''))II((u?x,)sEA,)I(a)Il 

min(12("_'))yixIu?xsI 

we obtain 

II(v[Qk]K(2, x,a0(u°), a i(u ')))I b II :5 C II({(V[a] min(i, 2(k_3))	Iu?zlI)r}h/IbII 

^ C II({(JE-	(i,2a(k_4)	x IwlzeIY}u/T)IbII. 

Since [.(k—j)) 11(l,2e(k_J)) <	,I k -iI for some p,O < p < 1 it follows from Lemma 2.41(u) 
combined with Lemma 3.4 that 

II(vkK(2k , z, ao(u0), ai(u1 )))I b II :5 C (max I wjx jl)I b II	IIxIb(w)II. 
IEAj 

4	Analysis. 13d, II. Heft 109921
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(ii) The case f(u) < 0 follows from (i) combined with 

II(vkK(2', z,ao(u°),ai(u')))IbebII x II(2kvK(2k, x,ai(u'),ao(tz°)))IbbII 

and u 1 2 109uk/uk V_ ogu/u X U°k V[loguk J = wk . (iii) The case Uk x 1 is obvious  

Remark 3.6: In the cases a0 j4 a 1 and 7(u) =	= 0 (resp. u+) no simple description
of (ao(u°),a1(&))b is known. 

Remark 3.7: By Proposition 3.5 we have (lw, 1(2))b = b(v). Note that in this case there 
holds u = (2 1 )kEz, 7(u) =	= 1. 

Therefore, b(v) is an interpolation space between 1 > = (l,l(2)). Moreover, for 
( xk) E b(v) it is easy to check that limk._ z = hmk=+ 2_ k xk = 0, which implies that 
b(v) C E(o), where co = (co,co(2)). 

Let E be an interpolation space with respect to the pair ioo = (l,, l(2_k)). Then we say 
that X E AE;K whenever II(K(2k ,x,A) ) kEzIEII < oo. Now we are in position to deduce the 
desired reiteration result as a special setting of an importent theorem independently discovered 
by BRUDNY! AND KRUGLJAK[2, 31 and NILSSON[6, p.301]. Their result reads as follows. 

Theorem 3.8: Let A = (Ao, A 1 ) be a quasi-Banach pair and E = (Eo, E1 ) any pair of inter-
polation spaces between 1. Furthermore let us assume that E i C E( 0), i = 0, 1. Then for all 

> 0 and x E (A) we have 

K(t, X, A.j ;K, AE1 ;K) X K(t, (K(2 k' x, A))kez, E). 

Observe that this formula implies (A;K , AE,;K)F;K = A(FEl ) FK , where F is any interpo-
lation space between 1. Applying Proposition 3.5, Remark 3.7, and Theorem 3.8 we can infer 
the following reiteration theorem. 

Theorem 3.9 (The reiteration theorem):	Let a0 ,a1 ,b be admissible Z-lattices and 
u0 ,u 1 ,v € Q, —1 < cs(u°),(u'),cl(v),fi(u°),f3(u'),/3(v) < 0. Put u = (Uk) = (u/t4)	and 

= (wk)kEZ = ( u°kvoguk])kEz . Then we have 

(Auo ,ao , 4u ,ai )v,b = 

where

	

b	for -y(u- ) <0 b	for -y(u) < 0 

	

c = b	for (u-) <0 , and d	b	for 7(u+ ) < 0 
(a,aflb for tç x 1	 (a,a)b for u X 1 

4. Generalized Lorentz spaces 

In this section we deal with generalized Lorentz spaces. It is of interest to know that they form a 
"scale" of spaces in the sense that they are stable with respect to some method of interpolation. 
We restrict our consideration to the typical discrete and continuous case, namely the Lorentz 
sequence spaces and the Lorentz spaces defined on the unit interval (0, 1) with Lebesgue measure. 
These spaces show different behaviours.
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Definition 4.1: Let v E QN and let a be an admissible N-lattice. The generalized Lorentz 

spaces are defined as follows: 

(i) Au,a = {x = (xk)k>o : II( vkx;k_ l )k>oIaII < m}, with -y(v) < 0, where (xi) denotes the 
non-increasing rearrangement of (Ek). 

(ii) Av,a = {f : II( vkf(21 ))k>0IaII < oo}, with 7(v) < 0, where f denotes the non-
increasing rearrangement of the measurable function I on the measure space ((0, 1), dx). 

Observe that	= l and A (2 •k/P),jq = L(0, 1). Using (1) it immediately follows 

Remark 4.2: if (vk/uk) E a'ob , then )',a C Ao,b and Au,, C A,b. 

To prove that the Lorentz spaces can be generated by interpolation we need a preparing 
lemma. 

Lemma 4.3: Let a be an admissible N-lattice. Let 0 < q < 1 and u = (Uk) e QN. 

(i) If 7(u) < 11q, then II( uk{=o	 x II(ukxk)kENIaII. 

(ii) If 7(u) < 11q, then II(uk{>k	 x II(ukxk)kENIaII. 

Paooi: First observe that 7(u) < 11q (resp. 7(u) < 11q) implies the existence of numbers 
C > 0 and p with 0 <p < 1 such that 11m 2_m/Q C pm/g for m > 0 (resp. 2-m/q C p"1). 

To prove (i) consider the estimation 

k 

uk{>2 23_kI i
.71

q
1 1/Q - { > (2_(Ju.1.1)Q}I/Q 

- 
j=O	 jQk Ui 

k 

^
i=o

k 

^ C
i=o 

The assertion then follows from Lemma 2.4. (ii) can be proved in a similar way. 

Lemma 4.4: Let a be an admissible Z-lattice, 0 < q :^ 1, and u e Qz with —1 <(u) </3(u) < 0. 
Then we have 

(i) (lq ,loo )u,a_ a+ = Av+a+,	where v = 

(ii) (Lq ,Loo )u,aa+ = Av_,a_, where v = 

PROOF: (i) First we note that

21Qk1_I x1
Q } h/Q for k > 0 K(2k,x,1g,1)	I 2zl	 for k < 0 

4*
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Hence
I 

tLkK(2'C,Z,lq,loo)	I	 for k > 0 

	

2k 
tjk II x I looII	 for k < 0 

Applying Lemma 3.4 we get

x II(vkJ{ 
1 

2(qkj_1 

IxI} h i' ? ) k >oIa+ II + II(2u_kIIxI1II)k^oIaII 
0 

—I 

	

II(v {	:::: z I})	I a II + II(2n_k)k>oIa iI IIxI1II 

x j(v{2' 

Since y(v+ ) < 13(u)/q + 11q < 11q it follows from Lemma 4.3 that

	

II(,jk K(2k ,x,lq ,1))kE zIaII	II(vz;k_I)k>olaII. 

(ii) can be proved in the same way. 
Now we are in position to formulate and prove the interpolation theorem for Lorentz spaces. 

Theorem 4.5: Let A.i,ai and Aue,a (i = 0, 1) be generalized Lorentz spaces. Suppose v E Qz 
with — 1 <a(v) </3(v) < 0 and let b to be an admissible Z -lattice. Put u = (Uk) = (u/uj), 

c = (a°,a 1 )b and w = (wk)kEN = (u2V[Iogu )) kEN. Then we have 

.,b+ for 7(u) <0 
(i)	( Ao a,, A1 a 1 )vb =	A,b_ 

{

for y(u) < 0 
for Uk X 1 

I A+ for 7(u) < 0 
(ii)	(Auoao ,Aisla i )v,b = I A ,b- for 7(u) < 0 

for Uk x 1

• PROOF: (i) Choose q with 0 < q < rnin(1, 1/7(u°), 1/(u')), 0 with 0 < 0 < 1 and 
2_ k :	for k > 0 

1 + qm(7(u°),7(u1)) <0. Now we put s' = (4)kEZ, with s 
= { 2

?gk] 

for k>0 
A straight-forward calculation shows that Lemma 4.4 can be applied and we get 

= (lq ,loo ) si ,aa,	(i = 0, 1). 

By Theorem 3.9 it follows that
{ (lq,loo)i,cnb+ for 7(s) < o 

((la ,	 (lq, l)i ,a 1 a, ),,,b =	(lu, 1oo)t,c(Db	for	(s+) < 0 
(lq,loo)i,cec	for s x 1 

where s = (3k) = (s/4), and t = (tk) = (s2 V (1ogu ])keZ. Note that we have y(s+) = 

57(s+) = q(u), and s+ x Uk x 1, respectively. The proof will be completed by applying again 
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Lemma 4.4. Observe that wk = 2k/qt(k/q) = 211 4/ g Vflog 8k/q ] =	V[loguk]. (ii) can be proved
by similar arguments. 

In [12] A. PIETSCH has proposed to introduce Lorentz sequence spaces depending on a finite 
number of indices 0 < r1 ,..., < oo. In the present setting these spaces can inductively be defined 
as follows. The starting point is the relation	=	for the usual Lorentz sequence 
spaces which is well known. Now we put = )t(2k/Pi ) j,,2 . By Remark 4.2 it is clear that 
the spaces are lexicographically ordered. Note that the generalized Lorentz sequence spaces 
are admissible. Next we give some interpolation results for the Lorentz sequence spaces 1P, ... Pn 

which we will formulate in terms of the classical interpolation scale of Lions-Peetre, i. e. we use 
Ao,q = A (2-1k ),19 , 0 < 0 < 1, 0 < q 00. The following results are immediate consequences of 
Theorem 4.5. 

Corollary 4.6: We have

for
P1	ci 

for pi < q,=1-+-- P1	ci 
for p2<q2,=1--+--P2	q2 

(ii) ( lpi ... pkpk+i ... pn, lpi --- pkqk + 1 ... qm)o,r = 1PiPk	for pk.fi < qk+1 1 = _L-	+ 3	Pk+i	ck+1 

5. Miscellaneous results 

In order to generalize a special case of the power theorem, we introduce the admissible Z-lattice 
ap = { (zk) : II(I xkI)la lI < oo}, which is equipped with the quasi-norm I(xk)IaPII = II(IxkIP)IaIIlb, 

By the Lemma 3.4 and the same arguments as given in [1, p.68-691 we deduce 

Theorem 5.1 (The power theorem): if 0 <p <oc, then

i/p 
(Ac, A)U ,5 = (A0 , Ai),ap, where v = (vk ) = (b,k]) 

The duality theorem reads as follows. 

Theorem 5.2 (The duality theorem): Let (A0 , A 1 ) be a Banach pair, let a be an admissible 

Banach Z-lattice, and let u E Qz, -1 <cs(u) 0(u) < 0. Moreover, suppose that L1(A) is dense 

in A0 , A 1 , and Au,a. Then we have 

= (A,A;)va+oa_, where v = (vk ) = (1/U_k) and a = a'ol1. 

PROOF: Apply Theorem 2.6/(i), the equivalence theorem, and carry out a generalized form 
of the proof given in [1, p.541. 

Note, if the finite sequences are dense in a, then (A) is dense in Au,a, too. 

(i) ( lpip9 , lgiq2 )O ,r = i.,,, 
(i) (lpi...pn , 1qj. . .qn )o,r = 18,, 

(ii) ( lpl p2 , lp I q2 )8,r = Lpiar, 

Finally we want to mention that the interpolation between the sum and the intersection can 
be treated in the same way as pointed out in [11, p.218].The result follows immediately from
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the estimates

K(2k, x, (A), A(A)) { K(2
k , x, A) + 2kK(2_k, x, A) for k < 0 

K(1,x,A)	for k>0 

and

K(2k,x,i(A),A1) { K(2'xA) for k < 0 
K(1,z,A) for k>0 

Theorem 5.3: Let a be an admissibfi Z-lattice and b,c be admissible N-Lattices, u € Qz, 
—1 <o(u) </3(u) < 0. Then we have 

((A),1(A))ua_ea+ = (E(A),Ao)ua_eb fl ((A),Ai)ua_c. 

In the literature the problem is considered to characterize interpolation spaces by means of 
the intersection or the union of a family of spaces indexed by functions belonging to some classes 
(see [10]). The next result gives a contribution to an abstract version of this problem. 

Let a be an admissible Z-lattice. We put Qa,e = {u E a n Qz : -	(u) 15 /3(u) !^ }.
Observe the following fact. Let (xk) E a and define 

Uk = E Plk_2III	where 0 < p < 1.	 (2) 

By Lemma 2.4 we have (Uk) € a and II(xk)l a Il !^ II( uk)I a ll :5 CpII(z t)I a II . Moreover, since 
P !^ uk4I/uk p' we get (Uk) E Qa,, for 2 <p < 1. 

Theorem 5.4: Let A = (A0 , A 1 ) be a given couple, a and b admissible Z-lottices, and v € Qz, 
—1 <a(v) < /3(v) < 0. Fix 4E > 0. Then it holds 

(i) A,,aob = UueQa,Av/,b 

(ii) Ao,a_lob = fluEqa/L,b 

Paooi: We prove only the first assertion. The remaining one can be treated in a similar way. 
It is sufficient to prove that aob = U E Qa j(t1 )• Obviously, we have II z IaobII !^ II u I a II lIz/uIbII 
for all z € b(u'). Hence UUEQaJ(') C aob. 

On the other hand, for given z E aob and 5 > 0 there is a decomposition z = (xkyk) such 
that (1 + )Il z I aobII ^! II(xt)la Il II( y*)I b II '^! II(xk)Ia Il ll( yk)I b II ^! C Il u l a ll II z I b( u ')Il, where Uk 

U = (uic ) € Qa,, is constructed by (2), and so the proof is complete. 
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