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On a Nonlinear Binomial Equation of Third Order

M. GREGUS

A necessary and sufficient condition for the solution of equation u”+p(t)u® = 0 (¢ > O an odd
integer, p s O on (a,9)) to be oscillatory and some sufficient conditions for the solution in the
cases p s O and p 2 O to be oscillatory or non-oscillatory are derived. For this methods and re-
sults of the theory of linear differential equations of the third order are effectively used.
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1. The paper investigates properties of solutions of the binomial differential equation of third
order u”" + pu® =0, 1

where p is a continuous function on the interval (a,) with a2 > -®, and « > 1 is an odd number.
Some of our results can be generalized to the case where a is a ratio of odd integers.The
problem has already been a research object of many authors, see [1, 3-6] and others. Here the
methods developed in the study of linear differential equation of third order [2] are effectively
used.

2. By a solution of equation (1) we mean a function u defined on a subinterval 3 C (a, ),
with continuous third derivative and satisfying equation (1). By an oscillatory solution of equa-
tion (1) we mean a solution u of (1) that has on the intervall 3 infinitely many null points, with a
limit point at the right end point of the intervall J3.Otherwise the solution is called non-
oscillatory. A non-extentable solution u defined on a bounded from above intervall 3 is some-
times called singular.

Equation (1) can be written in the linear form

u™ s pu*lu=0. (0
The adjoint equation to (1)* has the form
v -pu®ly = 0. (2)

Let t, ¢ 3 and let u be a solution of equation (1) with the property u(ty) = ug, u'(ty) = ug, u”(t;)
= u,’, where at least one of the numbers u,, u;, u," is non-zero. Further, let v be a solution of
equation (2) with the property v{t,) = v, v (2,) = vg, v"(t,) = v, ', where again at least one of
the numbers v,, Vg, Vg is non-zero. Then for t ¢ 3 we have (see [2])

vie)u(t) -vi(eYu'(e) + v(t)u(t) = const, (3)

where const = V Uy = Vg * Vo U
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If we multiply equation (1)°® by the solution u and integrate from t, to t ¢ J, then we obtain
for all t ¢ J the integral identity

t
u(t)u(t) - %u'z(t) + fp(t)u“"(t)uz(t) dt = const. (4)
%
Similarly, for equation (2) we obtain for all te¢.J
t
v(t)v(t) - %v""(r)— fp(t)u"‘"(t)v"’(t)dt = const. (5)
to

Corollary 1: Letp20 (p s0) on(a,)and p* 0 on any subinterval of ( a,®). Further, let
u be a solution of equation (1) defined on an interval 3 C ( a,®) and with the property u(t,) =
uty) =0, u™(ty) *+ 0 for some ty € 3. Then u(t) + 0, u(t)+ 0, u(t) +0 forall t <t, (t>¢,).
A similar assertion holds for the solution v of the equation (2) with the property v(t,)=v'(t,) = 0,
v(ty) 0 for some t, € 3, thatis v(t)+0,v(t)+0,v(t)*0 forallt >t,(t <t,).

Proof: It follows from the identities (4) and (5) and from the equations (1) and (2), re-
spectively B

Corollary 2: Supposing p is the same as in Corollary 1, each solution u of equation (1) or
(2) has at most one double null point.

3. Our goal is to derive some properties of solutions of equation (1) in the case p s 0.

Theorem 1: Let p < 0 on (a,®). Then any non-extendable solution u of equation (1) defi-
ned on an interval 3 C (a,)and such that u(t,)2 0, u'(ty) = 0, u™(t,)> O for some t, ¢ 3 has
the property u(t)> 0, u'(t) >0, u™(¢)> 0, u”(t)2 0 for all t >t, and, moreover, u(t)—> «,
u’(t)— o as t converges to the right end point of the interval 3.

Proof: First of all we show that u”(¢) > 0 for all t > t,. Let us form the function V 2 uuu”
If u” has null points to the right of t,, let us denote by t, the smallest of them. Hence u(t,)=0.
Therefore u(t)> 0, u(¢) > 0 for all te(t,¢t,) and V(15) 2 0, V(t,) = 0. Since p s 0 there holds

dVv(t)sdt = u(thu(e) +u(t)u 2(t) —.p(t)u“"(t)u'(t) >0 forall te(t,,t,).

After integration from f, to t, we obtain 0 = V(¢,) +f:’ V{(t)dt > 0, which is a contradiction.
Hence u™(t}> 0 for all t > t,. From here it follows that u(t)> 0, u’(t) >0 for all t > t,. From
equation (1} it also follows that u”(t)2 O for all t > t,. From these inequalities we then have
that u(t)— oo, u”(t) > o as t converges to the right end point of the interval 3.

N. Parhi and S. Parhi have proved the following

‘“Theorem A [6: Theorem 3.1]: Let p <0 and fr:op(t)dt = -co. Then every bounded solution
of equation (1) in (t,, ) is oscillatory in (t,, ).

Lemmal: Ler the assumptions of Theorem A be fulfilled and let u be a solution of equation
(1) with the property u(t)> 0 for all t 2 t,, where t, > a. Then there exists such t, > t, that u(t)
>0,u(t)>0,u"(t)>0 for all t > t,. :
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Proof: From equation (1) it follows that u™(t)2 0 for all t > t,. Then we have two possibi-
lities for u™:
1. u”(t,) > 0 and hence u”(t) > 0 for all t > t,. Then after integration of equation (1) we get

t
u(t)=u"(t,) - fp(t)u“(t)dt,
to ‘

t

() = utg) +u(tXe - 1) - f(t - Dp()uNv)dr, (6)
to

u(t) = ulty) +u(e Xt - t,) +u"(t, )( f(t -1) p(t)u“(t)dt

From the second equation of (6} the existence of such t, > f, follows that u’(t)> 0 forall ¢t 2 ¢,.
Then u(t)>0, u(t)>0,u”(t)>0 forall t 2¢,.

2.u”(t)< 0 forallt2t,. Then u’is decreasing and there are again two possibilities:

() u(r) <0 forall t2t, and u’ decreasing. Hence u'(t) <u'(t,) from where u(r) < u(r,) +
u’(t,Xt - t,) and this is a contradiction to the assumption that u(¢)> 0 for all ¢ > ¢,.

(i) u’(t) >0 for all t 2 t,. Then the function u is increasing for ¢t > t, and after an integration
of equation (1) we get u™(¢t) = u"(¢,) -J;: p(1)u™(x)dt.From here and from the assumptions on
p there follows that, for certain t, >t,, u”(t)> 0 for all ¢ > ¢, and this again leads to a contra-
diction to the assumption that u”(t) <O forall t 2t, B

The following theorem answers to the question which solutions of equation (1), under the
assumptions of Theorem A, can be oscillatory.

Theorem 2: Let the assur-nptions of Theorem A concerning p be fulfilled. Then a necessary
and sufficient condition for a solution u of equation (1) to be oscillatory fort 2 t,, for some t, > a,
is that

u(t)u(t) - uXt)/2 <0 forallt>t,. - (D

Proof: Sufficiency. Let (7) hold and let e.g. u(t) > 0 for all t > t,. It follows from Lemma 1
that there exists such t, 2 t, that u(t;) > 0, u’(¢,) > 0,u"(¢,) > 0 and, from Theorem 1, u(t)—)oo
as t = ., From the integral identity (4) it follows that

w(u(e) - wXe W2 = ule)u ) - uXe,)/2 -ﬁip(t)u""(t)dt (8)

and from this and the assumptions of Theorem 2 there follows a contradiction with (7) as t = .

Necessity. Let the solution u of equation (1) be oscillatory in (f,,®) and let t; (i =1,2,...)
be null points of u in (fy, ). Then from the relation (8) it follows that the function wu” - u"%2
is increasing in (f,,0), but u(t;)u"(t;) - u'¥t;)72 < 0. From this fact it follows that (7) holds
forall t>t, @

Theorem 3: Suppose that p s0 on(a,®) and p + 0 on any subinterval of (a,®). Let u be a
solution of equation (1) defined on an interval 3 C(a,®)and satisfying k = u(t,)u"(t,) -
u'X,)/2 2 0 for some t, € 3. Then u does not have a null point to the right of to and |u(t)| = oo,
|u(t)l =  as t converges to the right end point of 3.
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Proof: The solution u fulfils the identity (4), i.e.

u(t)u(t) - u'¥t)2 +J;:)p(t)u°‘"(t)dt =kz20 forallte3. ' (9)

Let u(t,) = 0 for some t, > t,. Then from the identity above at the point t, we get a contradic-
tion. To prove the second part of the assertion let us suppose for simplicity that u(t)> 0 for
all t>¢t,. Then also u™(t) 2 0 for all ¢ > ¢, and from the identity (9) it follows that u(t) = 0 for
all £ > ¢,. Suppose that 3 is a bounded interval with right end point b and let u be bounded on it.
Then also u” is bounded as follows from the first relation in (6). Note that u” is a monotone
function. From the second relation in (6) it follows that the function u’ is also monotone and
bounded. Hence u(t) - u,, u'(t) > ug, u(t) - ul as t = b, where Uy, Ug, Uy are real numbers.
That means u can be extended to b, which is a contradiction and therefore u () >0, u(t) -
© as t > b.In the case b = @ the proof is trivial - it follows from the monotonicity of the
functions u”,u”” and from (6) @i

Theorem 4: Let p(t) < -k (k >0) for all t >t,. Then each oscillatory solution u of the
equation (1) defined on (t,, ®) belongs to the class *** on [t,, ®), i.e.fo u**t)dt <o,

Proof: It follows again from the identity (4). Really, from Theorem 2 it follows that
u(t)u(e) - u Xt )2 = ulty)u(t,) - u'1,)/2 -J;:p(‘[)uaﬂ(t)dt <0.

«©
This implies 'ﬁop(t)u“*‘(t)dt <ol

4. Now our goal is to derive properties of solutions of equation (1) in the case p 2 0. For
this let u be a solution of the differential equation (1) defined on an interval 3 C (a,) and
suppose that it fulfils the initial conditions u(t,) = u;,, u'(ty) = ug, u(t,) = ug’ for some t, ¢ 3.
Notice that the relations (6) hold.

Lemma 2: Let p 20 on (a,) and let u +0 be a non-extentable solution of equation (1)
defined on (t,, b), for some b ¢ (t,,]. Then b = co.

Proof: It follows from the relations (6). Indeed, suppose b < ®, u(t) > 0 for all t ¢ (e, 0)
and bounded from above. Then from the relations (6) it follows that u can be extended to b.
If u is unbounded on[t,, b) and f, g - 1)®p(t)u*(1)dt exists, then u and also u’,u” can be
extended to b. lff, (b - 2p(1)u*(t)dt = ™, then from the third relation in (6) it follows that u
must have a zero and this is a contradiction to u(t)> O for all t € [to, b) &

Remark 1:L.emma 2 does not hold in the case of extendability of the solution to the left of
the point t,. For example the equation u™ + afa +1)(a +2)t %*~ %" 3% = 0 has a solution u = £~ &
defined on (0, ®). It cannot be extended to the left of 0.

Lemma 3: Let p20 on(a,) and let u be a solution of equanon (1) which for some t, > a
and b ¢ (a,) is oscillatory on [t,, b). Then u is unbounded on (¢,

Proof: [t again follows from the relations (6). If we suppose that u is bounded on [, 1),
then from the third relation in (6) and from the Cauchy Criterion we obtain that u can be ex-
tended to b, too i
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The paper [5] contains a theorem of I. Licko and M. Svec that we restate for the equation
(1), « > 1 and odd.

Theorem B: A necessary and sufficient condition for either oscillatority or monotonic con-
vergence to zero together with its first and second derivative of each solution of the equation
(1) on (¢,,) (t, > a) is that p(t) > O forall t > a and ﬁf!’p(t)dt =00,

The problem is which solutions of equation (1) are oscillatory on the interval (¢,,%) and
which on the subinterval 3 C (a, ).

Theorem S: Suppose that p fulfils the conditions of Theorem B. Then each solution u of
equation (1) defined on the subinterval 3 C (a,®) and such that

ulty)u™(ty) - uXt,)/2 = -8 < 0 for some t, ¢ 3 (10)
is oscillatory for t > t,.

Proof: Let t, € (a,0) and let u be a solution of equation (1) with the property (10) and de-
fined on 3. Then either 3 is bounded from above or 33 = (to,w). In the first case u must be os-
cillatory for t > t, as follows from Lemma 2. In the second case let us suppose that u(¢) > 0 for
t ¢ (t,,). Theorem B then implies that u’(¢t) < 0, u™(t) > 0 forall ¢t >¢,, for some 1, 2 t,, and
u(t)>0,u’(t)—>0 as t > . However from the integral identity (4) we get u(#)u(t) - u'¥t)/2
+_];;p(t)u°"‘(t)dt = -8 < 0, which implies

uHt)/2 = u(t)u(t) +_£;p(t)u°‘“(t)dt +328forallrat,

but this contradicts the assumption u(t) >0ast >l

Theorem 6: Suppose that p satisfies the conditions of Theorem B. Then each solution u of
equation (1) with double null point at t, > a oscillates on the right of t,.

Proof: Again there are two cases. In the case when u is defined on a bounded from above
interval it must, by Lemma 2, oscillate. In the second case when u is defined on [10,00) and we
suppose that u(t)> 0 for all t >¢,, for some t, 2 t,, it has to converge together with its first and
second derivatives to zero as ¢ —> © and moreover it has to satisfy u(¢)>0, u(¢) <0, u”(t)> 0
for all t>¢,, for some ¢, 2 t,. Let us substitute u into equation (2) and suppose that v is its so-
lution with the property v(t,) = v{(t,) = 0, v"(¢t,) > 0. From Corollary 1 we have that v(t) > 0,
vi(t)> 0, v(t) > 0 for all t >t,. We use u and v to generate equation (3), i.e.

vu" -vu +viu=0. (11)

If u is non-oscillatory we get from equation (11) a contradiction from the fact that v(¢)u"(¢t) -
vi(u'(e)+v (t)u(r)>0forall r >, 0

Let p(t) > O for all t ¢ (a, ) and let u be a solution of equation (1) defined on 3 and satis-
fying u(t,) = u'(t,) 2 0, u{ty) > 0 for some t, € 3. Further let v be a solution of equation (2)
"defined on 3 and satisfying v(t,) = v{(t,) = 0, v*(t,) > 0. Then equation (11) holds for ¢ > ¢,
where v(t) >0, vi(t) > 0 for ¢t > t,. Let us make the substitution u =+Yv y into equation (11). It
then takes the form

Yy +(3v/2v -3v'%/4v2)y = 0. (12)



From the integral identity (5) for v and ¢ > t, we get
3v(e)/2v(e) - 3v i) av ) = 3/2v40) [ plou (D) vA(Dde

and equation (12} is transformed into

't

¥y () +<3/2V2(1)Jt° p(t)u"_‘(t)vz(t)dt)y = 0. (13)
From the reasoning above we obtain

Theorem 7: A necessary and sufficient condition for a solution u of equation (1) to be os-
cillatory for t > t, € 3 is that equation (13) or(12) is oscillatory fort > t, ¢ 3.

Apparently, Theorem 7 does not have any practical significance for determination of oscil-
latoricity or non-oscillatoricity of solutions of equation (1). However, as we shall see in the
following, it has a theoretical importance.

Corollary 3: Let p(t) > 0 for t € (a,®) and let u be a non-extendable solution of equation
(1) on<t5,b), a < t, < b< oo, with the property u(t,) = 0, uf{t,) 20, u(t,)> 0. Then

't
[, pDu™ Ht)drt »@ast = b.
to

Proof:From Lemma 3 we have that u is oscillatory on {t,, b) and from equation (1)* it fol-
lows that the limit of its null points is b. Suppose that v is a solution of equation (2) which is
adjoint to the solution v and has the property v(t,) = v(t,) = 0, v"(t,) > 0. From Corollary 1 we
have that v(r) > 0,v(¢) > 0, v"(t) > 0 for all ¢ > t,. The function u is obviously a solution of
equation (11) and hence by Theorem (7) equation (13) must be oscillatory on<t,, b), b < . This
is possible only if

VV"’(Y)J;r AHu* Y 1)v2(t)dt ~was t - b. (14)
o]
However for t > t, clearly the inequality
l/Vz(r)’;' pOu ) v()dr < [: pDu®"Y1)d
b ¥l o
holds. Hence the assertion follows i

Corollary 4: Suppose that the assumptions of Corollary 3 hold. Then any solution v of the
equation (2) satisfving the condition v(t,) =v<{t,) = 0, v“(t,) > 0 has the property v(t)—

@, v(t)= o, vi(t)=®ast—>b.

Proof: Relation (14) implies the relation

_’;;p(t)ua"(r)vz(t)dt —> as t = b. (15)
The integral identity (5) for the solution v has the form

V(W () - vAD/2 - [ p0us O vEDd T = 0.

Suppose that v is bounded on <{t,.b). Then
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vt (t) = v ¥t)/2 +f,:>p(t)u°‘"(t)v’(t)dt.

From this and from relation (15) it follows that v"(t) = © as t —> b and therefore also v'(t) - o,
v(t)— o as t - . But this is in contradiction with the assumption that v is bounded

Suppose we have linear differential equations of the third order

(p‘) yu» +py-= 0 and (p‘ 27+ Pz = 0,
where p,, p, are continuous functions on (a,®), p,(t) >0 and p,(t) > 0 for ali t € (a,).

Lemma 4: Let p, s p, on (a,®). If equation (p,) is non-oscillatory in (a,) (i.e. each of
its solutions has at most a finite number of null points in (a,®)), then the equation (p,) is also
non-oscillatory in (a,).

Proof: The assertion is contained in Theorem 2.5 and Corollary 2.5 of [2], respectively B
Let us denote the adjoint equation z™ - p, z = 0 to equation (p,) by (P,).

Lemma 5: Let p,(t) > 0 for t € (a,) and w be a solution of equation (p,) with the property
wity) = wit,) =0, w(t,) > O for some t, €(a,). Then the set of solutions y of equation (p,)
with the property y(t,) = 0 (called the bundle of solutions of equation (p,) in the point ty) sa-
tisfies the equation (W) wy” - wy’ + w’y = 0. Differentiating equation (w) term by term we
obtain the equation (p,). If equation (w) is non-oscillatory on {t,,), then equation (p,) is
also non-oscillatory on {t,,©).

The proof of this lemma is not included since it is the basic property of linear equations of
third order [2].

Remark 2: The assertion of Lemma 5 holds for arbitrary solutions w of equation (5,), but
the interesting case is w(t) # 0 for t > ¢,.

Theorem 8: Suppose p(t) >0 for all t e (a,) and let f be a given function with continuous
third derivative, f(t) >0 and f(¢t) > O for all t €(a,), such that the equation

y" +(3F/2F - 3£ %4f2)y = 0 (16)

is non-oscillatory in (a,). Then each solution T of equation (1), with the property T(t,) =0 for
some t, > a and which is defined on {t,,©) and satisfies the inequality

p()Te X t) s F(t)/f(t) forall t 2 t,, (17)
is non-oscillatory on !y, ).

Proof:Besides of the equation

u”+pu*tu =0 (18)
we have the equation

v+ (F/F)v =0, (19)

that has been obtained by differentiating the equation
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fvi-fv +fv=0 (20)

and which by the transformation v = Yfy can be converted into the equation (16). From the as-
sumption that equation (16) is non-oscillatory on <t,,®) it follows that equation (20) is non-
oscillatory on {t,, ) and from Lemma S we have that equation (19) is non-oscillatory, too.
From the assumption (17) and from Lemma 4 it follows that equation (18) is  non-oscillatory on
<t, ). Since Tis a solution of equation (18), it is therefore non-oscillatory on <{t,, ) B

Corollary S: Let f(t) = ¢, where n=1+2/¥3 and let a 2 0. Then the equation (1) does not
have an oscillatory solution W with null point in the point t, >a on the interval {t,, ) that
would satisfy the relation (17), i.e. the relation

T ¥t) s2/(3/3t3p(t)) forall t 2 t,. (21)

Proof: The equation (16) has the form
¥+ (3(n? - 20)/412)y = 0. ' (22)

Let 3(n? - 2n) = 1. The positive root of this equation is n = 1 + 2/4/3. By the well-known Kneser
criterion equation (22) is non-oscillatory and hence equation (19) is non-oscillatory if £(¢ )/f(t)
= n(n-1)(n - 2)/t® = 2/(34/3 t ). This and the relation (17) imply the relation (21) B
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