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On a Nonlinear Binomial Equation of Third Order 

M. GREGU 

A necessary and sufficient condition for the solution of equation p(t)u = 0 (ix 0 an odd 
integer. p s 0 on (a,as)) to be oscillatory and some sufficient conditions for the solution in the 
cases p s 0 and p z 0 to be oscillatory or non-oscillatory are derived. For this methods and re-
suits of the theory of linear differential equations of the third order are effectively used. 
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1. The paper investigates properties of solutions of the binomial differential equation of third 

order u" +	= Q	 (1) 

where p is a continuous function on the interval (a, co) with a> - co , and cx > I is an odd number. 
Some of our results can be generalized to the case where a is a ratio of odd integers.The 
problem has already been a research object of many authors, see [1, 3-61 and others. Here the 
methods developed in tile study of linear differential equation of third order [2] are effectively 
used. 

2. By a solution of equation (1) we mean a function u defined on a subinterval 3 C (a,co), 
with continuous third derivative and satisfying equation (I). By an oscillatory solution of equa-
tion (1) we mean a solution u of (1) that has on the intervall 3 infinitely many null points, with a 
limit point at the right end point of the intervall Z. Otherwise the solution is called non-
oscillatory. A non-extentable solution u defined on a bounded from above intervall 3 is some-
times called singular. 

Equation (1) can be written in the linear form 

U" + pUix• lu a 0. 

The adjoint equation to (1)' has the form 

v"_puixl v=0.	 (2) 

Let t0 € 3 and let u be a solution of equation (I) with the property u(t0 ) = u0 , u'(t0 ) = u, u"(t0) 
= us', where at least one of the numbers u0 , u, u' is non-zero. Further, let v be a solution of 
equation (2) with the property v(t0) = v0 , v'(t0 )	va', v"(t0 ) = v1 ', where again at least one of 
the numbers vo , vo, v' is non-zero. Then for t 3 we have (see [21)	- 

v(t)u"(r) - v'(t)u'(t) + v"(t)u(t) = const,	 (3)

where const r v0 u' - vu + v0"u0.
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If we multiply equation (1) by the solution u and integrate from t0 to t € 3, then we obtain 
for all t £ .5 the integral identity 

u(t)u "(t) - +u2(t) + f t )u a t )u t )d t = const.	 (4) 
to 

Similarly, for equation (2) we obtain for all t E .5 

V ( t ) VII( t ) - v2( t) -fp(t )u 1(t)v 2(t) dr = const.	 (5) 
to 

Corollary 1: Let p^:O (p :^ 0) on(a,co) and pt Con any subinterval of(a, cz ).Further, let 
u be a solution of equation (1) defined on an interval 3 C (a, Co ) and with the property u( t0 ) = 

u'(t0 ) = 0, u(t0 )* 0 for some t0 E 3. Then u(t) * 0, u'(t) 0, u'(t) * 0 for all t <t0 (t > t0). 
A similar assertion holds for the solution v of the equation (2) with the property v( t0 ) = V'(0 = 0, 
v( t0 )*O for some t0 €3,that is v(t)*O,v'(t)*0,v(t)*O for alit >t0 (t<t0) 

Proof: It follows from the identities (4) and (5) and from the equations (1) and (2), re-
spectively I 

Corollary 2: Supposing p is the same as in Corollary 1, each solution u of equation (1) or 
(2) has at most one double null point. 

3. Our goal is to derive some properties of solutions of equation (1) in the case p :; 0. 

Theorem 1: Let p :5 0 on (a,oD). Then any non-extendable solution u of equation (1) defi-
ned on an interval 3 C (a,cxD)and such that u(t0) 0, u'(t0 ) 2! 0, u"(t0 )> 0 for some t0 €3 has 
the property u(t)> 0, u(t) >0, u"(t)> 0, u(t)^! 0 for alit >t0 and, moreover, u(t)— co, 
u '( t) - m as t converges to the right end point of the interval 3. 

Proof: First of all we show that u"(t)>O for all t> t0 . Let us form the function V- uuu". 
If u" has null points to the right of t0 , let us denote by t1 the smallest of them. Hence u"(t 1 ) = 0. 
Therefore u(t) > 0, u(t) >0 for all t€ (t0 , t1 ) and V(t) a 0, V(t1 ) = 0. Since p 5 0 there holds 

dV(t)/dt = u"(t)u(t)+u'(t)u2(t) - p(t)u al(t)u( t ) >0 for all t€ (t,, t,). 

After integration from t0 to t1 we obtain 0 = V(t0) +f V'(t)dt > 0, which is a contradiction. 
Hence u(t) > 0 for all t > t0 . From here it follows that u(t)> 0, u(t) >0 for all t > t0 . From 
equation (1) it also follows that u ... (t) a 0 for all t > t0 . From these inequalities we then have 
that u(t ) -	, u'( t )  - cc' as t converges to the right end point of the interval 3. 

N. Parhi and S. Parhi have proved the following 

Theorem A [6: Theorem 3.1]: Let p :g 0 and fp(t)dt = -co. Then every bounded solution 
of equation (1) in (t0 , co) is oscillatory in (t0 , o>). 

Lemma 1: Let the assumptions of Theorem A be fulfilled and let u be a solution of equation 
(1) with the property u(t) > 0 for all t a t0 , where t0 > a. Then there exists such t1 > t0 that u( t) 

0, u'(t) > 0, u"(t)>0 for alit > t1.
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Proof: From equation (1) it follows that u ... (t)a 0 for all t> t0 . Then we have two possibi-
lities for u': 

1. u"(t,)> 0 and hence u "(t) > 0 for all t > t0 . Then after integration of equation (1) we get 

u'(t) = u'(t0 ) - fp(t)ut)dt, 
to 

u(t) = u(t0 )+u"(t0Xt - t0 ) -f(t-t)p(t)ut)dt,	 (6) 
to 

u(t) = u( to) +u(t0Xt - to) +u'(to) 2! 
(t - t0)2 - 

J 
:( -t)2 

2!	p(t)u(t)dt. 
to 

From the second equation of (6) the existence of such 4 > t0 follows that u(t)> 0 for all t a t1. 
Then u(t)> 0, u(t) >0, u"(t)> 0 for all tat1. 

2. u'(t) < 0 for all tato . Then u is decreasing and there are again two possibilities: 
(i) u ( t) < 0 for all t a 4 and u' decreasing. Hence u ( t) < u ( t 1 ) from where u( t) < u( t 1 ) + 

u(t1 Xt - t1 ) and this is a contradiction to the assumption that u(t)> 0 for all t > t0. 
(ii) u ( t) >0 for all t a t0 .Then the function u is increasing for t > t0 and after an integration 

of equation (1) we get u (t) = u '.(t0) - 
j1r p(t)u(t)dt . From here and from the assumptions on 

p there follows that, for certain t1 > t0 , u"(t)> 0 for all t > t 1 and this again leads to a contra-
diction to the assumption that u'(t) < 0 for all t ^-t01 

The following theorem answers to the question which solutions of equation (1), under the 
assumptions of Theorem A, can be oscillatory. 

Theorem 2: Let the assumptions of Theorem A concerning p be fulfilled. Then a necessary 
and sufficient condition for a solution u of equation (1) to be oscillatory fort a t0 , for some t0 > a, 
is that 

u(t)u(t) - u' 2(t)/2 <O for all t>to .	 (7) 

Proof: Sufficiency. Let (7) hold and let e.g. u(t) > 0 for all t > t0 . It follows from Lemma 1 
that there exists such t1 a t0 that u(t1 ) > 0, u(t1 ) > 0, u(t1 ) > 0 and, from Theorem 1, u(t ) - 
as t -	From the integral identity (4) it follows that 

u(t)u(t) - u' 2(t)12 = u(f 1 )u(t 1 ) - u(t1)/2 Jtp(t)ur1(t)dt	 (8) 

and from this and the assumptions of Theorem 2 there follows a contradiction with (7) as t -	. 
Necessity. Let the solution u of equation (1) be oscillatory in (t0, ) and let t1 (i 1,2,...) 

be null points of u in (t0 , co ). Then from the relation (8) it follows that the function uu" - u , '/2 
is increasing in (t1 ,), but u(t)u'(t) - u(t1 )12 0. From this fact it follows that (7) holds 
for all t>t11 

Theorem 3: Suppose that p s 0 on (a,oD) and p - 0 on any subinterval of(a,). Let u be a 
solution of equation (1) defined on an interval 3 C(a,OD)and satisfying k : u(t0 )u(t0 ) - 

a 0 for some t0 E 3. Then u does not have a null point to the right of t0 and Iu(t)I 
Iu(t)I -	as t converges to the right endpoint of 3.



120 M. GREGU 

Proof: The solution u fulfils the identity (4), i.e. 

u(t)u'(t) - u' 2( t)/2 +Jtp(t)u1(t)dt k2: 0 for all t E	 (9) 

Let u(t 1 ) = 0 for some t1 > t0 . Then from the identity above at the point t 1 we get a contradic-
tion. To prove the second part of the assertion let us suppose for simplicity that u(t)> 0 for 
all t> t0 . Then also u''(t) a 0 for all t> t0 and from the identity (9) it follows that u"(t) a 0 for 
all t > t0 . Suppose that 3 is a bounded interval with right end point b and let u be bounded on it. 
Then also u" is bounded as follows from the first relation in (6). Note that u' is a monotone 
function. From the second relation in (6) it follows that the function u' is also monotone and 
bounded. Hence u(t) - u0 , u'(t) -0 u, u'(t) - u,' as t- b, where u0 , u, u' are real numbers. 
That means u can be extended to b, which is a contradiction and therefore u (t) -	, u'(t) - 

as t - b. In the case b =	the proof is trivial - it follows from the monotonicity of the
functions u", uj" and from (6) U 

Theorem 4: Let p(t) < -k2 (k >0) for all t > t0 . Then each oscillatory solution u of the 
equation (1) defined on (t0 , co ) belongs to the class 2a on [ t0 , co), i.e.fo u 1 (t) d  <co• 

Proof: It follows again from the identity (4). Really, from Theorem 2 it follows that 

u(t)ut) - u' 2(t)/2 = u ( t0 )u"(zb) - u'(t0 )12 -jip(t)u i(t)dt <0. 

This implies jo( t )u X1( t )dt <col 

4. Now our goal is to derive properties of solutions of equation (1) in the case p 0. For 
this let u be a solution of the differential equation (1) defined on an interval 3 C (a, co) and 
suppose that it fulfils the initial conditions u(t0) = u0 , u'(t0) u, u"(t0 ) = u for some t0 E 3. 
Notice that the relations (6) hold. 

Lemma 2: Let p a 0 on (a, co) and let u * 0 be a non-extentable solution of equation (I) 
defined on [to , b), for some b  (t0 , co ]. Then b = 

Proof: It follows from the relations (6). Indeed, suppose b < co, u(t) > 0 for all t € [t0 , b) 
and bounded from above. Then from the relations (6) it follows that u can be extended to b. 

'(b - t ) 2p( t )u a( t )dt exists, then u and also u', u' can be If u is unbounded on [ t0 , b) and J  
extended to b. lff(b - t ) 2p( t )u a(0d t = co, then from the third relation in (6) it follows that u 
must have a zero and this is a contradiction to u(t)> 0 for all t € [t0 , b) I 

Remark 1:Lemma 2 does not hold in the case of extendability of the solution to the left of 
the point t0 . For example the equation u" + (a + l)(a +2) t a23u = 0 has a solution u = 
defined on (0, co). It cannot be extended to the left of 0. 

Lemma 3: Let p ^: 0 on (a, co) and let u be a solution of equation (1) which for some t0 > a 
and b E (a, co) is oscillatory on [t0 , b). Then u is unbounded on [t0 , b). 

Proof: It again follows from the relations (6). If we suppose that u is bounded on (to , b), 
then from the third relation in (6) and from the Cauchy Criterion we obtain that u can be ex-
tended to b, too U
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The paper [5] contains a theorem of I. Lic"ko and M. Svec that we restate for the equation 
(1), u > I and odd. 

Theorem B: A necessary and sufficient condition for either oscillatority or monotonic con-
vergence to zero together with its first and second derivative of each solution of the equation 
(1) on [ t0 ,co ) ( t0 > a) is that p(t)>Ofor all t>aandfftp(t)dt=co. o 

The problem is which solutions of equation (1) are oscillatory on the interval ( t0 , 00 ) and 
which on the subinterval 3 C (a, co). 

Theorem 5: Suppose that p fulfils the conditions of Theorem B. Then each solution u of 
equation (1) defined on the subinterval 3 C (a, cn) and such that 

u(t0 )u"(t0 ) - u(t0 )12 = -8<0 for some t0 €3
	

(10) 

is oscillatory for t > t0. 

Proof: Let t0 € ( a, ) and let u be a solution of equation (1) with the property (10) and de-
fined on 3. Then either 3 is bounded from above or 3 r [t0 ,co). In the first case u must be os-
cillatory for t> t0 as follows from Lemma 2. In the second case let us suppose that u(t) > 0 for 
t€(t0 ,°'). Theorem B then implies that u(t) < 0, u(t) > 0 for all t >t1 , for some t1 2: t0 , and 
u(t)- . 0, u(t) -+0 as t-co. However from the integral identity(4)we get u(t)u u(t)12 
+Jp( t ) u 1( t ) dt = -8< 0, which implies 

u 2(t)/2 = u(t)u(t) +Jtp(t)ui(t)dt +8 :t 6 for all t a t0, 

but this contradicts the assumption u(t) -0 as t -	I 

Theorem 6: Suppose that p satisfies the conditions of Theorem B. Then each solution u of 
equation (1) with double null point at t0 > a oscillates on the right of t. 

Proof: Again there are two cases. In the case when u is defined on a bounded from above 
interval it must, by Lemma 2, oscillate. In the second case when u is defined on [t0 , co ) and we 
suppose that u(t)> 0 for all t >t1 , for some t1 a t, it has to converge together with its first and 
second derivatives to zero as t—+ co and moreover it has to satisfy u(t) >0, u(t) < 0, u(t) > 0 
for all t >t2 , for some t2 a t1 . Let us substitute u into equation (2) and suppose that v is its so-
lution with the property v(t0 ) = v(r0) 0, v'(t) > 0. From Corollary 1 we have that v(t) > 0, 
v(t) > 0, v"(t) > 0 for all t > t0 . We use u and v to generate equation (3), i.e. 

vu' - vu + v'u 0. (U) 
If u is non-oscillatory we get from equation (11) a contradiction from the fact that v(t)u(t) - 
v(t)u(t) + v'(t)u(t) > 0 for all t > t2 I 

Let p(t) > 0 for all t E (a, ) and let u be a solution of equation (1) defined on 3 and satis-
fying u(r0 ) = u(t0) a 0, u"(t0 ) > 0 for some t0 E 3. Further let v be a solution of equation (2) 
defined on 3 and satisfying v(t0) v(t0) = 0, v(t0) > 0. Then equation (11) holds for t > t0, 
where v(t) > 0, v(t) > 0 for t > t0 . Let us make the substitution u IVy into equation (11). It 
then takes the form 

y" +(3v"/2v - 3v 2/4v 2 )y = 0.	 (12)
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From the integral identity (5) for v and t > t0 we get 

3v'(t)12v(t) - 3v(t)/4v2(t) 

and equation (12) is transformed into 

Y"M + (3/2 v t)J p(t) U  (t) v2(t) dt)Y 0.	 (13) 

From the reasoning above we obtain 

Theorem 7: A necessary and sufficient condition for a solution u of equation (1) to be os-
cillatory for t > t0 € 3 is that equation (13) or(12) is oscillatory fort > t0 

Apparently, Theorem 7 does not have any practical significance for determination of oscil-
latoricity or non-oscillatoricity of solutions of equation (1). However, as we shall see in the 
following, it has a theoretical importance. 

Corollary 3: Let p( t) > 0 for t E (a, co) and let u be a non-extendable solution of equation 
(1) on <t0 , b), a t0 < b < co, with the property u(t0 ) = 0, u'(t0 ) a 0, u"(t0 )> 0. Then 

f; p( t )u = - l ( t )d t —coast	b. 

Proof:From Lemma 3 we have that u is oscillatory on <t0 , b) and from equation (I) * it fol-
lows that the limit of its null points is b. Suppose that v is a solution of equation (2) which is 
adjoint to the solution uand has the property v(t0) v'(t0) 0, v"(t) >0. From Corollary I we 
have that v(t) > 0, v(t) > 0, v'(t) > 0 for all t > t0 . The function u is obviously a solution of 
equation (11) and hence by Theorem (7) equation (13) must be oscillatory on <t0 , b), b < co . This 
is possible only if 

l/vt)Jtt 
0 

p( t )u a ( t )v 2 ( t )d t . co as t .- b.	 (14) 

However for t . > to clearly the inequality 

l/vt)Jttp(t)u(t)v2(t)dt ^Jtp(t)u(t)dt 

holds. Hence the assertion follows I 
Corollary 4: Suppose that the assumptions of Corollary 3 hold. Then any Solution v of the 

equation (2) satisfying the condition v( r0 ) = v( t0 ) = 0, v"( t0 ) > 0 has the property v( t )-

Proof: Relation (14) implies the relation 

.J p(t)ua 1(t) V2( T) d	-	as t - b.	 (15) 

The integral identity (5) for the solution v has the form 

v(t)v ' (t) - v012 -J p(t)u(t)v 2(t)dt	0. 

Suppose that v is bounded on <t0 . b). Then
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v(t)v"(t)	v'2(t)/2 +Jp(t)u(t)v2(t)dt. 

From this and from relation (15) it follows that v'( t) -+ co as t - b and therefore also v'( t) - 
v(t) —> co as t - co. But this is in contradiction with the assumption that v is bounded I 

Suppose we have linear differential equations of the third order 

(P) Y"• + P1Y = 0	and	(p2) z' + P. z •= 0, 

where p11 p2 are continuous functions on (a,co), p 1(t) > 0 and p2(t) > 0 for all t € (a,co). 

Lemma 4: Let p1 '; p2 on (a, co). If equation (p2) is non -oscillatory in (a, co) (i.e. each of 
its solutions has at most a finite number of null points in (ac-c)), then the equation (p 1) is also 
non-oscillatory in (a,cc). 

Proof: The assertion is contained in Theorem 2.5 and Corollary 2.5 of [2], respectively I 

Let us denote the adjoint equation z - p1 z = 0 to equation (p 1) by (h). 

Lemma 5: Let p1(t)> 0 fort E (a,cc) and w be a solution of equation (p 1 ) with the property 
w(t0 ) = w'(t0) = 0, w'(t0)> 0 for some t0 €(a,cc). Then the set of solutions y of equation (p1) 

with the propertyy( tb) = 0 (called the bundle of solutions of equation (p) in the point t0) sa-
tisfies the equation (w) Wy" - Wy' + w"y = 0. Differentiating equation (w) term by term we 
obtain the equation (p 1 ). If equation (w) is non-oscillatory on <t0 ,co), then equation (p 1) is 
also non-oscillatory on <t0 , co). 

The proof of this lemma is not included since it is the basic property of linear equations of 
third order [2]. 

Remark 2: The assertion of Lemma 5 holds for arbitrary solutions w of equation ( p 1), but 
the interesting case is w(t) * 0 for t > t0. 

Theorem 8: Suppose p(t) >0 for all t € (a, co) and let f be a given function with continuous 
third derivative, f(t) >0 and f ... (t) >0 for all t €(a,cc), such that the equation 

y" + ( 3f "12f - 3f' 214f 2)y = 0	 (16) 

is non-oscillatory in (a,cr' ). Then each solution U of equation (1), with the property ti(t o ) = 0 for 
some t0 > a and which is defined on <t0 , co) and satisfies the inequality 

p(t)u 1(t) :5 f ... (t )If (t)for all  Z: to ,	 (17) 

is non-oscillatory on 

Proof:Besides of the equation 

+ pU'u = 0	 (18) 

we have the equation 

V"' + (f ... /f)v = 0,	 (19) 

that has been obtained by differentiating the equation
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fv" - f'v' + f"v 0 (20) 

and which by the transformation v =YTY can be converted into the equation (16). From the as-
sumption that equation (16) is non-oscillatory on <t 0 , ) it follows that equation (20) is non 
oscillatory on <t0 , co) and from Lemma 5 we have that equation (19) is non-oscillatory, too. 
From the assumption (17) and from Lemma 4 it follows that equation (18) is non-oscillatory on 
<t0 , co). Since U is a solution of equation (18), it is therefore non-oscillatory on <t 0 , co)l 

Corollary 5: Let f(t)= t", where n = 1 +2/-/i and let aaO. Then the equation (1) does not 
have an oscillatory solution U with null point in the point to > a on the interval <t0 , cz) that 
would satisfy the relation (17), i.e. the relation 

U(t) 5 21(3i/tp(t)) for all t a t.	 (21) 

Proof: The equation (16) has the form 

Y" + (3(n 2 - 2n)14t 2)y 0. (22) 

Let 3(n 2 - 2n) = 1. The positive root of this equation is n = I + 2/-/. By the well-known Kneser 
criterion equation (22) is non-oscillatory and hence equation (19) is non-oscillatory if f ... (t )If (t) 
= n(n- 1)(n - 2)/t 3 = 21(3/t 3 ). This and the relation (17) imply the relation (21) I 
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