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We give a generalized form of the Hormander-Schwartz-Triebel theorem for singular integral
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1. Introduction

In the classical paper [8], L. Hormander considers singular integral operators of potential type,
i.e., operators which map LP into L9, with a kernel K satisfying

( fIK(x-») - x<x)|vdx)"* sc,
Ix1>2lyl

where 1/p - 1/g = 1/y (actually Hérmanders condition is slightly more general). The well-known
potential operator of order v is a particular case of these operators. Afterwards, J. Schwartz
[15] and H. Triebel [16] obtained vectorial versions of Hormander's theorem by considering
operator-valued kernels. Before Triebel's work, Benedek, Calderon and Panzone [2] had also
considered operator-valued kernels, but in the case p=q and y = 1.

Motivated by the elegant treatment of the Benedek- Calderon-Panzone theorem given by
Rubio de Francia, Ruiz and Torrea [12],we shall present here an up-dated and generalized
version of the Hormander- Schwartz-Triebel theorem. We shall work with variable kernels
and in the framework of the spaces of homogeneous type.

In Section 2,we give some preliminary definitions and a version for spaces of homogeneo-
us type of an inequality of C. Fefferman and E. Stein, proved by R. Macias (see [10]). As a
consequence we are able to state an interpolation theorem of Marcinkiewicz-Riviere type in
this framework. In Section 3, we prove a generalized form of the Hérmander- Schwartz-Triebel
theorem (see [8,15,16]) for singular integral operators of potential type as well as a sequential
version. Section 4 is devoted mainly to obtain norm inequalities for fractionary maximal ope-
rators (of F. Zo's type) in spaces of homogeneous type. The fractionary maximal inequalities
of Hardy-Littlewood and Fefferman-Stein type are derived in Section 5. In this section, we
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also give an application of the sequential inequality of Fefferman and Stein, to obtain a version
of an LP-L%inequality for a function of Marcinkiewicz type J, .(x) (see [7]), in normalized
homogeneous spaces. Finally in Section 6 we state a theorem of Littlewood-Paley type.

2. Preliminary definitions and results

In this section we give some definitions and a version for spaces of homogeneous type of an
inequality of C. Fefferman and E. Stein.

Definition 2.1: Let X be an arbitrary set. A map d: X xX = R is called quasi-distance
provided
(i) d(x,y) 2 0 and d(x,y)= 0 if and only if x = y
(ii) d(x,y) = d( ¥, x)
(iii) d(x,y) s k(d(x,z) + d(z,y)) for some constant k 2 1, independent of x, y and z.

A quasi-distance d: X x X —> R defines a uniform structure on X. The balls B(x,r) ={y ¢ X:
d(x,y) < r}, r>0, form a basis of neighbourhoods of x ¢ X for the topology induced by the uni-
formity on X. This topology referred to as the d-topology of X is a metric one since the uni-
form structure associated to d has a countable basis.

Definition 2.2: Let X be a set endowed with a quasi-distance d and with a positive mea-
sure , defined on a c-algebra of subsets of X which contains the d-open subsets and all balls
B(x,r). The triple (X, d,u) is said a space of homogeneous type, or short a homogeneous space,
if there exist two finite constants, o >1 and A >0, such that

0 < w(B(x,ar)) s Ap(B(x,r)) <
holds for all x e Xand re R,.

Definition 2.3: A space of homogeneous type X will be called p-normal if there is a posi-
tive continuous function g on R, and positive constants 4, and A4, such that

A, s o(r)u(B(x,r) s A,
holds for all x e Xand re R,.

In particular if we take p(r) = r~*, we obtain the so-called normalized homogeneous space
(see, e.g., [4,5]). For examples of spaces of homogeneous type we refer to [4].
Let X'be a space of homogeneous type and G a Banach space. We shall use the following
notations in this paper:
L% = LP(X,G), for the space of G-valued p~integrable functions on X
[

G = L°(X,G), for the space of G-valued strongly measurable functions on X

G, = LY(X, G), for the space of G-valued bounded functions with compact support on X.

In any case, when G = R we shall drop the index G. The capital letters E and F always indicate
Banach spaces.
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Definition 2.4: If f ¢ L{,{X, E), the Hardy-Littlewood maximal function or simply the
maximal functon of f is defined at x ¢ X by setting

- 1

MEf(x) = supﬁfs Ilf(y)llg du( y),

where the supremum is taken over all balls B containing x.
The following result, due to A.P. Calderon, can be found in [3].
Theorem 2.1: Let f¢ LP(X, E) with 1 < p s . Then Mg f is finite a.e., Mg f ¢ LP(X,R) and
)lIMgf
D IMefllp s cIIfII,_;;:_
Gi) IF(X)llg s Mgf(x) fora.a. x € X.

Definition 2.5: If f¢ L), (X, E), the sharp maximal function Mg f, 1 s r < ®, is defined at
X € X by setting

n /1
Mg f(x) = sup(ﬁfa I£(y) - fallE du(y))l ",

where the supremum is taken over all the open balls B containing X, and fg denotes the mean
value of fon the ball B.

Definition 2.6: Let fe Lo (X, E). We say that fe BMO™(X, E) = BMOZ, if Mg .fe L%, i.e.,
if |fllamog = IME £llpe < .

As in the case E = R, we have BMOE = BMOg with norm equivalence. We shall use this
fact in the proof of our main result. We shall write Mg instead of Mg, and BMOg instead
of BMOg .

The following result, due to R. Macias (see [10]), is a version for spaces of homogeneous
type of an inequality of C. Fefferman and E. Stein.

Theorem 2.2: Let g, € R be given such that 1< q, s ®. If g € L%(X, E), then for all q 2 q,
we have

Mgl iU = o
IMeglla < €Y . (2.9
e = Y insgela ety i w0 <o

where the constant is independent of g.

Actually, Theorems 2.1 and 2.2 are established for scalar-valued functions, but the proofs
in the vectorial case follow in the same lines.

As a consequence of the inequalities (2.1) a Marcinkiewicz-Riviere interpolation theorem
in spaces of homogeneous type can be established.

Theorem 2.3: Let X be a space of homogeneous type, let E and F be Banach spaces and
T: L3(X, E) - L°(X,F) a sublinear operator such that, for some p,, q,,r¢ Rwith1s p, s rs
and 1 < g, < ©, we have

D178 s Collf e () ITF anop < Gl lig

11+
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for all fe LY(X,E). Then T has a bounded extension from LP(X, E) into LY X, F), where 1/p =
(1-9)/p,+98/r and 1/q=(1 - 9)/q,, 0 < 9 < 1. Moreover, if 1/p, -1/q, = 1/r, we also have 1/p -
1/q = 1/r.

Proof: Let us consider the sublinear operator Mg © Tand fe LZ(X, E). Since g, > 1, by the
maximal Theorem 2.1 and (i) we get

Mg °Tf || 1% < 2||Mg © T [| L% s 2||Tf || 120 s CoIf | Lo
and the definition of BMOg yields at once that
IME o Tr e s CIIF |z

Having both these inequalities at hand, the Marcinkiewicz interpolation theorem assures that
Mg © Tis bounded from LP(X, E) into LY X, R), where 1/p = (1 - 8)/p, +9/r and 1/9 =(1 - 3)/q,,
0 <9 < 1. Now, if p(X) = o, by (2.1) we have for fe L (X, E)

ITFILg s IMe°TF || a s CIIME °Tf || La s Clif [|g-
On the other hand, if u(X) < «, by (2.1) and applying Holder's inequality twice, we obtain
17l s C(IMg o TF || a +(ITF 2.
s C(CIIf g, + w(X)%8 || TF || 1)
s C(ClIF e+ CTu(X) 90| | L)
< C(C7IFllug » € uX)5 o 2 | ),

since p > p,. The density of L3(X, E)in LP(X,E) 1 < p < o, leads finally to the desired result @

3. Singular integral operators

Let E and F be Banach spaces and let X be a space of homogeneous type, endowed with a
quasi-distance d and a measure . In this section we shall deal with operators T on LZ(X,E)
which have a representation of the type

Tf(x) = [ K(x,9)f(y)du(y) for x ¢ suppf (3.1)
with a kernel K € L}, (X x X \ A, L(E, F)), where A stands for the diagonal set in X x X.

Deﬁnition 3.1: We say that the kernel K ¢ L}OC(X x X'\ 8, L(E, F)) satisfies condition (CY)’
1 sy <o, if for all y ¢ X and fixed x, ¢ X we have

[ K(x, ) - K(x, x| Lcg. Fydu(x) s C, a > 1. (3.2)
d(x,xg)>ad(y, xq)

We say that this kernel satisfies condition (C{) if K'(x,y) = K(y,x) satisfies (Cy).

Theorem 3.1: Let the operator T be given as in (3.1) and let there are numbers v,r,,5, € R
satisfying1 sy <o, 1 <r,s® and 1/r, -1/s, = 1/ - 1, such that
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Tf s Clffl1%- ' 3.3
17l 5 €Il (.3

(i) If the kernel K € Lio(X x X \ A, L(E, F)) satisfies condition (C+), then the operator T
of (3.1) is of weak type (1,Y), i.e.,

ulx: ITF(e > ¢}) s Ct"’]|f||ZL_.

(ii) If the kernel K € L},o(X x X \ 8, L(E,F)) satisfies condition (CY), then the operator T
of (3.1) is of type (LE, BMOE), i.e.,

I7f leamtop < CIIf ||pé' ,

where 1/y +1/Y’ = 1. Moreover, after an extension, T is of strong type (p,q), i.e.,

17 g < CliF g
where

1<pss, and Y < qsr, if K satisfies (C)

Vp -1/g =1-1/y. with {so <ps Y and r, < g < @ if K satisfies (C3).

Proof: Step 1. Let fe LZ°(X, E)and X a positive constant such that we shall make more
precise later (if y(X) < o, we restrict A to be greater than ||f|[,_;=./p(X)‘/"). Then there are a
function ge Ly n LE, a sequence {bj} C LY X,E) and balls B(x;,R;) such that

f =8 + Zj bj
with

gl = € foraa xe X, |gllt s ClIFllL (3.9)

suppd; C B(x;,R;) and fbj(x)du(x) = 0 for all j, Zj ||bJ||L}:_ s C|f "LXE

The proofs of these properties follow the same lines as in the scalar case (see [S]).

Step 2. If the kernel K satisfies (CY)’ then the operator Tis of weak type (1,v). In fact,
given fe L3 (X, E)we shall control the measure of the set {x ¢ X: | Tf(x)liz > t}. Observe that
in the case u(X) < « it is enough to consider ¢ > ||f [|& /u(X)¥Y. Since

u{x € X: ITEOIE > 1) s w(ix € X: 1Te(x)lp > £/2)) + w{x € X: I To(x)lg > £/2)),

it is enough to estimate the two terms on the right-hand side of the above inequality. By (3.4)
it follows that ||g||L$Eo s CX™V% |f ||;3:°. Thus by (3.3) we obtain

15/So

w(ix € X: 1 Tg(x)llg > t/2}) s 270t ™% ||g||,’_%so s Ct oA ||f ||L‘,s :

Now, let B; = B(x;,R;) be the balls of the Calderon-Zygmund decomposition of f= g +b,
where b = Zj bj, and let B = B(xj,2aRj), where a is the constant of Definition 3.1. First, we
observe that

1/ N -
(f(u.s.f 1o d“(")) Tsclrly (3.5)
J7J

In fact, for each j we have Tb;(x) =fBjK(x,y) b,(y)du(y) and hence, taking into account that
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fbj(y)dp(y) = 0, we get
Tbi(x) = [, (K(x,5) - K(x, %) bi( y) du( ).

It follows by Minkowski’s inequality and Fubini’s theorem that

LY Y Y 1/
(f(gj)c||nj(x)||;du<x)) < faj(ﬁsj)c"K(x,y)-K(x,xj)llus’t_—)||bj(y)||5 du(x)) du(y).

Now, since x e(§j)° and y € B;, we have d(x,x;) > ad(y,x;), and by condition (3.2) it results
that

vy
To;()|| £ du(x)] s C|_ 15, g duly).
(g 120z 0] 5 €, Nl ety
Then

MY ; . Y . ¥
f(uj e I TPE ) s €3 f(uj eI < ¢ 3 f( e Iz

<O, e ' (Tl by | = Iy

and (3.5) follows.
Now, we are in conditions to obtain

w({x e x: 11600l > 1/2}) < (U; B) QYﬁxe(uj B || Tot0)| g > 72} '

| Tb(x)"}_. du(x)
SNl + Cot Y |l
E E

where the first term of the last inequality is a consequence of the Calderon-Zygmund decom-
position theorem associated with A. Thus by (3.5) we get

- - Y - /Y- o'%
u({x e x: | TF e > ) s €(x Iy = eI N <o T A ).
Choosing A >0 so that A7* = ¢t~ 7||f||Z;;(observe that when ¢(X) < @ such X always exists be-
cause in this case it is enough to consider ¢ > II{"L}; /u(X)/Y) we obtain
u({x e x: |77z > ¢}) s ceov|f Ifs

which proves (i) when r, # .
In the case r, = © we proceed as in the previous case. We have

172l < C([lgt IR dulr)*® = ([l et »llg du(r)' ™.

By (3.4) it follows that

- /' ”~
ITall e < CY* " ®If > = CxTiflly - (3.6)

Thus
u({x e x: I TrCONE > 2007 I )

1/Y°

s u{x e x: 1Tl > NI ]) + el{x e X el > € X7 1L ))



Singular Integral Operators 159

= w({x e x: 7000 >cx/v||f||"Y })
_ _ - /-
S CNH|F | + G2 ‘IIfIILz CAM|f |, = € X(bCad s *) ey

which proves (i) when r, = .

Step 3. Let x, ¢ X be fixed and consider the balls B = B(x,,R) and B = B(x,,2aR). Let f= -
g+ 5 where g = fxg and b = f- g. We shall prove that T is of type (LE ,BMOF) We have Tf =
Tg + TH and consequently

[l TF0x) - ag|Pdu(x) s [ TEO) R du(x) + [g TB(x) - ag||2 dulx).

Since Tis bounded from L% into L™, we obtain

([allzl2dutx) ™.

(&5 falTEC2 dux) ™ <

Applying Holder inequality, it results that the last term of the above inequality is majorized by

([ IO dutx)

Since, by hypothesis, 1/g, - 1/r, = 1/7’, it follows that

(B)l/ro

1Y /5o 1/ -1/
ll(B)l S 1 Y 1 t'o

(Rl TR dux) " < Clel,z - | 3.7
Now, choosing ag = IXK(xo,y)E(y)dp(y), we have

TB(x) - ag = f(g)c(mx, ) - K (%o, y)B(y) du( )
and hence, by Holder inequality, we obtain

(55 Js I T80 - aglR dutx))' ™

| “(B—"”;{‘[B{(RE)CHK(" P - Ko P (e, f--)du(}’))rO/Y

(s du<y))’°/*'} au} .

Now, since y ¢ (B)%nd x ¢ supp b, it follows that d(x,X,) > ad(y,x,). Then by condition (cy
we have

1 r 1/r X
(e ol TBG) - agllfdux) " s €[5, -
From (3.6) and (3.7) it results that
1 % 1/5 i
(e Jel T8x) - aplR dutx) " < Clifll ¢,
i.e., Tis of type (LY',BMOF%). Taking into account that BMOR = BMO, we obtain (ii).

The remainder of the theorem follows by the Marcinkiewicz interpolation theorem (C., -
case) and Theorem 2.3 (C,, - case) il
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Remark: If we take X = R™ d(x,y) =Ix - y|™ u the Lebesgue measure and K(x,y) = K(y,x),
from Theorem 3.1 we obtain a generalization of Triebel's theorem (see [4]). The hypothesis of
reflexivity on the Banach spaces assumed by Triebel is unnecessary. In particular Theorem 3.1
can be applied to singular integral operators induced by kernels of type K(x,y)=I|x -y|™"*€, B
> 0, i.e., the so-called singular integral operators of potential type.

Corollary 1: Under the hypotheses of Theorem 3.1 we have

IS 17502 e < IS5 1502 ) .0 (3.8)

for
1 <pss,and y<q,rsr, if K satisfies (C)

Vp -1/ =1 -1/y. with {so <ps¥Y and r, < q,r < if K satisfies (C3).

Proof: We shall apply Theorem 3.1 twice. We have that T is bounded from L%(X,E) into
L*(X, F)for r and s such that

1 <sss,and v <r<r, if Ksatisfies (Cy)

Vs = 1/r=1-1/y, with {so <s<y and r, <r<® if K satisfies (Cy).

Let us consider the operator T on LZ(X,I7(E)) given by 7‘{{3} = {T!}}, and the kernel K(x,y)
given by k(x,y){kj} = {K(x,y))\j}. Since

RGPy e = 1K e,

we see that K satisfies (CY) and (C&) whenever K satisfies (CY) and (C"Y)' respectively. Mo~
reover,

T{F}(x) = [ RO (5} duly).

By considering the counting measure v in N, Fubini’s theorem first and then Theorem 3.1
yields that

175 gy = 176, D oy = 07502 b5l s U512 3 - (3.9)

Since 1/s - 1/r=1-1/v > 0, we have r>sor r/s > 1. Hence Minkowski’s inequality assures that

||{||’3'“LZ— biller = (fw(xufj”; du)r/sd\,)x/rs (fx(fN”,j"I’___ dv)‘/fdu)x/s.

From (3.9) we get ”T{f}}",_quF)s C“{IJ'}"L;’(E)' and hence T is bounded from LS(X, 17(E)) into
LF(X, I"(F)). Consequently, we are in the conditions of Theorem 3.1 with E and F replaced by
I"(E) and I7(F), respectively. Hence, the assertion follows il

Corollary 2: Let {'IJ‘} be a sequence of singular integral operators, induced by a sequence
of kernels {K;} uniformly bounded from L®(X, E) into L™(X, F) for some s4,r, ¢ R such that
1/ - /1, =1 - 1/y, 1 s v < o. Suppose further that the sequence {KJ-} of associated kernels
satisfies

. Y
fd(x.x°)>2d(y,x°)stu 1K (%, 5) - Kj(x, )| g, gy du(x) s C (3.10)
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. Y
fd(y,)’o)>2d(x,yo) SUP; "Kj(x’y) ) Kj(y°’y)"uE'F) duly) s €. (3.1)

Then we have
(ST 505 e s ;0508 M,
for

1 <pssy,and y<q,rsr, if K; satisfies (3.10)

Vp -1/q =1 -1/, with {so <psy and r, < q,r < if K; satisfies (3.11).

Proof: Firstly, we observe that the operators T; are uniformly bounded from L X, E) into

L7(X, F)with s and r given in Corollary 1. Let us consider the operator Ton LZ(X,I"(E))given

by T{tJ'-} = {TJ(I} and the kernel K¢ L(I*(E), I"(F)) given by K(x,y){bj} = {Kj(x,y)bj}. Since
1K a7y, 1) = SUP; (L1 87] PPy

we see that the kernel K satisfies (C.} and (C}) with a = 2. Moreover,

T{£}x) = fx K(x,y){fj}(y) du(y), x esuppf;.

Arguing as in Corollary 1, we have ”T{{_}}"Lh’__)s C”{f}'}”u,‘r(s)’that is, T is bounded from the
space L5( X, I7(E)) into L"(X, I"(F)). Thus, Theorem 3.1'applies giving the desired result B

Some related results, for X = R?, can be found in F.J. Ruiz and J.L.Torrea [14].

4, Maximal operators of F. Zo ‘s type

Let {¢y},>, be a family of scalar-valued functions on X x X which satisfies for some y ¢ R, 15
v < o, the conditions

fd(x,)")>2d(y'.y) 323""\:(’4}") - (pv(x,y")l-rdu(x) sC (4.1)
J;i(x",y)>2d(x',x")§gglqav(x”y) - ‘PV(X"J)P duly) s C (4.2)
JxloSx T du(y) s € (4.3)

for all x ¢ Xand v > 0. We define the operator @, by

O.f(x) = [y ex ) (¥)duly) (4.4)

and observe that @, satisfies (C.Y) and (C;) from (4.1) and (4.2), respectively.

Theorem 4.1: Let {®,} ., be a family of operators given by (4.4) which satisfy (4.1) - (4.3)
for a fixed vy 2 1. If ®°f is the maximal operator given by

O°f(x) = sup,.o |0, Flx)
we have, for1/p-1/q =1 -1/y andy < r,q s ®,
() |@F e s Clflle and  Gi) [{OF); leg s € I{£}; Ilz_lp,~l
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Proof: Step 1.Let Q. be the set of positive rational numbers increasingly ordered. We have
OF(x) = sup,. q,|®,f(x). Also, if we set Q,, = Q, n [0,v,], we see that

05 f(x) = Sup e @, |0y f(x)| increases to ©f(x) as n—> o.

Next, let us denote by /;°= 1°(Q,,) the set of all n-tuples (a,, w1, )€ R”. Wecan look at
®.f as an /;°-valued operator. In fact, if we set T,,f =(0"1f’ ...,d)vnf)we have ||7;,f||1’<7p =Q,f,
and consequently ”7;,!'”1_00(130) < C{||f |y, where 1/y + 1/y" = 1.

Step 2. Let us consider the kernel
Kp: € =177 defined by K, (x,y)A = (cp\,l(x,y))\, . cp\,n(x,y))\).

We see that K, € L(C,1°) is locally integrable and satisfies (CY) and (C;) with a = 2. More-
over we have

T,f(x) =fx K. (x,y)f(y)du(y).

Therefore, all the hypotheses of Theorem 3.1 are satisfied and consequently, T, is a bounded
operator from LP(X, R) into LY X, 1), i.e. [©5f1lLa < C[If|lp for p,q € R satisfying 1/p - 1/q
=1-1/y and vy < g s ®. Now an application of the monotone convergence theorem yields the
desired inequality (i). The sequential inequality (ii) follows from Corollary 1 of Theorem 3.1 %

S. A maximal inequality of Hardy -Littlewood type

In this section we will derive fractionary maximal inequalities of Hardy-Littlewood and Fef-
ferman-Stein type, but also a version of an I[P-19 inequality for a function of Marcinkiewicz

type J. ..

Proposition 5.1: Let (X, d,u) be a p-normal homogeneous space, ¢ a C*-function on [0, )
such that 0 s (t) s1,9(t)=1for0s t<1/2 and p(¢t) =0 for t > 1, and let,

e lx,y) = p(v)‘/Tq;(v"d(x,y)), 1sy<w, for0 <v<oo,

Then there is a positive constant C such that

fxlcp\,(x,y)l”’du(y) sC
for all x e X. Moreover, if d(y,x”) >2d(x",x"), then

Al x )
d(y, x ) u(B(x", d( y,x "))/ ¥

fou(x,5) - e (x"¥) s C
for some a withQ < o < 1.
Proof: Step 1. Since ¢ (x,y) = 0 if d(x, y) > v, we have

SxleuGeaI¥duly) = [ . loux I du(y)

= Jaceren N (ZEE ) Yau ) 5 Col) [y i) =
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Step 2. There is a constant C such that the quasi-distance d satisfies [d(x"y) - d(x"y)| s
Cv!~%d(x"x" ¥ for some a, 0 < & < 1,whenever max(d(x",y), d(x",y)) < v (see R.A. Macias

and C. Segovia [11: Theorem 2]). Hence

|¢>V(X',y)'¢v(X",y)| :o(v),/.rhp(d(,i',y))_q?(d(x;,y))| < CQ(V)t/YV_‘Id(X',y)"d(X",y)I
d(x, x"f*
d(x”, y)*u(B(x", y )Y

On the other hand, if min(d(x’,¥). d(x",y)) > v, then | (x",¥)- @, (x", )| = 0. If, say,d(x",y) >
2kvand d(x”,y) s v, then

s ColvP v td(x,x"* s C

d(x",y) s k(d(x,x")+d(x",y)) s k(d(x",x") +v) and dx,x”) 2 k™'d(x"\y)-v>v

and thus

dlx'x P dlx'x P
lou(x,5) - 2u(x", ¥)| =y (x" 5] s oV} xv: s d(x",y)“u(;(xk", d(x", y)VY *

This complete the proof Bl

Corollary: Let ¢ be given as in Proposition 5.1. Then the family {¢ },., satisfies the ine-
qualities (4.1)-(4.3).

Theorem 5.2: For fe L1, (X,R)and 0 < ¢ < 1, let M, f be the fractionary maximal operator
given by

M, f(x) = sup. “(—;): fB LF(y)du(y).
Then, if1/p-1/q =1 - ¢ and 1/ < ¢ s ®, we have
IMfla s CllE e - (5.1)
Moreovér, for r satisfying v < r s ® we have
et = clloher s
Proof: Let ¢ be a C™-function as in Proposition 5.1. Then
VP X g (¥ = VP Vx4 49(v (X, y)) S @u(x,y)
where ¥ is also given as in Proposition 5.1. Since 0 < C < o(v)u( B(x,v)), we have
M, F(x)s Csup [o(x If (ylduly)
with ¢ = 1/y. Now, we see that (5.1) follows at once from (4.5). From (4.6) we obtain (5.2)

Corollary: Let X be a normalized homogeneous space, {Bj}ch a sequence of disjoint balls
in X with Bj centerd at x;, and

a function of Marcinkiewicz type, where 0 < € s 1 and 1/¢ < r s ®. Then there exists a finite
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constant C such that

e llca < (2 w(B)2) P with 1/p -1/ =1 - .

sjmry
Proof: We have
MsXBj(X) > u(B)":foBj(y)du(y) for some ball B = B(x,R),
with R =2kd(x,xj), where K is the constant of homogeneity of X. Therefore,
Moxg,(x) 2 Cu(B)/(dlx, x,)° + (8, ) |

since B; C'Band X is a normalized homogeneous space. The result now follows from Theorem
5.2, taking £ =xBj,jeNl )

We remark that, if we take the normalized homogeneous space (R™, d,u), where d(x,y) =
[x - ™ and y is the Lebesgue measure, we have for ¢ = 1 - Y/n a result due to H. P. Heinig and
R. Johnson (see [7]) for a Marcinkiewicz-type function.

6. A theorem of Littlewood-Paley type

Taking s, =r, = 2 and v = 1 in Theorem 3.1 we obtain the following result of Littlewood-Paley

type.

Theorem 6.1: Let X be a p-normal homogeneous space and {ij }jgz a sequence of functi-
ons on X x X such that

it 7 dux) = [yt d ) = 0
[4(x,¥)| s (277) and §;(x,y) = 0 whenever d(x,y) 2 2
[4:(x,57) - 46,37 s o279) 27y, y )%, > 0
40x, 1) - 4tx" )] s e27)(2 d(xx)®, B > 0,

and let us set

G(x) - fX q)j(x,y)f(y)dll(.y) and g(f)(x) = (glf}(,\’)lz)l/?

Then, for all p with1 < p < ©, we have

el e s Clifllp, feLAXR).

Proof: Step 1. For each positive integer N, let us consider the mapping
BNF): X = 1%2) given by ZFXX) = {£()xn ).z

where yp;is the characteristic function of [~N, N]. Then

lamroole = (= I



Singular Integral Operators

On the other hand, let us consider the kernel
Kpn given by Kp(x, y)x = {tbj(x,y)xN(j)l}jEZ.

We have Kpy e I(C,/2) ~ I and

{[xe b DA A3} = [ it ) andi duly)-= [x Kndx ) (7) dul ).

Moreover, if A is a compact subset of X x X, we also have
N s /2
JT Al KN P o, g2y @l 3) s u@UANZ Y lo2)?) 77,

ie., KneLioo(XxX, L(C,1%)).
Step 2. In [1: pp. 119-120] it was proved that the operator

F>3 0 N = NIt () duly)

is bounded in LA X). Hence

N
ol m = [ Zgl61)

LZ

N
= [ tiGenirtlduty)
=

<
L2

sC|f| 2.
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Step 3. From Step 1 and Step e we see that gnyis a singular integral with an operator-va-
lued kernel Kp;. To see that gy maps LP(X,R) into L%(X,12),1 < p < ©, we have only to check

the conditions (C,) and (C’,) for the kernel K. But from [1: p. 125} we have

fd(x, Y )r2kd(y,y™) |4*j(x,}") - ¢j(x:y")l du(x) ¢ Cmin {(2—jd(y”y”))a'(2_jd( }",,V"))""}

fd(x',y)>2kd(x',x") |$;(x",5) - di(x", ¥)| dul y) s Cmin{(2'jd(x',x"))‘3, (2'jd(x’,x"))'a}

where k is the constant of homogeneity of X. Consequently we have

fd(x,Y’)>zkd(y’,y")”KN(x~‘") - KN(X’«V")”L(C,F)"“(X)

- S 14y - 0y ) a0
_fd(x,y'»zkd(y’.y”)(gl% »Y dixy | ) .

N
=3 fd(x'y’»zkd(y,'y”)le(x,y ) - §(x, )| du(x)

N . R
< C min {(zvd(y',y"))“.(2'Jd(y',y"))"°‘} sC
Ja-

with C independent of N and d(x’,x”), i.e., Ky satisfies (C,). Analogously, we see that Ky,

is subject to (C,).

Step 4. From Theorem 3.1, with s, =r, =2, a=2kand v = 1, we get

. N
12 pexe. 12y = H,Z If; |2)v2

The monotone convergence theorem yields now the desired result B

sC|f|lp-

1P
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Finally, we observe that Theorem 6.1 generalizes slightly Theorem 5.2.1 of J. Aguirre [1],
but the proof given is based on the theory of sungular integral operators with operator-valued
kernels.
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