Zeitschriflt fur Analysis
und ihre Anwendungen
Vol. 11(1992)1,43 - 55

A Remark on Interpolation with Generalized Parameters

J. PUHL

We study a generalized form of the Lions-Peetre interpolation spaces (AO.A‘)@q, where the
parameter © and q are substituted in a natural way by suitable sequences u and lattices @&, re-

spectively. A reiteration theorem is proved and applications to generalized Lorentz spaces are
given.
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1. Introduction

In this paper we study a generalized form of the Lions-Peetre real interpolation spaces ( Ay, Ay)eg-
By discretization these spaces can be defined to consist of all z € £(A) = Ao + A such that

o t/q ’
{2 |2-9~K(2~,z,5)|v} = (27 K (2", 2, A))eezlle(Z)] < oo,

where K(t,z,A) = K(t,2, Ao, A1) = infz—zo4z,(||Zo| Ao|| + tl|z1]A1]]) is the usual K-functional
(see {1,p.41]).- If we replace the sequence (279%),cz and the sequence space l,(Z) by more
general and appropriate sequences u = (ux)rez and sequence spaces a, respectively, then we
obtain more general interpolation spaces (Ao, A1)u,a, Which consist of all z € T(A) such that
l(ux K (2%, 2, A))rezlall < co. The parameter u plays the role of the main parameter, whereas a
is some kind of fine parameter. A

Several authors have studied generalized interpolation spaces. Let us mention the interpo-
lation with a parameter function ¢ (cf.[4, 5, 11]). In our setting this method corresponds to the
special case u = (1/¢(2%)) and a = l;(Z). A more general form of interpolation — including
our definition — was treated by NiLssoN (cf.[6]) and BRUDNYI AND KRUGLJAK (cf.[2, 3]). We
use their fundamental result concerning reiteration.

The main result of the paper is a reiteration theorem (see Theorem 3.9), which, in its turn,
is a special case of the general theorem of BRUDNY1 AND KRUGLIAK and NiLssoN (see Theorem
3.8). Moreover, we discuss the equivalence theorem, the power theorem, interpolation between
intersection and sum and give an application of our results to géneralized Lorentz spaces.

CONVENTIONS. If no confusion can occur we use the notation v = (u) for any sequence

with N or Z as indexing set, otherwise they will be written as u = (ue)reN> ¥ = (Uk)kez »
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or u = (ux)i>0, respectively. The equivalence a; x by means that cjag < by < cza; for all &
and some positive constants ¢; and ¢;. Two quasi-normed spaces A and B are considered as
equal and we write A = B, whenever their quasi-norms are equivalent. Finally we will write log
instead of log,;.

2. Interpolation spaces

Let a be a quasi-Banach space of real valued sequences with Z (resp. N) as index set.This space
is called a Z-lattice (resp. N-lattice) if it has the following monotonicity property:

[I(zx)la]l < [|(yx)lal] whenever jzi| < |y forall k€2 (resp. k€ N).

By a(u), where u = (u;) is a positive seguencé, we denote the space of all sequences (zi) € a,
such that (zxux) € a. When equipped with the quasi-norm ||(z)|a(u)|| = ||(zxus)|al| the space
a(u) becomes a Z-lattice. Let a and b be Z-lattices. A sequence (z;) belongs to the quotient
a~lob if (zxyx) € b for all (yx) € a. When equipped with the quasi-norm

li(z&)la~tob|| = inf{c: |I(zrye)Ibll < cll(y)lall}

the space a~lob becomes a Z-lattice. A sequence (z;) belongs to the product aob if there are
(vx) € a and (zx) € b such that zx = yx2z;. When equipped with the quasi-norm

l(z&)laobl| = inf {|I(ye)lall (z&)|bil : zx = yi2x}
the space aob becomes a Z-lattice. Note the following simple fact:
a(u) C b(v) <= (u;'vi) € a~lob. (1)

The use of the notation a(u) will be normalized by ||ex|a|| < 1. By a = a~ @ at we denote the
canonical decomposition’ of a Z-lattice a into the sum of two N-lattices. This decomposition is
generated by the following conventions concerning sequences:

Let z = (Zk)x>0, ¥ = (¥ )k>0 be N-sequences, then we put

T @Y = (2k)rez, Where z; = { Ye for k20 )
z_gp_, for k<0
and vice versa, if z = (Zi)iez We put zt = (zi)kyo and z~ = (Z-k-1)k>0. Obviously
z=z"@zt. .

By S4 (resp. S_) we denote the right (resp.left) shift operator acting on the lattice a, i.e.
S+((zx)) = (z&-1) (resp. S_((zx)) = (xk+i)). Observe, that in the case of an N-lattice we
have to set z_; = 0. Let a be an N-lattice. By D we denote the double sequence operator
D((zk)) = (z{x/7)) and by T, the subsequence operator T,((z4)) = (Zy(x)), where o : N — N
satisfies 0 < @(k + 1) — (k) < ng for all k € N.
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Definition 2.1: A Z-lattice (resp. N-lattice) a is called admissible if the
(i) right and the left shift operators have spectral radius 1.

(ii) double sequence operator D and all subsequence operators T, are bounded in a* and a~,
respectively.

Observe that a = [(Z) is an admissible Z-lattice.

A positive sequence v = (v;) is said to be quasi-geometric if the sequences (vg/vi41) and
(vk41/vx) are bounded from above. We further assume that vo = 1. The set of these sequences
will be denoted by Qz and Q if the indexing set is Z or N, respectively. For quasi-geometric
sequences the following quantities make sense:

(i) Let v = (vx) € Qz. We put #; = supez ﬂ:’—f—’ Observe that #x4; < 9x9;. The Boyd indices

are defined by o 3
08 Vi
k——o0 k

log 9y
Pt

a(v) =

and B(v) = kliugo

(ii) Furthermore, let v = (vx) € @N. We put 6=_(ﬁk), where Tx = sup;yo "t and v = (1),
where v, = sup»g -u—:-’i—l Observe that v, = v;', Teyj < Tk¥j, and vy ; < vyo; (k,5 > 0).
Moreover, we introduce

_ T 10gﬁk
7('))_1:1520 k + k—oo k

respectively. Obviously we have

lim v, =0 <= 7(v) <0 and klimﬂ:O <= F(v)<O.

k—oo

Now we fix some standard basic notatious concerning interpolation spaces. Let Ag, A; be two
quaéi-Bana,ch spaces. We say that (Ao, A,) is a compatible pair if there is a Hausdorff topological
vector space A such that the injections A; — A (i=1,2) are continuous. A compatible pair
will be denoted by A = (Ag, A;). For a pair A we put £(A4) = Ag + A;, A(A) = Ao N A;.
Furthermore, for z € £(A) we define the K- functional

K(t,2,A) = _inf_(lzoldoll + tlz1] Al
and for z € A(A) we define the J-functional
J(t,z, A) = max([|z| Aoll, tllz| As])-
Definition 2.2: Let a be an admissible Z-lattice and v € Qz,—1 < a(u) < B(u) < 0.

(i) For a pair A = (Ao, A1) of quasi-Banach spaces we define the K-space Ay sk to consist of
all z € £(A) such that (K(2*,z, A)) € a(u). Put ||z|Auak|l = [[(K (2%, z, A))la(u)]).

(i) The J-space /iu,a;,y is defined to comsist of all z € Z(A) that may be written as
z = ¥, zk,2x € A(A) (convergence in £(A) ) with  (J(2%,zk, A)) € a(u). We put
| Auaisll = infoo5 o, I(J(25, 2k, A))la(u)]-
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Remark 2.3: (i) The imposed conditions —1 < a(u) < f(u) < 0 guarantee that the spaces
are non-trivial. (ii) Foru = (2"%)anda=1{,0<8< 1, 0< ¢ < oo, we recover the Ag g-scale
of Lions-Petree (see [1]). (iii) Let Q(0,1) denote the class of functions p on (0 00) such that for
some € > 0, p(t) t™¢ is non-decreasing and p(t) t=1*¢ is non-increasing. The 1nterpola.tlon space
with the parameter function p € Q(0, 1) is defined to be

Apikc = { €s(h): (f W(K(t,z,fi)/p(t))q?)w < oo}

(cf. [11]). These spaces also generalize the Lions-Peetre real interpolation spaces Ag, (put
p(t) = t°). On the other hand, an easy computation shows that

2k+1

[, Kn p0) *F < (K2, Ay,

where ux = 1/p(2%) and u = (ux) € Qz, -1 < o(u) < B(u) < 0. This implies that
Aok = /i(‘ /o(2¥)),¢:k - The interpolation spaces Ay a;x recover also the interpolation spaces

with a parameter function.

Lemma 2.4: Let a be an admissible Z-lattice. Let pand q with 0 < p <land0< ¢<1, then

there is a constant C such that
() N, P Hz;193 ) eezlall < C l(zk)kezlall
@) N{Z30 £~ 2519} 9)iezlall < C |I(z4)kenlat]l-
PRrROOF: Put p = 1/¢ and assume a to be r-normed. Then it follows from
{Z'pli—*llzﬂq}l/q ={ Zp(l—q)lil(plil|xj+k|)q}1/q <{ Zp(l—q)p’b‘l}llp’q{ melzj+k|}
b1 j b i
that

D PP ~H1z5173)lall < Cu Y Pz jeablall < Co (3 l(540)lall) Y7
j i j

Choose pg with 1 < pg < 1/p. Since the spectral radius of the shift operator is 1 we can find a
constant C, such that ma.x(||$ ILIIS211) < Cz g} for each j € N. Consequently,

A5 oMt ol < €3Ca (G Iz0lal) )

A

C1Cy {Z(ppo)'l"}‘/ "li(ze)lall

J
C |l(zx)xezlall-

IN

To prove (ii) observe that {3772, PP K| z;|9) e = p"‘/"{z:;';opﬂxﬂ?}‘/q for k < 0. Combined
with (i), (ii) follows m
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Using Lemma 2.4 and the definition of the Boyd indices a straight- forward calculation shows
that

II({Z(min(l,2"")Izjl)°}’/")la(u)ll SCll(ze)la(u)ll, 0<g<1.

Applying this statement the proof of the equivalence of the K- and J-method given in {1, Theorem
3.11.3] immediately carries over (see also (6, Lemma 2.5]).

Theorem 2.5 (The equivalence theorem): Let a be an admissible Z-lattice and u € Qz,
-1 < a(u) < B(u) < 0. Then we have A, ax = Aya,J-

In the sequel we shall write /iu,a instead of /iu,,;K or /iu'a;.,. In the following theorem we

summerize some properties of /iu'a.

Theorem 2.8: Let A = (Ao, 41) be a given couple. Then
(i) (Ao, A1)y a-gat = (A1, Ao)us atga-. where u” = (2"Fu_y).
(i) AwaC Ava if (u;lvk) € a~lob.

(iii) Aya is a quasi-Banach space.

Proor: (i) is an immediate consequence of K(2*,z, Ag, A;) = 2XK (27,2, A, Ao) and the
boundness of the right shift operator. (ii) follows from (2.1). (iii) Without loss of generality we
may suppose that Ag, A;, £(A4),8, and Ay a are g-normed (0 < ¢ < 1). Let 3°5° [|z;| Ay all? < oco.
It suffices to show that Y {°z; converges in A,a. Since L(A) is complete and
[Iz;IZ(A)| < |lzjlAuall there is z = 372 z; € £(A). We choose a subsequence (ny) such that
(T |zl Auall7}}/9 < 1/2*. For fixed € > 0, we find yz‘l and yi'l with 314 25 = yg,l + y:",
log'ldoll < 2= & and fly'|Aull < JE . Hence there are 3! = ¥, 3 € 4o,

uy
M= Tiop bt €A1 andweget  K(2, 5% 4125, 4) < 3% Aol + 2!y {Ar]] , where ko
is arbitrary, but fixed. A straight-forward calculation gives ||(u/ K (2, ;‘”ko“ z;, A))la|| < ;,,%;,
where the constant C is independent of kg and the proof is complete @

3. The reiteration theorem

As an easy consequence of the boundness of the double sequence operator D and the subsequence

operators T, we obtain

Lemma 3.1: Let a be an admissible N-lattice, and let N = |J3° Ak, Ax # @ be any disjoint
decomposition of N with max(Ag) increasing and max(Ax) — min(Ax) < ng forall ke N.If

c1zx S yj < cozk for all j € Ap and k € N,

then
Cill(zi)renlall < 1I(35)jenlall < Call(zk)xenlall,

where Cy,C, are constants independent of (zk)xeN and (y; )ieN-
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Lemma 3.2: Letu = (u;) € QN with y(u) < 0. Put Ay = {j € N: 0k <logu; < a(k+1)},
where o = log%;,. Then we have

(i) o> 0.
(ii) Ax # @ for allk € N.
(iii) (k) = max(Ax) is increasing.
(iv) max(Ag) — min(Ax) < ng, where ng is independent of k.

ProoF: (i) o > 0 is an immediate consequence of limg_.oo ux = +00. (u) Suppose, on
the contrary, that A, = @ for some kg € N. Since the number jo = max{j : logu; < oko}
exists, we can infer logu;, < oko < o(ko+ 1) < log uj,41. This yields the desired contradiction
o < log ‘L{gfl < log#; = o. (iii) can be proved by similar arguments. (iv) Put %(k) = min(Ag).
Since ok < log uyk),logu,k) < o(k + 1) we obtain log u,k)/uyx) < o and hence we get

0< /4 < “-p(k)/“w(k) S & o(k)—p(k): Because lim;_, 4o u; = O there is a constant ng such that
(k) — (k)< ngforallke Nm

Remark 3.3: If we suppose F(u) < 0, the same statement as in the preceeding lemma holds
true for Ay = {j € N : 0k < —logu; < o(k + 1)} where o = logu,. To see this consider u~!
and apply Lemma 3.2 .

Lemma 3.4: Let a be an admissible N-lattice, and u,v € QnN, 7{u) < 0. Moreover, let
K : RY — Rt be an increasing function satisfying K(2z) < 2K (z). Then (vi K(2*))ieN € a

implies

C1 l(oe K (2*)ienlall < [[(Mogu K (we)eenlall < Cz (veK (2¥))xenlall,
where Cy,C, are constants independent of K.

ProoF: By Lemma 3.2 it turns out that
Ar={je€N:ok< log u; <o(k+1)} #0, o =logd,.
For j € A; we have
Mmoo K (217M) < vpogu 1K (u;) < Myvoi K (2179),

where m, = (maXocj<i+(o}2)”' My = maXog;i<i4o] 21+l9) 3;. Applying Lemma 3.1 we ob-
tain

Crmull(vp K (29))all < I(vpogun K (uwe))lall < CaMoli(von K (2179))all.

Repeating the same reasoning we can substitute ||(v[,k]K(2[°"]))|a|| by ||(viK(2%))|a|| and the

desired result is proved m



On Interpolation with Generalized Parameters 49

Proposition 3.5: Let b be an admissible Z-lattice, and ag(u®),a;(u') be Z-lattices. Moreover,
letveQz,—1< a(v) < B(v) <0. Putu=(u;) = (ud/ul), and w = (wx)rez = (u(l:v[logu.])kGZ'
Then we have

(a0(1), a1(u')),,b = cdd(w),

where
b+ for (7)< 0 b+ Jor y(ut) <0
c=<{ b~ for F(u~)<0, and d=¢ b~ for F(ut)<o0 .
(ag,a0)yp for up x1 (at,af)yp for ufx1

PRrOOF: Note that K(t,z,a0,a1) < K(t,z",a5,a7 )+ K(t,z+,a},a}) immediately implies
(ag ®ad,ay @at), b = (85,87 ). b®(ad,a} ), b- Therefore it is sufficient to prove that

bt (w) for y(u)<0
(20(v%),a1(8"))p = { b~ (w) for 7(u) <0,
(B0rar)up(w) for u, x 1
where ao(u®), and a;(u') are N-lattices. (i) We consider the case y(u) < 0. According to
Lemma 3.2 we put Ay = {j € N : o0k < logu; < o(k + 1)}. Let z € (ag(u®),a;(u!)),p. From
the definition of the K-functional it follows C K(27%, z,a0(u°), a1(u!)) > |u0z;| for all j € Ax.

Therefore we get
C l(ven K (27¥, z,80(x°), a1 (u")))|bl| 2 [[(wjz;)Ib*|

and by Lemma 3.4 it follows z € b*(w). On the other hand, let z € b*(w). For some 0 < r < 1
we have K(1,z,80(u®),a;1(u")) < {£32, K(1,27,80(v),a1(u?))"}!/", where 27 = (z1)iea, =
(x4,(1z1)ign- Using the estimate

K (275,27, a0(u®), a1 (")) ‘_igofﬂ,{||(("?y?)leA,~)|80” + 251 ((uf ! rea, ) all}

I=

inf  {((ufhea,aoll + 27D N|((ufy} iea,)lall}

z7=y0 +y!
K(2a(k_j)7 (u?zz)leA,w ag, al)
min(1, 25D [((fz))iea, ) AG)|

. 1,2a(k—j) 0
min(1, 279 maufa

X

IA

X

we obtain
(v K (275, 2, 80(u®), a1 (w')))Ib]| < CII({Z(v[ok]min(1,2”("'j))!llelgxIu?zzl)'}”')lbll
=0 o
< CIE - Ty fm"(l,?”(k'j))?é%’?lwml)'}l/’)lbﬂ
'y

=0

Since Y[y (x—j)) min(1,2°(-9)) < Cp'*-1! for some p,0 < p < 1 it follows from Lemma 2.4/(ii)

combined with Lemma 3.4 that
l(ve K (2%, z,80(u), a1 (x")))Ib] < C Il(l,ggxlwzzzl)jlb*II < C |lz|b (w)]|.
p

4 Analysis. Bd. 11, Heft 1 (1992
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(ii) The case 7(u) < 0 follows from (i) combined with
l(ve K (2, z, 80(4°), a1 (u)))|b~®bH|| x [[(2*vi K (2%, z, a1 (u'), ao(u°)))|b*®b~||
and u} 2~ logup/u V_fogul /ul] X uQVogu,) = Wk (iii) The case ux < 1 is obvious m

Remark 3.6: In the cases ag # a; and y(u~) = J(u~) = 0 (resp. %) no simple description
of (ao(u®),a;(u!)),p is known.

Remark 3.7: By Proposition 3.5 we have (lo,loo(27%)),,b = b(v). Note that in this case there
holds u = )4z, T(u™) = 7(u*) = -1,

Therefore, b(v) is an interpolation space between Il = (loo,lco(27*)). Moreover, for
(zx) € b(v) it is easy to check that limg__o Zx = limg_ 400 2 ¥z4 = 0, which implies that
b{v) C (&), where & = (co, co(27%)).

Let E be an interpolation space with respect to the pair loo = (loo, loo(27¥)). Then we say
that z € Ag,x whenever ||(K(2*,z,A))iez|E|l < co. Now we are in position to deduce the
desired reiteration result as a special setting of an importent theorem independently discovered

by BRuDNYI AND KRUGLJAK[2, 3] and NiLssON[6, p.301]. Their result reads as follows.
Theorem 3.8: Let A = (Ao, Ay) be a quasi-Banach pair and E = (Ey, E,) any pair of inter-
polation spaces between l.,. Furthermore let us assume that E; C (&), ¢=0,1. Then for all
t >0 and z € £(A) we have

K(t,2, Ak, AByik) < K(8,(K(2%,2, A))eez, E)-

Observe that this formula implies (Agy.kx, AE, .k )Fx = A(EOyEl)F”K’ where F is any interpo-
lation space between I.,. Applying Proposition 3.5, Remark 3.7, and Theorem 3.8 we can infer

the following reiteration theorem.

Theorem 3.9 (The reiteration theorem): Let ap,a;,b be admissible Z-lattices and
w0, ul,v € Qz, ~1 < a(u%),a(u'), a(v), B(x°), B(u'), B(v) < 0. Put u = (ug) = (uR/u}) and

w = (Wk ez = (W)Vogus) kez - Then we have

(Auo,ao ’ Aul 81 )u,b = A—w,ca)d’

where
bt for (") <0 b* Jor A(u*)<0
c=4¢ b~ for F(u~)<0, and d={ b~ for F(ut)< 0 .
(ag,ay)ub for up <1 (ag,af)yp for ufx1

4. Generalized Lorentz spacés

In this section we deal with generalized Lorentz spaces. It is of interest to know that they form a
"scale” of spaces in the sense that they are stable with respect to some method of interpolation.
We restrict our consideration to the typical discrete and continuous case, namely the Lorentz
sequence spaces and the Lorentz spaces defined on the unit interval (0, 1) with Lebesgue measure.

These spaces show different behaviours.
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Definition 4.1: Let v € QN and let a be an admissible N-lattice. The generalized Lorentz
spaces are defined as follows:

() Ava = {z = (z&)rz0 : [l(vxz3e_,Jeolall < 00}, with (v) < 0, where (z;) denotes the

~ non-increasing rearrangement of (zi).

W) Ava = {f : I(vef*(2F"")ksolall < o0}, with F(v) < 0, where f* denotes the non-

increasing rearrangement of the measurable function f on the measure space ((0,1),dz).
Observe that '\(2*/»),1q = lpg and A(g-ssp)y, = L,(0,1). Using (1) it immediately follows
Remark 4.2: If (vi/ui) € a~lob , then Aya C A,p and Aya C Ayp.

To prove that the Lorentz spaces can be generated by interpolation we need a preparing

lemma.

Lemma 4.3: Let a be an admissible N-lattice. Let 0 < ¢ < 1 and v = (ux) € @N.
() If 7(u)<1/q, then |l(us{502*Iz;1}/ ienlall = [I(uezi)eenlall-
(i) If 2(w)<1/q, then ||(we{352, 277 *12;1°}/senlall < l(urzi)renlall-

Proor: First observe that F(u) < 1/q (resp. y(u) < 1/q) implies the existence of numbers
C > 0 and p with 0 < p < 1 such that @, 2~™/% < C p™/9 for m > 0 (resp. u,,2"™/9 < C p™/9),

To prove (i) consider the estimation

k
w(}_ 2 Mz Y = (YD (20T ez )0
¢)

=0 =0k

- .
{3 @270 oju;z5))0} e

<
=0
k
< C{D (P Mjuyz;l)y e,
j=0

The assertion then follows from Lemma 2.4. (ii) can be proved in a similar way m

Lemma 4.4: Leta be an admissible Z-lattice, 0 < ¢ < 1, andu € Qz with ~1 < a(u) < f(u) < 0.

Then we have
(i) (g lo)ua—@at = Avt ats where ‘ vF = (2k/qu[k/q])keN-
(i) (Lg) Loo)uawa+t = Ay-a—, where v~ = (Q_k/q“[—k/q])keN-
Proor: (i) First we note that

{zg[v*]—l lz;lq}l/v for k>0

K(2%, 2,1, l00) < .
( o) {2"||z|l°°|| for k<0

4*
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Hence .
x)
K(2. 2.1 1.) < v[vk}{ir%&‘f DI A [2319}}/9 for k20
Uk ( y Tyl oo) ~ & .
2" ug|z|loo| for k<0
Applying Lemma 3.4 we get
2lekl 4

l - - -
Iognlomm 22 1251 ezolall + 112 ulizlicollJizola”
o

2%—1
1 R _ _
ok {5 D 125171/ )ez0la* | 4 12 *uoidzola™ |l lzlioll
0

X

(e K (2%, 2, bg, doo) iezlall

X

X

k
I 277 25,413 ))ksola ™.

3=0

Since F(vt) < B(u)/q+ 1/g < 1/q it follows from Lemma 4.3 that

(kK (2, 2, kg, oo Diezlall < (v 25 Deola™ |-

(ii) can be proved in the same way m

Now we are in position to formulate and prove the interpolation theorem for Lorentz spaces.

Theorem 4.5: Let \,i,, and Ay 5, (i = 0,1) be generalized Lorentz spaces. Suppose v € Qz
with —1 < a(v) < B(v) < 0 and let b to be an admissible Z-lattice. Put u = (ux) = (ud/u}),

c = (a%al),p and w = (Wi )keN = (4)Vogu,) keN- Then we have

Awbt for 7(u) <0
(') (Au",aos Au‘,a; )v,b = ’\w.b‘ for 7("’) <0 .
Awe for upx1

Ayb+ for y(u) <0
(ll) (Au°.ao’ Au‘,a, )u,b = Ay b- for F(u)<0 .
Ape for upx1

.ProoF: (i) Choose ¢ with 0 < ¢ < min(1,1/7(x°),1/¥(u!)), 6 with 0 < 6 < 1 and
2~k uqu] for k>0

1 + gmax(7(u®), 7(u!)) < 8. Now we put s' = (s} Z, with s} = .
gmax(y(x°), y(u1)) p (sh)ee e T B

A straight-forward calculation shows that Lemma 4.4 can be applied and we get

Aiia, = (g lo)siaga;  (1=0,1).

By Theorem 3.9 it follows that ‘

’ (lg:loo)tcpbt for (st) <0

((Iq»loo)a",ao@aO’(quw)s‘,a.(Ba, )u,b = (Iq7100)t.c6)b‘ for 7(3+) <0,
(lqyloo)l,CQC for S: <1

where s = (s¢) = (s2/s}), and t = (tk) = (5) Ypogus)Jkez- Note that we have y(s*) = ¢y(u),
F(s*) = ¢7(u), and s} =< ux X 1, respectively. The proof will be completed by applying again
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Lemma 4.4. Observe that wy = 2¥/¢ tiksg) = 2k/q gfqu]v[los sasgl = ud Yllogus]- (ii) can be proved
by similar arguments m

In [12] A. PIETSCH has proposed to introduce Lorentz sequence spaces depending on a finite
number of indices 0 < r,..., < co. In the present setting these spaces can inductively be defined
as follows. The starting point is the relation lp,p, = Ajarm),, for the usual Lorentz sequence
spaces which is well known. Now we put I, 5, = z\(zg/,,)‘,mmm. By Remark 4.2 it is clear that
the spaces are lexicographically ordered. Note that the generalized Lorentz sequence spaces
are admissible. Next we give some interpolation results for the Lorentz sequence spaces I, .
which we will formulate in terms of the classical interpolation scale of Lions-Peetre, i. e. we use
Agg = /‘i(z—"),lqw 0< 8 <1,0 < q < oco. The following results are immediate consequences of
Theorem 4.5.

Corollary 4.6: We have

(1) Upipaslrgador = bars for m<aq,l= l—p'l—a q%
(i‘) (Ipl...pn)lq)...qm)a,r = lary jor 241 < ql,% = ‘;—lo + (IL]
()  (lpipasIpraa)or = lpyars for pr<ql= 1;2—9 + %

1-6 8
Pht1 qk41”

.. _ 1 _
(ii*) (lm---mm“u.pmlm---mq:mmq'n)a.r =lp, ppsry JOr Pr1 < Grt1, 5 =

5. Miscellaneous results

In order to generalize a special case of the power theorem, we introduce the admissible Z-lattice
a, = {(z) : }(|z«|?)la]| < oo}, which is equipped with the quasi-norm ||(z)|a,|| = [|(1z&[?)|a]]*/.
By the Lemma 3.4 and the same arguments as given in [1, p.68-69] we deduce
Theorem 5.1 (The power theorem): If0 < p < oo, then
(A5, AD)ua = (Ao, A1)oa,, where v=(us) = (w/7).
The duality theorem reads as follows.

Theorem 5.2 (The duality theorem): Let (A,, A1) be a Banach pair, let a be an admissible
Banach Z-lattice, and let u € Qz,—-1 < a(u) < B(u) < 0. Moreover, suppose that A(A) is dense A

in Ag, A1, and A, a. Then we have
(Ao,Ax):,_a—@a+ = (AB’A,l)u.ate)a:’ where v=(v)=(1/u_x) and a.,=a"lol;.

Proor: Apply Theorem 2.6/(i), the equivalence theorem, and carry out a generalized form
of the proof given in [1, p.54] @

Note, if the finite sequences are dense in a, then ~A(/i) is dense in Aga, too.

Finally we want to mention that the interpolation between the sum and the intersection can

be treated in the same way as pointed out in [11, p.218].The result follows immediately from
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the estimates

- - K(2%,z,A EK(27%,2,A) for k<0
K(2k,$,E(A),A(A)) ~ ( 7z7_ )+ 2 K( 7zaA) or = ,
K(1,z,A) for k>0
K(Qk,z,z‘i) for k<0

K(2%,z,2(A), A)) < i .
( (4, 41) {K(l,z,A) for k>0

Theorem 5.3: Let a be an admissibfe Z-lattice and b,c be admissible N-lattices, 1 € Qz,
-1 < a(u) € B(u) < 0. Then we have

(2(’&)7 A(’a))u.a'&&ﬁ’ = (2(‘&)7 AO)u,a—Qb n (2(5)7 Al)u,a‘fBC'

In the literature the problem is considered to characterize interpolation spaces by means of
the intersection or the union of a family of spaces indexed by functions belonging to some classes
(see [10]). The next result gives a contribution to an abstract version of this problem.

Let a be an admissible Z-lattice. We put Qa = {u € aN@z : —¢ < a(u) < f(u) < €}.
Observe the following fact. Let (zx) € a and define

ug = Zplk‘jllsz where 0<p < 1. (2)
j

By Lemma 2.4 we have (u;) € a and ||(z4)|al] < ||(uk)lall € C,|l(zx)|a]|- Moreover, since
P < upgr/ug < p7! we get (uk) € Qay, for 2 < p< 1.

Theorem 5.4: Let A = (Ag, A;) be a given couple, a and b admissible Z-lattices, and v € Qg,
-1 < a(v) £ B(v) < 0. Fiz € > 0. Then it holds

(l) fiu,aob = UueQa'{iv/u,b'
(Ll) "iv,a—’ob = nueQa'{iw,b'
PRoOOF: We prove only the first assertion. The remaining one can be treated in a similar way.
It is sufficient to prove that aob = {J,¢q, b(u™"). Obviously, we have ||zjaob|| < ||u|a]} ||z/u|b]|
for all z € b(u™!). Hence {J,¢q, b(u~') C ach.
On the other hand, for given z € acb and § > 0 there is a decomposition z = (zkyx) such
that (1 + 6)l|zlaob|| > |i(zi)lall lI(we)[bll > [I(zk)lall lI(Zyk)Ibll > C|lula]| [|2|b(u=")]l, where
u = (ug) € Qa, is constructed by (2), and so the proof is complete m
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As indicated in the bibliographical data this book is the third volume from the MINOL series
("Mathematik fur Ingenieure, Naturwissenschaftler, Okonomen und Landwirte” - Mathematics
for Engineers, Natural Scientists, Economists and Agriculturists) designed by various authors
in a module-lilke system during the 1970s. It was aimed to support the university education of
“non-mathematicians’”, obviously mainly that of engineers, and is also intended to support
correspondence courses and private studies. .

Besides of a scheme of its logical structure (interdependence graph) and a motivating in-
troduction the book contains the following sections:

2. Series with constant elements (including the integrability criterion) - 17 pages

3. Function series (general theory including uniform convergence) - 17 pages

4. Power series (covering: Abel's theorem, Taylor series, solution of differential equa-
tions, asymptotic power series, substitution of power series into anothers and their
reversion) - 37 pages

S. Fourier series (including their complex form, numerical Fourier analysis, Gibb’s phe- |
nomenon, least square approximation)

6. Fourier integrals (including Fourier transformation).

Every section closes with exercises. Their solutions are given at the end of the book. Indexes
on names and subjects and a short list of standard literature exists, too.



