On a Nonlinear Binomial Equation of Third Order

M. GREGUŠ

A necessary and sufficient condition for the solution of equation $u''' + p(t)u^{\alpha} = 0$ ($\alpha > 0$ an odd integer, $p \le 0$ on (a, ∞)) to be oscillatory and some sufficient conditions for the solution in the cases $p \le 0$ and $p \ge 0$ to be oscillatory or non-oscillatory are derived. For this methods and results of the theory of linear differential equations of the third order are effectively used.

Key words: Third order nonlinear differential equations, oscillatory solutions, non-oscillatory solutions, bounded solutions

1991 AMS subj. class.: 34 C 15

1. The paper investigates properties of solutions of the binomial differential equation of third order $u^{\prime\prime\prime} + pu^{\alpha} = 0$, (1)

where p is a continuous function on the interval (a, ∞) with $a > -\infty$, and $\alpha > 1$ is an odd number. Some of our results can be generalized to the case where α is a ratio of odd integers. The problem has already been a research object of many authors, see [1, 3-6] and others. Here the methods developed in the study of linear differential equation of third order [2] are effectively used.

2. By a solution of equation (1) we mean a function u defined on a subinterval $\mathfrak{I} \subset (a, \infty)$, with continuous third derivative and satisfying equation (1). By an oscillatory solution of equation (1) we mean a solution u of (1) that has on the intervall \mathfrak{I} infinitely many null points, with a limit point at the right end point of the intervall \mathfrak{I} . Otherwise the solution is called non-oscillatory. A non-extentable solution u defined on a bounded from above intervall \mathfrak{I} is sometimes called singular.

Equation (1) can be written in the linear form

$$u^{m} + p u^{\alpha + 1} u = 0. \tag{1}^{\bullet}$$

The adjoint equation to (1)* has the form

$$v''' - \rho u^{\alpha + 1} v = 0.$$
 (2)

Let $t_0 \in \mathfrak{Z}$ and let u be a solution of equation (1) with the property $u(t_0) = u_0$, $u'(t_0) = u'_0$, $u''(t_0) = u'_0$, with t_0 , where at least one of the numbers u_0 , u'_0 , u''_0 is non-zero. Further, let v be a solution of equation (2) with the property $v(t_0) = v_0$, $v'(t_0) = v'_0$, $v''(t_0) = v''_0$, where again at least one of the numbers v_0 , v'_0 , v''_0 is non-zero. Then for $t \in \mathfrak{I}$ we have (see [2])

$$v(t)u''(t) - v'(t)u'(t) + v''(t)u(t) = \text{const},$$
(3)

where const = $v_0 u_0^{\prime\prime} - v_0^{\prime} u_0^{\prime} + v_0^{\prime\prime} u_0^{\prime}$.

If we multiply equation (1)* by the solution u and integrate from t_0 to $t \in \mathfrak{I}$, then we obtain for all $t \in \mathfrak{I}$ the integral identity

$$u(t)u''(t) - \frac{1}{2}u'^{2}(t) + \int_{t_{0}}^{t} p(\tau)u^{\alpha-1}(\tau)u^{2}(\tau)d\tau = \text{const.}$$
(4)

Similarly, for equation (2) we obtain for all $t \in \mathcal{J}$

$$v(t)v''(t) - \frac{1}{2}v'^{2}(t) - \int_{t_{0}}^{t} p(\tau)u^{\alpha-1}(\tau)v^{2}(\tau) d\tau = \text{const.}$$
(5)

Corollary 1: Let $p \ge 0$ ($p \le 0$) on (a, ∞) and $p \ne 0$ on any subinterval of (a, ∞) . Further, let u be a solution of equation (1) defined on an interval $\mathfrak{I} \subseteq (a, \infty)$ and with the property $u(t_0) = u'(t_0) = 0$, $u''(t_0) \ne 0$ for some $t_0 \in \mathfrak{I}$. Then $u(t) \ne 0$, $u''(t) \ne 0$, $u''(t) \ne 0$ for all $t < t_0$ ($t > t_0$). A similar assertion holds for the solution v of the equation (2) with the property $v(t_0) = v'(t_0) = 0$, $v''(t_0) \ne 0$ for some $t_0 \in \mathfrak{I}$, that is $v(t) \ne 0$, $v''(t) \ne 0$ for all $t > t_0$ ($t < t_0$).

Proof: It follows from the identities (4) and (5) and from the equations (1) and (2), respectively

Corollary 2: Supposing p is the same as in Corollary 1, each solution u of equation (1) or (2) has at most one double null point.

3. Our goal is to derive some properties of solutions of equation (1) in the case $p \le 0$.

Theorem 1: Let $p \le 0$ on (a, ∞) . Then any non-extendable solution u of equation (1) defined on an interval $\mathfrak{I} \subset (a, \infty)$ and such that $u(t_0) \ge 0$, $u'(t_0) \ge 0$, $u''(t_0) > 0$ for some $t_0 \in \mathfrak{I}$ has the property u(t) > 0, u''(t) > 0, u''(t) > 0, $u''(t) \ge 0$, $u''(t_0) \ge 0$ for all $t > t_0$ and, moreover, $u(t) \rightarrow \infty$, $u'(t) \rightarrow \infty$ as t converges to the right end point of the interval \mathfrak{I} .

Proof: First of all we show that u''(t) > 0 for all $t > t_0$. Let us form the function $V \doteq uu'u''$. If u'' has null points to the right of t_0 , let us denote by t_1 the smallest of them. Hence $u''(t_1) = 0$. Therefore u(t) > 0, u'(t) > 0 for all $t \in (t_0, t_1)$ and $V(t_0) \ge 0$, $V(t_1) = 0$. Since $p \le 0$ there holds

$$dV(t)/dt = u''(t)u(t) + u''(t)u'^{2}(t) - p(t)u^{\alpha+1}(t)u'(t) > 0 \text{ for all } t \in (t_{0}, t_{1}).$$

After integration from t_0 to t_1 we obtain $0 = V(t_0) + \int_{t_0}^{t_1} V'(\tau) d\tau > 0$, which is a contradiction. Hence u''(t) > 0 for all $t > t_0$. From here it follows that u(t) > 0, u'(t) > 0 for all $t > t_0$. From equation (1) it also follows that $u'''(t) \ge 0$ for all $t > t_0$. From these inequalities we then have that $u(t) \to \infty$, $u'(t) \to \infty$ as t converges to the right end point of the interval \mathfrak{I} .

N. Parhi and S. Parhi have proved the following

Theorem A [6: Theorem 3.1]: Let $p \le 0$ and $\int_{t_0}^{\infty} p(\tau) d\tau = -\infty$. Then every bounded solution of equation (1) in (t_0, ∞) is oscillatory in (t_0, ∞) .

Lemma 1: Let the assumptions of Theorem A be fulfilled and let u be a solution of equation (1) with the property u(t) > 0 for all $t \ge t_0$, where $t_0 > a$. Then there exists such $t_1 > t_0$ that u(t) > 0, u'(t) > 0, u''(t) > 0 for all $t > t_1$. **Proof:** From equation (1) it follows that $u'''(t) \ge 0$ for all $t \ge t_0$. Then we have two possibilities for u'':

1. $u''(t_0) > 0$ and hence $u''(t_0) > 0$ for all $t > t_0$. Then after integration of equation (1) we get

$$u''(t) = u''(t_{0}) - \int_{t_{0}}^{t} p(\tau) u^{\alpha}(\tau) d\tau,$$

$$u'(t) = u'(t_{0}) + u''(t_{0})(t - t_{0}) - \int_{t_{0}}^{t} (t - \tau) p(\tau) u^{\alpha}(\tau) d\tau,$$
 (6)

 $u(t) = u(t_0) + u'(t_0)(t - t_0) + u''(t_0)\frac{(t - t_0)^2}{2!} - \int_{t_0}^t \frac{(t - \tau)^2}{2!} p(\tau) u^{\alpha}(\tau) d\tau.$

From the second equation of (6) the existence of such $t_i > t_0$ follows that u'(t) > 0 for all $t \ge t_1$. Then u(t) > 0, u'(t) > 0, u''(t) > 0 for all $t \ge t_1$.

2. u''(t) < 0 for all $t \ge t_0$. Then u' is decreasing and there are again two possibilities:

(i) u'(t) < 0 for all $t \ge t_1$ and u' decreasing. Hence $u'(t) < u'(t_1)$ from where $u(t) < u(t_1) + u'(t_1)(t - t_1)$ and this is a contradiction to the assumption that u(t) > 0 for all $t > t_0$.

(ii) u'(t) > 0 for all $t \ge t_0$. Then the function u is increasing for $t > t_0$ and after an integration of equation (1) we get $u''(t) = u''(t_0) - \int_{t_0}^t p(\tau) u^{\alpha}(\tau) d\tau$. From here and from the assumptions on p there follows that, for certain $t_1 > t_0$, u''(t) > 0 for all $t > t_1$ and this again leads to a contradiction to the assumption that u''(t) < 0 for all $t \ge t_0$.

The following theorem answers to the question which solutions of equation (1), under the assumptions of Theorem A, can be oscillatory.

Theorem 2: Let the assumptions of Theorem A concerning p be fulfilled. Then a necessary and sufficient condition for a solution u of equation (1) to be oscillatory for $t \ge t_0$, for some $t_0 > a$, is that

$$u(t)u''(t) - u'^{2}(t)/2 < 0 \text{ for all } t > t_{0}.$$
 (7)

Proof: Sufficiency. Let (7) hold and let e.g. u(t) > 0 for all $t > t_0$. It follows from Lemma 1 that there exists such $t_1 \ge t_0$ that $u(t_1) > 0$, $u'(t_1) > 0$, $u''(t_1) > 0$ and, from Theorem 1, $u(t) \to \infty$ as $t \to \infty$. From the integral identity (4) it follows that

$$u(t)u''(t) - u'^{2}(t)/2 = u(t_{1})u''(t_{1}) - u'^{2}(t_{1})/2 - \int_{t_{1}}^{t} p(\tau)u^{\alpha+1}(\tau)d\tau$$
(8)

and from this and the assumptions of Theorem 2 there follows a contradiction with (7) as $t \rightarrow \infty$.

Necessity. Let the solution u of equation (1) be oscillatory in (t_0, ∞) and let t_i (i = 1, 2, ...) be null points of u in (t_0, ∞) . Then from the relation (8) it follows that the function $uu'' - u'^2/2$ is increasing in (t_1, ∞) , but $u(t_i)u''(t_i) - u'^2(t_i)/2 < 0$. From this fact it follows that (7) holds for all $t > t_1$

Theorem 3: Suppose that $p \le 0$ on (a, ∞) and $p \ne 0$ on any subinterval of (a, ∞) . Let u be a solution of equation (1) defined on an interval $\mathfrak{I} \subset (a, \infty)$ and satisfying $k := u(t_0)u''(t_0) - u'^2(t_0)/2 \ge 0$ for some $t_0 \in \mathfrak{I}$. Then u does not have a null point to the right of t_0 and $|u(t)| \to \infty$, $|u'(t)| \to \infty$ as t converges to the right end point of \mathfrak{I} .

Proof: The solution u fulfils the identity (4), i.e.

$$u(t)u''(t) - u'^{2}(t)/2 + \int_{t_{0}}^{t} p(\tau)u^{\alpha+1}(\tau)d\tau = k \ge 0 \text{ for all } t \in \mathfrak{I}.$$
(9)

Let $u(t_1) = 0$ for some $t_1 > t_0$. Then from the identity above at the point t_1 we get a contradiction. To prove the second part of the assertion let us suppose for simplicity that u(t) > 0 for all $t > t_0$. Then also $u''(t) \ge 0$ for all $t > t_0$ and from the identity (9) it follows that $u''(t) \ge 0$ for all $t > t_0$. Suppose that \mathfrak{I} is a bounded interval with right end point b and let u be bounded on it. Then also u''' is bounded as follows from the first relation in (6). Note that u'' is a monotone function. From the second relation in (6) it follows that the function u' is also monotone and bounded. Hence $u(t) \rightarrow u_0$, $u'(t) \rightarrow u_0$, $u''(t) \rightarrow u_0$ as $t \rightarrow b$, where u_0 , u_0 , u_0' are real numbers. That means u can be extended to b, which is a contradiction and therefore $u(t) \rightarrow \infty$, $u'(t) \rightarrow \infty$ as $t \rightarrow b$. In the case $b = \infty$ the proof is trivial - it follows from the monotonicity of the functions u'', u''' and from (6)

Theorem 4: Let $p(t) < -k^2$ (k > 0) for all $t > t_0$. Then each oscillatory solution u of the equation (1) defined on (t_0, ∞) belongs to the class $\mathscr{L}^{\alpha+1}$ on $[t_0, \infty)$, i.e. $\int_0^\infty u^{\alpha+1}(\tau) d\tau < \infty$.

Proof: It follows again from the identity (4). Really, from Theorem 2 it follows that

$$u(t)u''(t) - u'^{2}(t)/2 = u(t_{0})u''(t_{0}) - u'^{2}(t_{0})/2 - \int_{t_{0}}^{t} p(\tau)u^{\alpha+1}(\tau)d\tau < 0.$$

This implies $-\int_{t_{0}}^{\infty} p(\tau)u^{\alpha+1}(\tau)d\tau < \infty$

4. Now our goal is to derive properties of solutions of equation (1) in the case $p \ge 0$. For this let u be a solution of the differential equation (1) defined on an interval $\mathfrak{I} \subset (a, \infty)$ and suppose that it fulfils the initial conditions $u(t_0) = u_0$, $u'(t_0) = u_0'$, $u''(t_0) = u_0''$ for some $t_0 \in \mathfrak{I}$. Notice that the relations (6) hold.

Lemma 2: Let $p \ge 0$ on (a, ∞) and let $u \ne 0$ be a non-extentable solution of equation (1) defined on $[t_0, b)$, for some $b \in (t_0, \infty]$. Then $b = \infty$.

Proof: It follows from the relations (6). Indeed, suppose $b < \infty$, u(t) > 0 for all $t \in [t_0, b)$ and bounded from above. Then from the relations (6) it follows that u can be extended to b. If u is unbounded on $[t_0, b)$ and $\int_t^b (b_0 - \tau)^2 p(\tau) u^{\alpha}(\tau) d\tau$ exists, then u and also u', u'' can be extended to b. If $\int_{t_0}^b (b - \tau)^2 p(\tau) u^{\alpha}(\tau) d\tau = \infty$, then from the third relation in (6) it follows that u must have a zero and this is a contradiction to u(t) > 0 for all $t \in [t_0, b)$

Remark 1:Lemma 2 does not hold in the case of extendability of the solution to the left of the point t_0 . For example the equation $u''' + \alpha(\alpha + 1)(\alpha + 2)t^{\alpha^2 - \alpha - 3}u^{\alpha} = 0$ has a solution $u = t^{-\alpha}$ defined on $(0, \infty)$. It cannot be extended to the left of 0.

Lemma 3: Let $p \ge 0$ on (a, ∞) and let u be a solution of equation (1) which for some $t_0 > a$ and $b \in (a, \infty)$ is oscillatory on $[t_0, b)$. Then u is unbounded on $[t_0, b)$.

Proof: It again follows from the relations (6). If we suppose that u is bounded on $[t_0, b)$, then from the third relation in (6) and from the Cauchy Criterion we obtain that u can be extended to b, too

The paper [5] contains a theorem of I. Ličko and M. Svec that we restate for the equation (1), $\alpha > 1$ and odd.

Theorem B: A necessary and sufficient condition for either oscillatority or monotonic convergence to zero together with its first and second derivative of each solution of the equation (1) on $[t_0,\infty)(t_0 > a)$ is that p(t) > 0 for all t > a and $\int_{t_0}^{\infty} t^2 p(t) dt = \infty$.

The problem is which solutions of equation (1) are oscillatory on the interval (t_0, ∞) and which on the subinterval $\mathfrak{I} \subset (a, \infty)$.

Theorem 5: Suppose that p fulfils the conditions of Theorem B. Then each solution u of equation (1) defined on the subinterval $\Im \subset (a, \infty)$ and such that

$$u(t_0)u''(t_0) - u'^2(t_0)/2 = -\delta < 0 \text{ for some } t_0 \in \mathfrak{I}$$
(10)

is oscillatory for $t > t_0$.

Proof: Let $t_0 \in (a, \infty)$ and let u be a solution of equation (1) with the property (10) and defined on \mathfrak{J} . Then either \mathfrak{J} is bounded from above or $\mathfrak{J} = [t_0, \infty)$. In the first case u must be oscillatory for $t \ge t_0$ as follows from Lemma 2. In the second case let us suppose that $u(t) \ge 0$ for $t \in (t_0, \infty)$. Theorem B then implies that u'(t) < 0, $u''(t) \ge 0$ for all $t \ge t_1$, for some $t_1 \ge t_0$, and $u(t) \ge 0$, $u''(t) \ge 0$ as $t \to \infty$. However from the integral identity (4) we get $u(t)u''(t) - u'^2(t)/2 + \int_{t_0}^{t_0} p(\tau)u^{\alpha+1}(\tau) d\tau = -\delta < 0$, which implies

$$u'^{2}(t)/2 = u(t)u''(t) + \int_{t_{0}}^{t} p(\tau)u^{\alpha+i}(\tau)d\tau + \delta \ge \delta \text{ for all } t \ge t_{0},$$

but this contradicts the assumption $u'(t) \rightarrow 0$ as $t \rightarrow \infty$

Theorem 6: Suppose that p satisfies the conditions of Theorem B. Then each solution u of equation (1) with double null point at $t_0 > a$ oscillates on the right of t_0 .

Proof: Again there are two cases. In the case when u is defined on a bounded from above interval it must, by Lemma 2, oscillate. In the second case when u is defined on $[t_0,\infty)$ and we suppose that u(t) > 0 for all $t > t_1$, for some $t_1 \ge t_0$, it has to converge together with its first and second derivatives to zero as $t \to \infty$ and moreover it has to satisfy u(t) > 0, u'(t) < 0, u''(t) > 0 for all $t > t_2 \ge t_1$. Let us substitute u into equation (2) and suppose that v is its solution with the property $v(t_0) = v'(t_0) = 0$, $v''(t_0) > 0$. From Corollary 1 we have that v(t) > 0, v'(t) > 0, v''(t) > 0, or all $t > t_0$. We use u and v to generate equation (3), i.e.

$$v u'' - v' u' + v'' u = 0.$$
 (11)

If u is non-oscillatory we get from equation (11) a contradiction from the fact that v(t)u''(t) - v'(t)u'(t) + v''(t)u(t) > 0 for all $t > t_2$

Let p(t) > 0 for all $t \in (a, \infty)$ and let u be a solution of equation (1) defined on \mathfrak{I} and satisfying $u(t_0) = u'(t_0) \ge 0$, $u''(t_0) > 0$ for some $t_0 \in \mathfrak{I}$. Further let v be a solution of equation (2) defined on \mathfrak{I} and satisfying $v(t_0) = v'(t_0) = 0$, $v''(t_0) > 0$. Then equation (11) holds for $t > t_0$, where v(t) > 0, v'(t) > 0 for $t > t_0$. Let us make the substitution $u = \sqrt{v} \cdot y$ into equation (11). It then takes the form

$$y'' + (3v''/2v - 3v'^2/4v^2)y = 0.$$

(12)

From the integral identity (5) for v and $t > t_0$ we get

$$3v''(t)/2v(t) - 3v'^{2}(t)/4v^{2}(t) = 3/2v^{2}(t)\int_{t_{0}}^{t} p(\tau)u^{\alpha-1}(\tau)v^{2}(\tau)d\tau$$

and equation (12) is transformed into

$$y''(t) + \left(3/2v^{2}(t)\int_{t_{0}}^{t}p(\tau)u^{\alpha-1}(\tau)v^{2}(\tau)d\tau\right)y = 0.$$
(13)

From the reasoning above we obtain

Theorem 7: A necessary and sufficient condition for a solution u of equation (1) to be oscillatory for $t > t_0 \in \mathfrak{I}$ is that equation (13) or (12) is oscillatory for $t > t_0 \in \mathfrak{I}$.

Apparently, Theorem 7 does not have any practical significance for determination of oscillatoricity or non-oscillatoricity of solutions of equation (1). However, as we shall see in the following, it has a theoretical importance.

Corollary 3: Let p(t) > 0 for $t \in (a, \infty)$ and let u be a non-extendable solution of equation (1) on $\langle t_0, b \rangle$, $a < t_0 < b < \infty$, with the property $u(t_0) = 0$, $u'(t_0) \ge 0$, $u''(t_0) > 0$. Then

$$\int_{t_0}^t p(\tau) u^{\alpha - i}(\tau) d\tau \to \infty \text{ as } t \to b.$$

Proof: From Lemma 3 we have that u is oscillatory on $\langle t_0, b \rangle$ and from equation (1)* it follows that the limit of its null points is b. Suppose that v is a solution of equation (2) which is adjoint to the solution u and has the property $v(t_0) = v'(t_0) = 0$, $v''(t_0) > 0$. From Corollary 1 we have that v(t) > 0, v''(t) > 0, v''(t) > 0 for all $t > t_0$. The function u is obviously a solution of equation (1) and hence by Theorem (7) equation (13) must be oscillatory on $\langle t_0, b \rangle$, $b < \infty$. This is possible only if

$$1/v^{2}(t)\int_{t_{0}}^{t}p(\tau)u^{\alpha-1}(\tau)v^{2}(\tau)d\tau \to \infty \text{ as } t \to b.$$
(14)

However for $t > t_0$ clearly the inequality

$$1/v^{2}(t)\int_{t_{0}}^{t}p(\tau)u^{\alpha-1}(\tau)v^{2}(\tau)d\tau\leq\int_{t_{0}}^{t}p(\tau)u^{\alpha-1}(\tau)d\tau$$

holds. Hence the assertion follows

Corollary 4: Suppose that the assumptions of Corollary 3 hold. Then any solution v of the equation (2) satisfying the condition $v(t_0) = v'(t_0) = 0$, $v''(t_0) > 0$ has the property $v(t) \rightarrow \infty$, $v''(t) \rightarrow \infty$, $v''(t) \rightarrow \infty$ as $t \rightarrow b$.

Proof: Relation (14) implies the relation

$$\int_{t_0}^t p(\tau) u^{\alpha - 1}(\tau) v^2(\tau) d\tau \to \infty \text{ as } t \to b.$$
(15)

The integral identity (5) for the solution v has the form

$$v(t)v''(t) - v'^{2}(t)/2 - \int_{t_{0}}^{t} p(\tau)u^{\alpha-1}(\tau)v^{2}(\tau)d\tau = 0.$$

Suppose that v is bounded on $\langle t_0, b \rangle$. Then

$$v(t)v''(t) = v'^{2}(t)/2 + \int_{t_{0}}^{t} p(\tau)u^{\alpha-1}(\tau)v^{2}(\tau)d\tau$$

From this and from relation (15) it follows that $v''(t) \to \infty$ as $t \to b$ and therefore also $v'(t) \to \infty$, $v(t) \to \infty$ as $t \to \infty$. But this is in contradiction with the assumption that v is bounded

Suppose we have linear differential equations of the third order

 $(\mathbf{p_1}) \ y''' + p_1 y = 0$ and $(\mathbf{p_2}) \ z''' + p_2 z = 0$,

where p_1, p_2 are continuous functions on (a, ∞) , $p_1(t) > 0$ and $p_2(t) > 0$ for all $t \in (a, \infty)$.

Lemma 4: Let $p_1 \le p_2$ on (a,∞) . If equation (p_2) is non-oscillatory in (a,∞) (i.e. each of its solutions has at most a finite number of null points in (a,∞)), then the equation (p_1) is also non-oscillatory in (a,∞) .

Proof: The assertion is contained in Theorem 2.5 and Corollary 2.5 of [2], respectively ■

Let us denote the adjoint equation $z''' - p_1 z = 0$ to equation (p_1) by $(\overline{p_1})$.

Lemma 5: Let $p_i(t) > 0$ for $t \in (a, \infty)$ and w be a solution of equation $(\overline{p_i})$ with the property $w(t_0) = w'(t_0) = 0$, $w''(t_0) > 0$ for some $t_0 \in (a, \infty)$. Then the set of solutions y of equation (p_1) with the property $y(t_0) = 0$ (called the bundle of solutions of equation (p_1) in the point t_0) satisfies the equation $(\mathbf{w}) wy'' - w'y' + w'y = 0$. Differentiating equation (w) term by term we obtain the equation (p_1) . If equation (w) is non-oscillatory on $\langle t_0, \infty \rangle$, then equation (p_1) is also non-oscillatory on $\langle t_0, \infty \rangle$.

The proof of this lemma is not included since it is the basic property of linear equations of third order [2].

Remark 2: The assertion of Lemma 5 holds for arbitrary solutions w of equation (\overline{p}_i) , but the interesting case is $w(t) \neq 0$ for $t > t_0$.

Theorem 8: Suppose p(t) > 0 for all $t \in (a, \infty)$ and let f be a given function with continuous third derivative, f(t) > 0 and f'''(t) > 0 for all $t \in (a, \infty)$, such that the equation

$$y'' + (3f''/2f - 3f'^2/4f^2)y = 0$$
(16)

is non-oscillatory in (a,∞) . Then each solution \overline{u} of equation (1), with the property $\overline{u}(t_0) = 0$ for some $t_0 > a$ and which is defined on $\langle t_0, \infty \rangle$ and satisfies the inequality

$$p(t)\overline{u}^{\alpha-1}(t) \le f'''(t)/f(t) \text{ for all } t \ge t_0,$$
(17)

is non-oscillatory on $\langle t_0, \infty \rangle$.

Proof:Besides of the equation

$$u^{\prime\prime\prime} + p \,\overline{u}^{\,\alpha-1} u = 0 \tag{18}$$

we have the equation

$$v''' + (f'''/f)v = 0,$$
 (19)

that has been obtained by differentiating the equation

$$fv'' - f'v' + f''v = 0$$
(20)

and which by the transformation $v = \sqrt{fy}$ can be converted into the equation (16). From the assumption that equation (16) is non-oscillatory on $\langle t_0, \infty \rangle$ it follows that equation (20) is non-oscillatory on $\langle t_0, \infty \rangle$ and from Lemma 5 we have that equation (19) is non-oscillatory, too. From the assumption (17) and from Lemma 4 it follows that equation (18) is non-oscillatory on $\langle t_0, \infty \rangle$. Since \overline{u} is a solution of equation (18), it is therefore non-oscillatory on $\langle t_0, \infty \rangle =$

Corollary 5: Let $f(t) = t^n$, where $n = 1 + 2/\sqrt{3}$ and let $a \ge 0$. Then the equation (1) does not have an oscillatory solution \overline{u} with null point in the point $t_0 > a$ on the interval $\langle t_0, \infty \rangle$ that would satisfy the relation (17), i.e. the relation

$$\overline{u}^{\alpha-4}(t) \leq 2/(3\sqrt{3}t^3p(t)) \text{ for all } t \geq t_0.$$
(21)

Proof: The equation (16) has the form

$$y'' + (3(n^2 - 2n)/4t^2)y = 0.$$
⁽²²⁾

Let $3(n^2 - 2n) = 1$. The positive root of this equation is $n = 1 + 2/\sqrt{3}$. By the well-known Kneser criterion equation (22) is non-oscillatory and hence equation (19) is non-oscillatory if $f'''(t)/f(t) = n(n-1)(n-2)/t^3 = 2/(3\sqrt{3}t^3)$. This and the relation (17) imply the relation (21)

REFERENCES

- [1] ČANTURIJA, T.A.: O suščestvovanii singularnych kolebljuščichsja rešenij differencialnych uravnenij tipa Emdena-Fowlera vyššich porjadkov. Dokl. rasširennych zasedanij seminara Inst. Prikl. Mat. im I.N. Vekua (Tbilisi) 3 (1988)3, 189 - 192.
- [2] GREGUŠ, M.: Third order linear differential equations. Dortrecht Boston Lancaster -Tokyo: D. Reidel Publ. Comp. 1987.
- [3] HEIDEL, J.W.: The existence of oscillatory solutions for a nonlinear odd order differential equation. Czech. Math. J. 20 (1970), 93 - 97.
- [4] LIČKO, I. and M. SVEC: Le caractère oscillatoire des solutions de l'equation $y^{(n)} + f(x)y^{\alpha} = 0, n > 1$. Czech. Math. J. **13** (1963), 481 491.
- [5] KIGURADZE, I.T., and G.G. KVINIKADZE: On strongly increasing solutions of nonlinear ordinary differential equations. Ann. Mat Pura Appl. 80 (1982), 65 - 87.
- [6] PARHI, N. and S. PARHI: Oscillation and nonoscillation theorems for nonhomogeneous third order differential equations. Bull. Inst. Math. Acad. Sinica 11 (1983), 125 - 139.

Received 23.10.1990; in revised form 13.02.1991

Prof. Dr. Michal Greguš University of J.A. Komenský Department of Mathematics Mlynská dolina 842 15 Bratislava, Czechoslovakia