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We give a generalized form of the Hormander-Schwartz-Triebel theorem for singular integral 
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1. Introduction 

In the classical paper [8], L. I-Iormander considers singular integral operators of potential type, 
i.e., operators which map LP into L9, with a kernel K satisfying 

I JIK(x - y) - K(x)I"dxj	15 c, 
\IxI'zIyI 

where I/p - 1/q = ui (actually Hörmanders condition is slightly more general). The well-known 
potential operator of order -y is a particular case of these operators. Afterwards, J. Schwartz 
[is] and H. Triebel [16] obtained vectorial versions of Hormanders theorem by considering 
operator-valued kernels. Before Triebel's work, Benedek, Caldern and Panzone [2] had also 
considered operator-valued kernels, but in the case p = q and y = 1. 

Motivated by the elegant treatment of the Benedek- Calderón- Panzone theorem given by 
Rubio de Francia, Ruiz and Torrea [12],we shall present here an up-dated and generalized 
version of the Hörmander- Schwartz-Triebel theorem. We shall work with variable kernels 
and in the framework of the spaces of homogeneous type. 

In Section 2,we give some preliminary definitions and a version for spaces of homogeneo-
us type of an inequality of C. Fefferman and E. Stein, proved by R. Macias (see [101). As a 
consequence we are able to state an interpolation theorem of Marc inkiewicz-Riviere type in 
this framework. In Section 3,we prove a generalized form of the Hormander- Schwartz-Triebel 
theorem (see [8, 15,16]) for singular integral operators of potential type as well as a sequential 
version. Section 4 is devoted mainly to obtain norm inequalities for fractionary maximal ope-
rators ( of F. Zo's type) in spaces of homogeneous type. The fractionary maximal inequalities 
of Hardy- Littlewood and Fefferman-Stein type are derived in Section 5. In this section, we 
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also give an application of the sequential inequality of Fefferman and Stein, to obtain a version 
of an inequality for a function of Marcinkiewicz type 4 1(x) (see [ 7 1), in normalized 
homogeneous spaces. Finally in Section 6 we state a theorem of Littlewood -Paley type. 

2. PrelinhlnAly definitions and results 

In this section we give some definitions and a version for spaces of homogeneous type of an 
inequality of C. Fefferman and E. Stein. 

Definition 2.1: Let Xbe an arbitrary set. A map d: X xX - R is called quasi-distance 
provided

(i) d(x,y) a 0 and d(x,y)= 0 if and only if x = y 
(ii) d(x,y) = d(y,x) 

(iii) d(x,y) s k(d(x,z) + d(z,y)) for some constant k a 1, independent of x,y and z. 

A quasi-distance d: X x X- R defines a uniform structure on X. The balls B(x, r) = {y € X: 
d(x,y) < r}, r> 0, form a basis of neighbourhoods of x € X for the topology induced by the uni-
formity on X. This topology referred to as the d- topology of X is a metric one since the uni-
form structure associated to d has a countable basis. 

Definition 2.2: Let Xbe a set endowed with a quasi-distance d and with a positive mea-
sure I' defined on a o-algebra of subsets of Xwhich contains the d-open subsets and all balls 
B(x,r). The triple (X, d, i) is said a space of homogeneous type, or short a homogeneous space, 
if there exist two finite constants, a >1 and A >0, such that 

0 < ii(B(x,ar)) :5 A ii( B (x, r)) < 

holds for all x € Xand r € R,. 

Definition 2.3: A space of homogeneous type Xwill be called p-normal if there is a posi-
tive continuous function p on R, and positive constants A 1 and A2 such that 

A1 s p(r)t(B(x,r)) S A2


holds for all x € Xand r€ R_ 

In particular if we take p(r) r, we obtain the so-called normalized homogeneous space 
(see, e.g., [ 4 , 5 ]) . For examples of spaces of homogeneous type we refer to [4]. 

Let Xbe a space of homogeneous type and G  Banach space. We shall use the following 
notations in this paper: 

L = L(X,G), for the space of C-valued p- integrable functions on X 
L° = L°(X, C), for the space of C-valued strongly measurable functions on X 

L' ,C = L'(X, C), for the space of C-valued bounded functions with compact support on X. 

In any case, when C = R we shall drop the index C. The capital letters E and F always indicate 
Banach spaces.
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Definition 2.4: If f E L OC(X, E), the Hardy -Littlewood maximal function or simply the 
maximal functon of I is defined at x E X by setting 

MEf(x) = SuPfBIIf(Y)IIEdl1(Y), 

where the supremum is taken over all balls B containing x. 

The following result, due to A.P. Calderdn, can be found in [3]. 

Theorem 2.1: Let fsL°(X,E) with I < p s co. Then ME  is finite a. e., ME fELP(X,R) and 
(i) I I ME f IlLf s cli! 'L 

(ii) llf(x)IIE :5 Mf(x) for a.a.x € X. 

Definition 2.5: If Is L 1 (X, E), the sharp maximal function MEFF, 1 :5 r < co, is defined at 
x  Xby setting 

M;rf(x) = suP(—Sllf(Y) -fBlld(Y))
Ir 

where the supremum is taken over all the open balls B containing x, and f8 denotes the mean 
value of I on the ball B. 

Definition 2.6: Let f€ L1(X, E). We say that f€ BMOr(X, E) = BMO, If MZ f€ LEO, i.e., 
if I f I BMO F = II M .rf IIL00 <. 

As in the case E = R, we have BMO = BMO with norm equivalence. We shall use this 
fact in the proof of our main result. We shall write Mg instead ofM 1 and BMOE instead 
of BMO. 

The following result, due to R. Macias (see [101), is a version for spaces of homogeneous 
type of an inequality of C. Fefferman and E. Stein. 

Theorem 2.2: Let q0 e R be given such that I <q(, s co. If g E L'7°(X, E), then for all q a 

we have

IMigIIq if (X) = to  

IIMEgIIg I 

C 

	
<to IIMgIIq+ IIgIIL

	

	
(2.1)
if  

where the constant is independent of g. 

Actually, Theorems 2.1 and 2.2 are established for scalar-valued functions, but the proofs 
in the vectorial case follow in the same lines. 

As a consequence of the inequalities (2.1) a Marc inkiewicz-Rivire interpolation theorem 
in spaces of homogeneous type can be established. 

Theorem 2.3: Let X be a space of homogeneous type, let E and F be Banach spaces and 
T: L(X, E) --> L°(X, F) a sublinear operator such that, for some p0 , q0 , r € R with I S p0 :^ r :r Co 

and I <q0 < co, we have 

(i) 11 Tf 11LFq0 :' C0f IIL.°	(ii) 11 Tf IIBMOp.	C1 11 f 11Er 

um
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for all f  L'(X, E). Then T has a bounded extension from L(X, E) into LkX,F), where I/p = 

(1- &)/p0 +/r and 11q=(I - )/q0 , 0 & <1. Moreover, il'1/p0 -1/q0 = 11r, we also have I/p - 
1/q = 1/r. 

Proof: Let us consider the sublinear operator M ° Tand FE L(X, E). Since q0 > 1, by the 
maximal Theorem 2.1 and (i) we get

:52Tf IIj o :1 CIIfIILPo 

and the definition of BMOE yields at once that 

11M0TfIL=	CIIfII. 

Having both these inequalities at hand, the Marcinkiewicz interpolation theorem assures that 
MZ ° T is bounded from L(X, E) into L(X, R), where I/p = (1 - )/p0 + /r and 11q (1 - 
0 < < 1. Now, if (1(X) = co, by (2.1) we have for ft L(X, E) 

IT! flq,> M0Tfflq 5 C II MP O Tf JI Lq :5 CIIfIIL. 

On the other hand, if 1i(X) <a> , by (2.1) and applying Holder's inequality twice, we obtain 

11 T IIq. c1(IIM ° TI IILq + TI IIL,) 

c1(c' U I IIL + (1(x)1'c lIT! 11 L5) 

c(c' IV IIL + C(X)t/'q 
'If DLp) 

c1(c' II" llL + 	IV IIL)' 

since p >p0 . The density of L°(X, E) in L(X, E), I <p < a>, leads finally to the desired result 

3. Singular Integral operators 

Let E and F be Banach spaces and let X be a space of homogeneous type, endowed with a 
quasi-distance d and a measure V. In this section we shall deal with operators T on L'(X, E) 
which have a representation of the type 

TI (x) = f K (x , y )I ( y ) d ii(y) for x suppf	 (3.1) 

with a kernel K e L 0 (X x X\&L(E,F) where A stands for the diagonal set in XxX. 

Definition 3.1: We say that the kernel K € LOC(X x X \ , L(E,F)) satisfies condition (ct), 
1 ^ -y < co , if for all yE Xand fixed x0 € Xwe have 

S	II(X,y) - K(x,xo ) I[EF) dI( x ) :5 C, a> 1.	 (3.2) 
d(x,x0)>ad(y,x0) 

We say that this kernel satisfies condition (C.;.) if K'(x,y) K(y,x) satisfies (C). 

Theorem 3.1: Let the operator Tbegiven as in (3.1) and let there are numbers y,r0,s0 
satisfying l:^y< co, l<r0 :^co and l/rO -1/s0 =I/-T--I,such that
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II Tf IIL	C II ! IIL° E

	 (3.3) 

(i) If the kernel K e L 0 (X x  \A, L(E, F)) satisfies condition (C1), then the operator T 
of (3.1) is of weak type (1,i), i.e., 

z({x: IITf(x)IIF > t}) !^ CtYllfll ii	IIL 

(ii) If the kernel Ke L 00(XxX\&L(E,F)) satisfies condition (Ci), then- the operator T 
of (3.1) is of type (L,BMOF), i.e., 

11 T IIBMOF :5 C 11 f IIL' 

	

where 1/1 +	= 1. Moreover, after an extension, Tis of strong type (p, q)., i.e., 

II Tf IIL. , CIIfIIL, 

where

I
11<p^so and <qr0 ifK satisfies (C1) 

I/p - 1/q = I - 11i with s0 < p :^ -' and r0 < q <co if K satisfies (C4). 

Proof: Step 1. Let f € L°(X E) and A a positive constant such that we shall make more 
precise later (if V(X) < , we restrict A to be greater than II! 4/ij(X)t'). Then there are a 
function ge Ln L', a sequence {b} C L'(X,E) and balls B(x,R) such that 

f = g + 

with

	

^ CA for a.a. x € X, II g IIL ^ C fif IIL
	

(3.4) 

	

suppb C B(x,R) and fbj(x)dii(x) = 0 for all j,	J'IkiIIL S Cfiffi. 

The proofs of these properties follow the same lines as in the scalar case (see [51). 
Step 2. If the kernel K satisfies (C1), then the operator Tis of weak type (i,y). In fact, 

given f€ L(X, E)we shall control the measure of the set {x E X: II Tf(x)IIF > t}. Observe that 
in the case a(X) <	it is enough to consider t >	IIL /(X) T Since 

€ X: IITf(x)IIF > t)) 15 i.&({x E X: IITg(x)II > t12}) + i({x € X: 11Tb(x)IIF > t12}), 

it is enough to estimate the two terms on the right-hand side of the above inequality. By (3.4) 
it follows that IIgIIL	A' ^ C" 0 IVII 0 . Thus by (3.3) we obtain 

({x tX: IITg(x)II > t12}) :5
r0 

S Ct_roAro_hIIf 
"Li 

Now, let Bj = B(x,R) be the balls of the CaIdern-Zygmund decomposition of f g + b, 
where b 

= , 
b,, and let . = B(x,2aR), where a is the constant of Definition 3.1. First, we 

observe that 

(JC II Tbx )II d ( x )) ' :5 C 11 IIL'	 (3.5) 

In fact, for each  we have Tbj(x) f.K(x,y)bj(y)dii(y) and hence, taking into account that
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fb(y)dii(y) = 0, we get 

Tb(x) =fB(K(x,y)-K(x,xj))bJ(y)dL(y). 

It follows by Minkowski's inequality and Fubini's theorem that

i/.y 

(J	Tb,(x)di(x))	II(X,y) - K(x,	ILE,F)Ikj(Y)Ii dL(x)) F	j,

Now, since x E(.I.)C and y € B, we have d(x,x) > ad(y,x), and by condition (3.2) it results 

that

(fc II T1 i (x) II d(x))	:5 CJ' IIj ( Y) IIE dx(y). 

Then

fuj j)c 11 n(x)fl dg(x) --q C	 Th(x)IIdi(x) , C f()c II Tb(x)Il d1i(x) j)c

	

^ c(f II bj(Y) IIE d(Y)) 'l c(II	IL) 15 CIIfI1i 

and (3.5) follows. 
Now, we are in conditions to obtain 

X: II Th(x) II F >t/2)) I (u) +2Tf	 tTIITh(x)IIdL(x) {x(u j): It Th( x )IIF >t'2} 

CI X1 II f IILI + C2t'IfIIi, 

where the first term of the last inequality is a consequence of the Caldern-Zygmund decom-
position theorem associated with X. Thus by (3.5) we get 

II Tf(x)	> t}) 5 c(x1 h f JILI + t -T Of O	+ - Xro/Yi 11for). 

	

Choosing A> 0 so that X = t T hhfhh 1(observe that when i(X) <	such A always exists be-




cause in this case it is enough to consider t > f fl /v(X) IT) we obtain 

€ X: II Tf(x) IfF > t}) 
!^ 

Ct T hhf O 

which proves (i) when i * . 
In the case ro = = we proceed as in the previous case. We have 

Tg hhL	c(fflg( y)hh dIj(y))150 = c(J'hhg(y)hh' hls( Y)hhE dii(y))1'so 

By (3.4) it follows that 

hITghI' '	 = CA1"T hIfhh7.	 (3.6) 
L4E  

Thus

€ X: 11 Tf(x)IIF> 2 C A1'1 II f hb	i) 
1/	\ 15€ X: Tg(x)h	> C X" hh hi	 hI j) +	€ X: Th(x)hhF > C x'	

L i)
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=([X E X: II Tb(x) IIF > C	IIL	I) 

^ C1 X 1 ffli +	 = CX1 II u IIL. = c3(cx 'IIf II	/ II1IILh 

which proves (i) when i = 

Step 3. Let x0 E Xbe fixed and consider the balls B = B(x0 ,R) and B = B(x0 ,2aRi Let f 
+ B where =	 ( and = f- . We shall prove that Tis of type L ,BMOr). We have TI = 

Tk + TV and consequently 

J' fl Tf(x) - aBII; dLcx) ^ SB II T(x) II dt(x) J'BII T(x) - aB IId(x). 

Since Tis bounded from Ls0 into L'o , we obtain 

	

(fB T'(x)II? dl1(x))1T0	
(B) 

C
% 

(SB II(x)II dI1(x))1 

Applying HOlder inequality, it results that the last term of the above inequality is majorized by 

c(J'8	 t/-y- 1/lb 

Since, by hypothesis, 1/ - 11is = 1/y, it follows that 

	

!'
	

(3.7) 

Now, choosing aB = fx K ( 0 ,Y)(Y) du i1(Y), we have 

T(x) - a = J()C(K (Y) - K(x0,y))(y)dt(y) 

and hence, by Holder inequality, we obtain 

(fBIITx) - aBIIFd1(x)) 

(B)1+lb
ffB[(f^ b)-II K(x,y)-K(x., y)IIY(EF) d ii( y 

(So (y)II d(Y))r0	di(x 
)}1/rO 

Now, since y € ()Cand x i supp V, it follows that d(x,x0 ) > a d(y,x0 ). Then by condition (C.;) 
we have

\ 

(fB II T(x) - aBIIF 
r0 

di(x))
1/r0 

^ C 

From (3.6) and (3.7) it results that 

	

(fBII Ts(x) - aBlIF di(x))	:5 CIIfIIL, 

i.e., Tis of type (LE ,BMOF°). Taking into account that BMO= BMOF, we obtain (ii). 
The remainder of the theorem follows by the Marcinkiewicz interpolation theorem (C,. - 

case) and Theorem 2.3 (C.; - case) I
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Remark: If we take X = IR", d(x,y) = Ix y11, i the Lebesgue measure and K(x,y) = K(y,x), 
from Theorem 3.1 we obtain a generalization of Triebel's theorem (see [41). The hypothesis of 
reflexivity on the Banach spaces assumed by Triebel is unnecessary. In particular Theorem 3.1 
can be applied to singular integral operators induced by kernels of type K(x,y) Ix -y I ' '', 13 
> 0, i.e., the so-called singular integral operators of potential type. 

Corollary 1: Under the hypotheses of Theorem 3.1 we have 

H( 11 T r	II 

J	3 IF)	IlL'?	c V(	u IIE1	IILP	 (3.8) 

for

l/p-1/q=1-1/y, with 
{1 <p^s0 and -y<q,rsr0 ifK satisfies (C1) 

s0 <p :5 y' and r0 < q, r <	jfK satisfies (C.). 

Proof: We shall apply Theorem 3.1 twice. We have that T is bounded from Ls(X,E) into 
Lr(X, F) for rand s such that

Iso 

<S s s and y < r< r0 ifKsatisfies 1/s - l/t = I - iii with	
< s <	and r0 <r < oo if K satisfies (Ci). 

Let us consider the operator ?on L(X,lT(E)) given by T{ f} = {T}, and the kernel k(x,y) 
given by (x,y){X} 1K(x,y)X}. Since 

II I(x,y) flL(l r(E),j zp)) ' 

we see that R satisfies (C 1) and (C . .) whenever K satisfies (C 1) and (C.), respectively. Mo- 
reover,

= j'R(x,y){f(y)} di(y). 

By considering the counting measure v in N, Fubini's theorem first and then Theorem 3.1 
yields that 

I T{l'i } OL[r(F) = R T }j IIL[r(F) = H{II T II L .}J 01' ^ C D{II I IILs }j 0r	 (3.9) 

Since 1/s - lit = 1 - 1/y > 0, we have r > s or ris > 1. Hence Minkowski's inequality assures that 

\r/s \ 1/r \s/r \1/s 
DflVllL= }jDLr = (fN(XIII 

d) dv)	(SX(fNIIII dv) dIl) 

From (3.9) we get j T{ fJ }
DL F S ClI{fj}DLSr( , and hence is bounded from Ls(X, J T(E)) into jr(

Lr(X, J r(F)) Consequently, we are in the conditions of Theorem 3.1 with E and F replaced by 
ME) and l'(F), respectively. Hence, the assertion follows U 

Corollary 2: Let { T) be a sequence of singular integral operators, induced by a sequence 
of kernels {K} uniformly bounded from L 5°(X, E) into L"o(X, F) for some s0 , r0 E IR such that 

- 1r0 = 1 - li', 1 :5 'y < . Suppose further that the sequence {K} of associated kernels 
satisfies 

fd(x, x.,,)2d(y,x0) sup II K(x , y) - Kj(x,xo ) II EF) d Il( x ) s C	 (3.10)
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fd(y,yo)2d(,c,yo) 
sup II KJ(x,y) - KJ( yO ,y) IIfE F) 

di(y) :5 C.	 (3.11) 

Then we have 

I	

r \t/r 
K	IITf 

r\j/rlI 
j	J J IF)	II.q	C 11(	ii lIE)	IILP 

for

1/p-1/q 1-1/, with	I < p ^ s and •y < q,r S to ifK satisfies (3.10) I 
s <p :5 y and r0 < q, r < co if K satisfies (3.11). 

Proof: Firstly, we observe that the operators l are uniformly bounded from L5(X, E) into 
Lr(x, F) with s and r given in Corollary 1. Let us consider the operator Tcm L'(X, l'(E)) given 
by T{4} = {ii} and the kernel Ks L(l'(E), J r(F)) given by K(x,y){b} = {K(x,y)b}. Since 

lIK(X,y)Ui..lr(E),F)) = supj llKj(x'y)I< 

we see that the kernel K satisfies (C 1.) and (C.,) with a = 2. Moreover, 

T{}(x) = f , K(x,y)(I)(y)di(y), x e suppf,. 

Arguing as in Corollary 1, we have T{fj } ILrI.( F) !' CI{fJ}ILsf(E),that is, Tis bounded from the 

space Ls(X, J r(E)) into Lr(X, r(F)). Thus, Theorem 3.1 applies giving the desired result U 

Some related results, for X= R', can be found in F.J. Ruiz and J.L.Torrea [14]. 

4. Maximal operators of F. V 's type 

Let	be a family of scalar-valued functions on X  Xwhich satisfies for some y e R, 1 
< oo , the conditions 

J'd(X	2d(y.,y) 
supIp(x,y) - p.,(x,y)Tds(x)	C	 (4.1) 

	

- p(xy)IT0i(y) C	 (4.2) 

!9 C	 (4.3) 

for all x  Xand v > 0. We define the operator	by 

cIf(x) = J'x,y )1y ) 1t( y )	 (4.4)


and observe that cp satisfies (C.) and (C.) from (4.1) and (4.2), respectively. 

Theorem 4.1: Let	be a family of operators given by (4.4) which satisfy (4.1)(4.3)

for a fixed y ;t 1. If f is the maximal operator given by 

D"f(x) = sup>oIcI,.,f(x)I 

we have, for l/p-1/q1-1/y and y<r,q--qco, 

(I) II" IIL.q :1 Cl If J j Lp	and	(ii) II{ G } IlL.	C	lIL.
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Proof: Step 1. Let Q. be the set of positive rational numbers increasingly ordered. We have 
D'f(x)	Q ND.,f(x)I. Also, if we set Q. = Q.,. n 10, 's,,], we see that 

Gf(x) 
= Sup VCQ PcIf(x)J increases to If (x) as n - co. 

Next, let us denote by I,,° l(Q) the set of all n -tuples (a ......a.) E R'. We can look at 
Df as an In'-valued operator. In fact, if we set T,f = (bf .... .Df)we have II1H1 
and consequently lI1f II LcflS( J os) I C 11 IIr, where l/y + 1/y' = 1. 

Step 2. Let us consider the kernel 

K: C -+l	defined by K(x,y)X = (cp(x,y)X. ... .cp(x,y)X). 

We see that K € L(C,l 0 ) is locally integrable and satisfies (C.) and (C) with a = 2. More- 
over we have 

111(x) =f, K(x,y)f(y)d1j(y). 

Therefore, all the hypotheses of Theorem 3.1 are satisfied and consequently, 7, is a bounded 
operator from L(X, l) into L(X, l°), i.e. I1If1Ig ^ C 11 HLP for p, q e R satisfying 11p - l/q 

1 - l/y and y < qco. Now an application of the monotone convergence theorem yields the 
desired inequality (i). The sequential inequality (ii) follows from Corollary 1 of Theorem 3.11 

S. A maximal Inequality of Hardy -Littlewood type 

In this section we will derive fractionary maximal inequalities of Hardy -Littlewood and Fef -
ferman-Stein type, but also a version of an LP_Lq inequality for a function of Marcinkiewicz 
type rc 

Proposition 5.1: Let (X, d,ti) be a p-normal homogeneous space, T a C-function on [0,) 
such that oscp(t):^1,cp(t)=l for O5t-1 1/2 and p(t) = 0 for t>1 and let 

cp(x,y) p()"p(v'd(x,y)), I :5 - <, for  < v 
Then there is a positive constant C such that 

fIp(x,y)ITdj(y) s C 

for all x€ X. Moreover, if d(y,x) >2 d(x,x), then 

' - p (x,y)I s C	d(x,x
d(y,X)L(B(Xd(y,x)))1/T 

for some of with 0 < a <1. 

Proof: Step 1. Since cp(x,y) = 0 if d(x,y) > v, we have 

fxI(x,y)1_'d1(y) = JJ(xy)lPJ(X,Y)ITdt(y) 

= fd(X, y)av v)Jp(_d(x,y) 
)Vd y) _-5 Cv)fd(X y)a d( y) = C.
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Step 2. There is a constant C such that the quasi-distance d satisfies d (x ', y) - d(xy)I :5 

Cv 1 d(x,x")+ for some c, 0 < a < 1,whenever max(d(x',y), d(xy)) < v (see R.A. Macias 

and C. Segovia [11: Theorem 2 ]) . Hence

(d(xY)) 
15 Cv)"vId(X,y) - d(x',y)I 

Cp	ld(x,x)x C	d(x',x' 

On the other hand, if min(d(x,y), d(x',y)) > v, then I p (x', y) p (x,y)I = 0. If, say, d(x',y)> 

2kv and d(x",y) s v, then 

d(x',y) :5 k(d(x',x)+ d(x",y)) k(d(xx") + v) and d(xx") a k 1 d(xy) - v> v 

and thus
/ d(x+, x")a __________________ 

p(x,y)-q(x , y)I I p (x , y )I S (v)	 ^ d(x",y)(B(x+,d(x+y))) 

This complete the proof I 

Corollary: Let cp be given as in Proposition 5.1. Then the family {q} >0 satisfies the ine-
qualities (4.1)-(4.3). 

Theorem 5.2: For 1€ L 0 (X,F) and 0 < E :^ 1, let /4! be the fractionary maximal operator 
given by 

!4f(x) = su—-)jBIf(y)ldL(y). 

Then, if 1/p - 11q = I - and lIE < q	, we have 

I Cfp.	 (5.1) 
Moreover, for r satisfying y < r 15 aD we have 

O{Mc i}HL7r CI{f:,}ILpr.	 (5.2) 

Proof: Let p be a C m-function as in Proposition S.I. Then 

p(v)'/YXB(XV)(y) 
=	X[o 1j (v 1 d(x, y)) q(x,y) 

where y is also given as in Proposition 5.1. Since 0 < C < p(v)i(B(x,v)), we have 

14f(x) :5 C supJ'p(x,y)lf(y)I di(y) 
with s = l/y. Now, we see that (5.1) follows at once from (4.5). From (4.6) we obtain (5.2)1 

Corollary: Let X be a normalized homogeneous space, {BJ }JC N a sequence of disjoint balls 
in Xwith Bj centerd at xj , and

r 
4,(x) =((d(X,,)t'+)s)) 

a function of Marcinkiewicz type, where 0 < E s I and lIE < r :5 . Then there exists a finite
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constant C such that 

Ir,EIIL9 I 

Proof: We have 

M xB.(x) a (4B)fB x B (y)dtj(y) for some ball B = B(x,R), 

with R = 2kd(x,x), where k is the constant of homogeneity of X. Therefore, 

MEXE.(x) ^ Cx(B)/(d(x,x)t + 

since B C B and X is a normalized homogeneous space. The result now follows from Theorem 
5.2, taking f	NI 

We remark that, if we take the normalized homogeneous space d,1i), where d(x,y) = 
Ix - yV' and i is the Lebesgue measure, we have for s = I - yin a result due to H. P. Heinig and 
R. Johnson (see [71) for a Marcinkiewicz- type function. 

6. A theorem of Littlewood-Paley type 

Taking s, = r0 = 2 and y = 1 in Theorem 3.1 we obtain the following result of Littlewood- Paley 
type.

Theorem 6.1: Let X be a p-normal homogeneous space and I4, }-z  a sequence of functi-
ons on XxXsuch that 

4)j(x,y)dx(x) j j (x,y)d t(y) = 0 

I4(x, y)I :5 p(2 j ) and 4(x,y) = 0 whenever d(x,y) ^ 2' 

4j(x, y' ) - j(x,y")J :5 2i)(2id(y',y")),a > o 

%(x', Y) -	^ p( 2 ) (2id(x c x ')),0 > 0, 

and let us set

\ 1/2 t(x) = fxj(x, y)t ( y)4(y) and g(f)(x) = (Ix)I2) % 
Then, for all  with I <p < , we have 

I1gf)11p , C II f IILp, f€L"(X,R). 

Proof: Step 1. For each positive integer N, let us consider the mapping 

p(f): X- 1 2(Z) given by p,j(fXx) = 

where XNis the characteristic function of -N, N1. Then 

	

N	 1/2 

= ('=. N 
If(x)l2)
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On the other hand, let us consider the kernel 

KN given by Kx,y)X {j(x,y)xjv(j)x}1. 

We have KNE VC, 12) 12 and 

fJ'	x, y) XN(J )f( y) di( y)} = f ((x, y) XN( j )} d1i( y) fx K(x,y)f(y) dt(y).


Moreover, if A is a compact subset of X  X, we also have 

J'SAIIKrx,y)IILcIz di®i(x,y) 15	 A)(jNI9(2j)2Y2, 

i.e., KNE L0(XxX,L(C,12)). 
Step 2. In [1: pp. 119-1201 it was proved that the operator 

is bounded in L2(X). Hence

N /21 If \11	
N 

12)	L	,y)If(y)I dli(y) D z Cfl! 11 2li f)Vcx,l 2) = 

Step 3. From Step I and Step e we see that gN is a singular integral with an operator-va-
lued kernel KN. To see that g.J maps L"(X,R) into L'°(X,1 2 ), I < p < - ,we have only to check 
the conditions (C) and (C' 1 ) for the kernel KN. But from [I: p. 125] we have 

fd(x.,/)>2kd(ycy) I4ij(x,/) - i j(x,y") dt(x) 2^ Cmin{(2id(y',y)),(2id(y',y"))} 

fd( x ', y) >2kd ( xx")I4)J( x', y ) -	x",y)Idi(y) s Cmin{(2id(x',x")),(2id(x',x"))} 

where k is the constant of homogeneity of X. Consequently we have 

fd(x,Yskd(Yy'.)VKN(x,Y) - KN(x,y")IL(cJ2)dL(x) 

	

1N	 i/2 

- Jd(X,y")>skd(yc y')
- 4JJ(x,y)I 2)	di(x) 

21 JJ'd(X,jf)>2kd(y,y)	
- 4(x,y")I dt(x) 

C	mm ((2id(yy")),(2id(ycy))) s c 
J. 

with C independent of N and d(x',x"), i.e., KN satisfies (C). Analogously, we see that KN 
is subject to (C;). 

Step 4. From Theorem 3.1, with s0 =	2, a 2k and y = 1, we get 

N 
H	

2\1'2hI 
r','')DLPx, j2) 

=	 I )	H L	li t' Iip 

The monotone convergence theorem yields now the desired result I
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Finally, we observe that Theorem 6.1 generalizes slightly Theorem 5.2.1 of J. Aguirre [1], 
but the proof given is based on the theory of sungular integral operators with operator-valued 
kernels. 
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