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On the Optimal Convergence 

M. STOJANOVIá 

Two classes of second order optimally convergent 3-point difference schemes for singularly 
perturbed self- adjoint problem are presented. They achieve 0(min(h2 ,c)) point-wise error esti-
mates and 0(1) 2 ) global ones. 

Key words Optimal convergence. singularly perturbed problems 

AMS subject classification: 65 L 10 

0. Introduction 

Hemker gives in [3] a brief survey and the main directions and references of the main problems 
that are encountered when singular perturbation problems are solved by numerical means in 
one dimension, and opens some areas of current research in more dimensions. He lists the 
known standard techniques to obtain numerical approximation which describe the solution 
sufficiently accurate. Much efforts can be spent on the construction and analysis of s-uniform 
difference schemes, where s is a small parameter, 0 < s ^ 1, and some results have been 
obtained by many authors [1, 3, 4]. Uniform convergence was a strong criterion of con-
vergence for difference schemes. 

We recall the definition of this criterion. 
Denote by U i , c , h the computed solution of a singularly perturbed problem and by u(x1 ) the 
exact one at points x, i = 0(1)n, where /l is the step size of discretization which computes the 
approximate solution and s is a small parameter, 0 t :s 1. Suppose that the mesh A of discre-
tization is uniform: 0	x0 < x1 < .... < x,	1, h = 11N, N being an integer, x 1	x,. 1 + Ii, 1 
1(1)n. Then we can give the following 

Definition 1 (see [11) : The error bound of the form 

I lii. . 1 - LI,(\') :1 tvIh 

holds uniformly in s of order q if the constant A4 does not depend on both hand a. 

The concept of optimality was introduced in [1] to impose a stricter criterion. 

Definition 2 (see [2]): The error bound of the form 

,. cl, -

	

	 !^ lv4 min( max (i P, t))

OSj:gi 

holds optimai,v ins of order p if the constant Mdoes not depend on both It and a.



126 M. STOJANOVIC 

In [2] Farrel examined sufficient conditions for uniform and optimal convergence for a 
class of difference schemes for stiff initial value problems. He showed that there exists a 
subclass of schemes which is optimal in the sense that 

I u13 - u(x1 )I :5 M m in (h,  s), M independent on both hand E. 

Also, he showed that higher order optimal schemes exist. In [5] an optimal difference 
scheme of order one is given for a self-adjoint equation, by splines in tension. 

Here we develop the theory of optimality for difference schemes for a singularly perturbed 
self-adjoint problem. In the text to follow, M will denote different constants independent of 
both parameters h and s, and t 1 will denote the truncation error of discretization. Indices h and 
s in u will be omitted. 

The paper is organized as follows. In the first part we give the construction of the two 
classes of difference schemes which have optimal second order error estimates for the problem 

L 	-su + p(x)u = 1(x)	
(1)


u(0) = A, u(l) B, 0 < E s 1, 

where p and 1 are continuously differentiable at least of two. We treat it numerically by 
solving a system of equations. In the second part we provide an error bound in maximum norm 
and present an outline of the proofs for the optimal convergence at nodes, and for the global 
one in the third part. In the fourth part we test both classes of schemes on numerical exam-
ples to illustrate the formulae developed. 

1. Construction of the schemes 

This part of the paper is concerned with the following two subjects 
1. The construction of second order optimally convergent schemes using the solution of 

the problem

+ PISA. = 1, S(x1 ) u1 , S(x1 _ 1 ) u	 (2) 

on each subinterval LI, =	,,xj. I 1(l)n, of the interval [0, 1], where p i , fi are piecewise

constants. 

2. Generation of schemes using the solution of the problem 

(x - x . )	(x-x) 
SZi + p1S.	h	fi +	h	fi	S(x) = u 1 , S.(x1 _ 1 ) = u, 1 ,	(3) 

where p 1 is piecewise constant and I = 1(x1 ), u, u_ 1 are the approximate solution for (I) 
which will be determined from the corresponding difference schemes. 

In both cases our assumptions on Sn, , will be the following ones: 
a) The first derivative of the splines S . is continuous at mid points, i.e., S.(x1 + /i12) = 

S(x + 

b) The spline has nodes at mesh points. 

i) The first class of schemes. Solving (2) we obtain
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-	 (I7s(x - 
S.(x) = f1/p1 

+ 

exp	
2shp1 xi)) 

expp1(u1 -
-
/p 1 ) - (u1 1 -

0] 
+ exp(	s(X - XJ1)){expp(u	- /p 1 ) - (u1 - 

2shp1 

From the smoothness of the first derivative at the point x x 1 + h12 we obtain the class of 
difference schemes 

Ru 1 = Q1, u(0) A, u(i) = B	 (5)


referred to the approximation to the functions I and p, which can be set. In (5) we have 

Ru 1 r, u_ 1 + rfu1 + r 1 u11 , QI, q 1 - f + 

r(p) p(shp)-1 

r(p1)ch(p1/2), r1C = -r(p 1 )ch(3p 1 /2) - r(p11 )ch(p 1+1 /2), rf = r(p11)ch(p1+1/2) 

= -1/p 1 2p 1 sh(p 1 /2), q = 0, p = I_P^j /E h, p	p(x1). 

For p (analogously for I) we use a piecewise constant approximation of the form 

-	 i	
Ixforx>0 

P =	p 1 (x 1 - x) + , where ( ) s the cutoff symbol: X	0 for x ^ 0 

Consider two different approximations for p and I which imply two different schemes: 
1. The approximation 2( ); = ( )j1/2 ( )i+1/2 for p and!, respectively, gives the scheme 

Ru1 Qf,	 () 

where QI,	q 1 f' 112 + q 1 f1+112 , q 1	i/2q, q 1	1/2	and Ru 1 is given in (5). 

2. The approximation 6( -- ) = (0)1112 + 4(0 ) + (	for p and I, respectively, gives 
the scheme 

Ru1	QI,.	 ()2 

ii) The second class of schemes. The solution of (3) is a well-known tension spline [5]. Ap-
plied to (2) it yields

	

/3 . 17 z(sh(p.t)	\] 
S.(t)	u1	+ -j—	shp	- 

/3 
I	

,72fsh(p1(1 - r)) - 
+ j. 1	-	+ ----(	 (1 - t))j	 (6) 

	

p 1	shp1 

I, h (h(c 1 ) + sh(p,(l -t)) - i
'\ 	i = i(1)n. £p.2	shp1	shp1	) 

The continuity condition of the first derivative at the mid points gives the class of difference 
schemes 

Ru1	Q,,	 (7)
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where 

Ti - = I + (r(p)ch(p 1 /2) - I), r = 1 + (r(p 11 )ch(p +1 /2) - I) 

= -2 - ( r ( p )ch(3 p 1 /2) - I) - (r(p 1+1 )ch(p +1 /2) - 1) 

l/p(r(9;)ch(p/2) - r(p1)ch(3p/2)) 

1/p1+1(r(p 1+1 )ch(p +1 /2) - r(p1)ch(p1/2)) 

f 7sh, r(p) = p(shp)1. 

Here, the schemes referred also to the approximation to the functions f and p. 
The schemes which uses the approximation 

1. 2()	(	+ ( ).	and 2. 6( --) i = (	+	)• + ( 

for driving terms in (1) are listed below, respectively: 

Qf = q11/2 -112 + q +112 *112 + i3/2 f=3/2 

q11,2 = 1/(2p)(r(p 1 )ch(p/2) - r(p1)ch(3p1/2))	
(7) 

= 1/(2p, +1 )(r(p , +1 ) ch(p +1 /2) - r ( p ) ch(p1/2)) 
+	 *
- q 1/2 + 

q 1 . 1/2 = 1/(6p 1 )(r(p 1 )ch(p 1 /2) - r(p1)ch(3p,/2)) 

1/2	
()2


= 1/( 6 p+ 1 )(r( p 11 )ch(p+ 1 /2) - r(p)ch(p/2)) + q11/2 
+	4 +	*	+ = q 1 +,-, q+3/2	q1+1/2. 

The left-hand side of equality Ru = Qf is the same as in (5). 

2. Optimal nodal error estimate 

Following the concept of optimality given in Definition 2, we obtain that for the schemes (5), 
(7) a stronger criterion of convergence holds. This is shown in the next three theorems. 

Theorem 1: Let p,fc C 2[0,Ij and( u j ) 	be the solution of the discretization ( 5). Then

the estimate 

Iu - u(x)j :5 Mmin(h 2 ,$), i	0(1)n 

holds. Namely, the schemes (5) are optimal and of order 2. 

However, to prove Theorem I we must define the argument in the following 

Lemma I (see [11): Let p. f c C'[0,11 and p '(0) p'(I) = 0. Then the solution of (I) can be 
decomposed in three parts: 

11(X) = q0 u0(x) + q 1 cn0(x) + g(x),
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where 1 q01,1 q 1 1 are constants: 

1 q0 1, 1 q1	M, u0(x) = exp{-x/p(0)/s }, o(x) exp{-(l - x)-/p(1)/E }, X E (0, 1), 

k (x)I   M(l + E 1-1/2), i 04. 

To accomplish the error estimate we consider u0 , a0 and g separately. 

Lemma 2 (see [61): Let u e C 3 [0, 11 be the exact sulution of (1). Then the truncation error 
of discretization () (t 1(u) = Ru 1 - Q(Lu1 )), for each of the functions from Lemma 1 separa-
tely, is the following: 

1. t 1 (g)	T1°g + ( t ) . +T(2)	 +	+ R, 
where	 - 

= r1 +	+ r1 -	- 

Ti ( ')h((rj -rj )+ 1 /2q - p1+112q) 

Ti ( *) h 2(r12 i72 - p 1 /8q - p 1+118q) + s(q 

h 3(rj76 - r1 76 + p 1/48q - p 1+1 /48qj) + sh/2(qj - q1). 

2. t 1 (u0) uoj( r1 exp (p0) + ijC + ,exp(-p0) 

- (p0 - p11 ,2 )exp(c 0 /2)q - (p0 - p1+1,2)exp(-90/2)q), 
inhere 

u0 , = exp(- /p(0)/s x 1). p0 Fp(OUTIT h, 

and r, rf, q	1(I)t, - I are the coefficients from ()• 
3. Similarly as in assertion 2 we obtain t1(w0). 

Lemma 3: Let u € C 3[0, l] be the exact sulut ion of(I) and let p,fc C 2[ 0, 1), p(0) 
0. Then we have the following consistency error of the discretization (S): 

WE	if h 2/E s I	
i = I(I)n - I max{1t 1 (g)j, t 1 (u0), It1o)I} ^ M{sp.exppi if h 2/s 2t I 

Proof: Estimate for jt 1 (g). In Lemma 211 we have Ti (' ) = 
= 0, and J72)gj and re-

mainders are less or equal to !v4h 41r when h 2/s :5 1. In the opposite case, h 2/E a 1, the largest 
term is sp 1 sh( p1/2). 

Estimate for 1t1(uo)I. Since Ip(x) - p(0)I s Aix' under the condition of Lemma I and I q,I s 

Mp 1 shp 1 /2 we obtain t1(u0)I s Mspexpp, when h 2/E a 1. We obtain the estimate for h 2/s s I 
after Taylor developments. 

Estimate for lt1( c 0)J . It is the same as the estimate for t 1 (u0 ) U 

Theorem 2: Denote by t1i1}1the approximate solution to the one u E C'[0, 1] of (1) ob-
tained bvthe discretizaticin(5) 1 . If p '(0) p(l) holds and pR C 2( 0, 1], then	- 

lui - u(.v 1)I :5 Ivlmin(h 2 ,$), i = o(l)n 

i.e.. the scheme (5) has the second order of optimal convergence. 

9	Analysis. Bd. II, Hell 1(1992)
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Proof: Denote by A E R'"' the matrix of the system of equations (5). Then 

( 
IIAII	(j-	+	

+ ,-*)-i s
E/h2	 if h2/ 

1	
f. I 

1/(p 1 sh(p/2)) if h2/	 (8) 
I 

The nodal errors are 

max ju i -u(x)I s 11A11 1 max It(u)I. 

From Lemma I and Lemma 3 we obtain the estimate of the truncation error t(u) r(u0) 
+,c1(w0 ) + t . (g). Hence, (8) and (9) give the assertion of the theorem U 

Also, we obtain in the same way that the assertion of Theorem I holds in the case 
which completes the proof of Theorem I. Similarly we have 

Theorem 3: Let p,f€ C2[0, 11 and fu 1 } 1 be the approximate solution of (1) obtained by 
(7). If p(0) = p(l) 0, then 

lu i - u(x)I s Al min(h 2 , ), I	O(1)ii. 

On the other hand, the schemes (7) are optimal and of order two in the sense of Definition 2. 

3. Uniform global error estimate 

Firstly, we give the following 

Theorem 4: Let fS.(x)} be the spline solution (4) of (1) on each subinterval [.v1,x1]. 
I(1)n, where the coefficients {u)Jwe obtain from the linear system (5). Let p,f€ C 2 [0, I] 

and p-(0) p'(I) 0. Then the estimate 

u(x) - S .( x )I s Mh 2 . i = l(l):i 

holds. It means that the schemes (5) have order two of uniform global error estimate. 

Proof: Denote by ES, the exponential part of the spline (4) and by LS,. the linear one. 
When p = const then ESA . is in a kernel of a differential operator. Then L(ESA.(x)) = 0 and 
the global error depends on the approximation to the function f. Since If - fj I :^ Mh 2 then 

IL(u - SA .(x))I s Mh z . When p Owe have 

ES(x) I/(2shp i ){u,[exp((li x - x 1 )) - exp(-(x -x1))] 

+ u j [- exp((x -x i )) + exp((h -(x 

Thus,

	

S.(x) =	{l + 11(2 sh p)(l - exp p i ) [exp((x - x i )) + exp(-	(x - 

and

L(ESA .(x)) :5 A40	L(LS(x)) I Mh - iip.	 (10) 

This yields I L(u(x) - S.(.v)) s f/p - f/p + 0(1, 2 ) . Since I(I p - p S I, If - iI)I s Mh 2 we obtain
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L(u(x) - S.(x))J :5 Mh 2. (11) 

The barrier function z(x) = C(x - x, - h) - Chexp(-yx/s) ± (u(x) - S.(x)) from [4] gives 

Lz(x) = Ch(y 2/t - p)exp(-yx/s) + Cp(x - x, - h) ± L(u(x) - S.(x)), 

where p 2t j5 >0, Candy are constants. Since Theorem 2 then z(x1 - 1 ) :^ 0, z(x1 ) :5 0 holds. We 
can choose C, y so that Lz(x) > 0 because of (10). Then z(x) 25 0 on ['.1 x1] from the maxi-
mum principle and 

Iu(x) - S .(x)I :5 Mh 2 on [x 1 ,x,], i < N12.	 (ii)


For i > N12 we use the second barrier function 

z(x) = C(x1 - x -2h) - Chexp(-y(1 -x)/t) ±(u(x) - S.(x)), 

and we obtain also the estimate (11)1 

Remark: The spline solution S of (1) is then 

S(x)	111S.(x)H(x1 - x),	 (12)

where H is the Heaviside function, H(x) = 0 for x a 0 and H(x) I for x z 0. 

Similarly we have the following 

Theorem 5: Let S be the spline solution of (1) obtained by (12), where the coefficients S. 
in (6) we get from the linear system (7). Let p, f€ C 2 [0,1]. Then the estimate 

Iu(x) -S(x)I s Mh 2 on [0,1] 
holds, where u is the exact solution of (1). It means that the schemes (7) have order two of 
uniform global convergence. 

4. Numerical results 

In this Section we present some numerical examples in order to demonstrate the performance 
of the schemes (5), (7) for various choices of E. The calculations were carried out using com-
puter programs written in FORTRAN IV plus in double precision mode, and implemented on 
(PDP11/34) computer. The numerical rate of the uniform convergence is the following accord-
ing to Doolan et al [1]: 

rate a Iln z	h, k - ln z, c, h, k=i I/In 2 
where 

Z,, E ,k = maxu C h,2k - ui c h/2k .. iI , k = 0(1)6.	 (13) 

Here uJE h,2k is the approximate value at the point x 1, length h/2'. The meshes were obtai-
ned by halving previous ones successively starting with 16 points and ending with 1024. We 
tested the simple example 

-tu"(x) + u(x) = cos 2 itx 2sir 2 cos 2irx , u(0) = u(1) = 0 

with the exact solution 

9.
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u( x) (exp(-(1 - x)/) + exp(-x/))/(1 + exp(-V)) - cos2x 

on the schemes (5), (7). The resulting values and nodal errors are displayed in the following 
tables (in which N stands for N). The maximum difference between two consecutive meshes 
is listed in the E0,, norm ( z h , k) . The declination of the approximate solution from the 
exact one is listed in the maximum norm and denoted by YjCJJ max II u ,C,h - uE(xI)l. 

Table 1: Rates of convergence for () and max differences 

IN 16 32 64 128 256	- 512 

[c\K 1 2 3 4 5 

£
Go

rate £
CO

rate E
W

rate £
W

rate E	rate	E 
0	 0 

1 . 1 1E-02 . 29E-03 . 71E-04 . 18E-04 .44E-05 
2.02 2.01 2.00 2.00 2.00 

19E-02 . 27E-03 . 68E-04 . 17E-04 .42E-05 
2.02 2.01 2.00 2.00 2.00 

2- 2 . 99E-03 . 25E-03 .62E-04 .16E-04 .39E-05 
2.02 2.01 2.00 2.00 2.00 

2 .88E-03 .22E-03 .55E-04 14E-04 .34E-05 
2.02 2.01 2.00 2.00 2.00 

2 . 77E-03 . 19E-03 . 48E-04 12E-04 .30E-05 
2.03 2.01 2.00 2.00 2.00 

2 .68E-03 . 17E-03 .42E-04 . 11 E-04 .26E-05 
2.04 2.01 2.00 2.00 200 

2 . 63E-03 . 16E-03 . 39E-04 . 98E-05 .24E-05 
2.05 2.01 2.00 2.00 2.00 

2 :62E-03 . 15E-03 .38E-04 .95E-05 .24E-05 
2.08 2.02 2.01 2.00 2.00 

2- 8 .62E-03 . 15E-03 .38E-04 .94E-05 .24E-05 
2.14 2.04 2.01 2.00 2.00 

2 .64E-03 . 15E-03 .38E-04 .94E-05 .24E-05 
2.23 2.07 2.02 2.00 2.00 

2 10 68E-03 . 16E-03 . 38E-04 .94E-05 .24E-OS 
2.36 2.12 2.04 2.01 2.00 

11 74E-03 . 16E-03 .38E-04 . 95E-05 . 24E-05 
2.51 2.22 2.07 2.02 2.00 

11 E-02 . 19E-03 .41E-04 .96E-05 .24E-05 
2.53 2.54 .225 2.08 2.02 

10 .18E-02 .37E-03 .60E-04 .IIE-04 .25E-05 
2.02 2.28 2.60 2.44 2.17
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Table 2: Rates and max differences for ()2 

IN 16 32 64 128 256 si; 

1 2 3 4 5 

£
Co

rate E rate £ rate E rate E	rate	£cc 

1 .11E-02 .28E-03 .71E-04 .18E-04 .44E-05 
2.01 2.00 2.00 2.00 2.00 

10 - ASE-03 .38E-04 .95E-05 .24E-04 
1.95 1.99 2.00 2.00 2.00 

10 . 57E-03 .64E-04 .15E-04 .77E-05 .22E-05 
2.08 3.15 2.10 2.49 .179 

Table 3: Errors y, , h for () 

\IN 16	 32	 64	 128	256	512 

2 .85E-03	.20E-03	.50E-04	13E-04	.31E-05	.78E-06 

Table 4: Rates and errors in E, norm for () 

IN 16 32 64 128 256 

\K 1 2 3 4 5 

I . 11E-02 .29E-04 .71E-04 . 18E-04 .44E-05 
2.02 2.01 2.00 2.00 2.00 

10_ 2 . 62E-03 .15E-03 .38E-04 .95E-05 .24E-05 
2.07 2.02 2.01 2.00 2.00 

10 .11E-02 .19E-03 .41E-04 .96E-05 .24E-05 
2.53 2.54 2.25 2.08 2.02 

10 . 18E-02 .37E-03 .60E-04 .11E-04 . 25E-05 
2.02 2.28 2.60 2.44 2.17
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Table 5: Rates and errors in Em norm for ()2 

16 32 64 128 256 

1 2 3 4 5 

. 1IE-02 .28E-03 .71E-04 . 18E-04 .44E-05 
2.01 2.00 2.00 2.00 2.00 

• 53E-03 . 15E-03 .37E-04 . 94E-05 . 24E-05 
1.04 1:87 1.97 1.99 2.00 

• 57E-03 .64E-04 . 15E-04 . 18E-05 .22E-05 
2.08 3.15 2.10 .95 1.79 

Table 6: Errors Ii.,,,, for () 

\ 4 16	 32	 64	 128	 256	512 

10 . 22E-03	.41E-03	.75E-04	. 14E-04	.33E-05	.79E-06
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