Asymptotics of the Solution of a Boundary Integral Equation Under a Small Perturbation of a Corner

V.G. **MAZ'YA** and R. MAHNKE

The boundary integral equation of the Dirichlet problem is considered in a plane domain with a smooth boundary which is a small perturbation of a contour with an angular point. The asymptotics of the solution are given with respect to a perturbation parameter ϵ . The problem studied in this article serves as an example of the use of a general method which is also applicable to the three-dimensional case, to the Neumann problem and to problems of hydrostatics and elasticity.

Key words: *Boundary integral equations, small perturbations* AMS subject classification: 35J05, 45M05, 31B10, 35B40

1. Introduction

In the present article we consider the boundary integral equation of the Dirichlet problem in a plane domain if the boundary is smoothed near an angular point. The main terms of the asymptotics of the solution are given with respect to a perturbation parameter ϵ . 35, 45M05, 31B10, 35B40

sider the boundary integral equation of the D

dary is smoothed near an angular point. The

re given with respect to a perturbation paramed

domain with an angular point on its contour

ained by

Let $\Omega \subset \mathbb{R}^2$ be a bounded domain with an angular point on its contour $\partial \Omega$. A domain Ω_{ϵ} with smooth boundary is obtained by a small perturbation of $\partial\Omega$ near the vertex of the angle. Let ψ be a smooth function in \mathbb{R}^2 . It is the classical approach to solve the Dirichlet problem

$$
\Delta u_{\epsilon} = 0 \quad \text{in } \Omega_{\epsilon}, \quad u_{\epsilon} = \psi|_{\infty} \quad \text{on } \partial \Omega_{\epsilon} \tag{1}
$$

by expressing the function u_{ϵ} in the form of a double-layer potentia

ed domain with an angular point on its contour *δ*12. A domain Ω_t tained by a small perturbation of
$$
\partial\Omega
$$
 near the vertex of the angle. In \mathbb{R}^2 . It is the classical approach to solve the Dirichlet problem\n
$$
\Delta u_{\epsilon} = 0 \text{ in } \Omega_{\epsilon}, \quad u_{\epsilon} = \psi|_{\partial\Omega_{\epsilon}} \text{ on } \partial\Omega_{\epsilon}
$$
\n(i)\n(i)\n(i)\n(i)\n
$$
u_{\epsilon}(x) = \frac{1}{2\pi} \int_{\partial\Omega_{\epsilon}} \mu_{\epsilon}(y) \frac{\partial}{\partial\nu} \log |x - y| \, ds_y, \quad (2)
$$
\n(v) unit normal vector to $\partial\Omega_{\epsilon}$. This leads to the well-known boundary

where ν denotes the outward unit normal vector to $\partial \Omega_{\epsilon}$. This leads to the well-known boundary integral equation

$$
\frac{1}{2}\mu_{\epsilon} + T\mu_{\epsilon} = \psi. \tag{3}
$$

The operator *T* is the direct value of the double-layer potential (2). The density function μ_{ϵ} is expressed in terms of solutions of auxiliary boundary value problems, using a method which is described in [3]. The following representations are the main results of this article:

$$
u_{\epsilon}(x) = \frac{1}{2\pi} \int \mu_{\epsilon}(y) \frac{\partial}{\partial \nu} \log |x - y| \, ds_y,
$$

\ntes the outward unit normal vector to $\partial \Omega_{\epsilon}$. This leads to the well-
\ntion
\n
$$
\frac{1}{2} \mu_{\epsilon} + T \mu_{\epsilon} = \psi.
$$

\n
$$
T \text{ is the direct value of the double-layer potential (2). The density\nterms of solutions of auxiliary boundary value problems, using a m\n[3]. The following representations are the main results of this article\n
$$
\mu_{\epsilon}(x) \sim \begin{cases} \left(\psi(x) - v(x) - \epsilon^{\pi/(2\pi - \alpha)} w_{+} \left(\frac{x}{\epsilon} \right) \right) \Big|_{\omega_{\Omega_{\epsilon}}} & \text{if } 0 < \alpha < \pi \\ \left(\psi(x) - v(x) - \epsilon^{\pi/\alpha} w_{-} \left(\frac{x}{\epsilon} \right) \right) \Big|_{\omega_{\Omega_{\epsilon}}} & \text{if } \pi \le \alpha < 2\pi, \end{cases}
$$

\notces the size of the angle. The functions v, w_{+} and w_{-} are solut
$$

where α denotes the size of the angle. The functions *v*, w_+ and w_- are solutions of certain exterior Neumann problems. The remainder function can be estimated uniformly in the norm *of* $C(\partial\Omega_{\epsilon})$ *by* $\mathcal{O}(\epsilon^{\gamma})$ *with* $\gamma > 1$, which is proved in Section 3.

The considered problem serves as an example for the use of a general method which is also applicable to the three-dimensional case, to the Neumann problem and to problems of hydrodynamics and elasticity. Moreover, the method can be used to obtain complete asymptotic series for solutions of boundary integral equations.

2. Formal asymptotics

We suppose that the origin O belongs to the boundary $\partial\Omega$ of the domain Ω and that $\partial\Omega \setminus \{O\}$ is smooth. In a neighbourhood of the origin Ω coincides with the wedge

$$
K = \{x = (r, \varphi) | r > 0, \varphi \in (0, \alpha)\} \quad (0 < \alpha < 2\pi).
$$

Let ω be a domain with smooth boundary, which coincides with $K \setminus B_1(0)$ outside the unit circle *B*₁(0). For the sake of simplicity it is assumed $\Omega \subset K$, $\omega \subset K$ (see Remark 1 below).

Now, domains ω_{ϵ} and Ω_{ϵ} are introduced, which depend on a small positive parameter ϵ :

$$
\omega_{\epsilon} = \left\{ x \mid \frac{x}{\epsilon} \in \omega \right\}, \quad \Omega_{\epsilon} = \Omega \cap \omega_{\epsilon}.
$$

Later, several subsets of these domains and their boundaries $\partial\omega_{\epsilon}$ and $\partial\Omega_{\epsilon}$ will be considered. For that purpose the following notation is used:

\n A. The graph of the origin
$$
\Omega
$$
 coincides with the vector $z = (r, \varphi) | r > 0$, $\varphi \in (0, \alpha)$. The graph of the origin Ω coincides with $K \setminus \Omega$ into the coordinates $\Omega \subset K$, $\omega \subset K$ (see Ω are introduced, which depend on a $\omega_{\epsilon} = \left\{ x \mid \frac{x}{\epsilon} \in \omega \right\}$, $\Omega_{\epsilon} = \Omega \cap \omega_{\epsilon}$.\n

\n\n The equation is used: $D_{\epsilon} = \Omega \setminus \overline{\Omega}_{\epsilon}, \quad \gamma_{\epsilon} = \partial \Omega_{\epsilon} \setminus \partial \Omega, \quad D_{1} = K \setminus \overline{\Omega}, \quad \gamma_{1} = \partial \omega \setminus \partial K, \quad D_{2} = K \setminus \overline{\Omega}, \quad \gamma_{2} = \partial \Omega_{\epsilon} \setminus \partial \omega_{\epsilon}.$ \n

Clearly, $D_{\epsilon} \subset B_{\epsilon}(0)$.

Figure 1: Example with $\epsilon = 0.6$ and $\alpha = 35^{\circ}$.

Complementary domains with respect to \mathbb{R}^2 are denoted by the superscript *c*. A Neumann problem which is related to the Dirichlet problem (1) is considered:

Asymptotics of a Solution 175
\n*as with respect to*
$$
\mathbb{R}^2
$$
 are denoted by the superscript *c*. A Neumann
\nthe Dirichlet problem (1) is considered:
\n
$$
\Delta v_{\epsilon} = 0 \text{ in } \Omega_{\epsilon}^c, \quad \frac{\partial v_{\epsilon}}{\partial \nu} = \frac{\partial u_{\epsilon}}{\partial \nu} \text{ on } \partial \Omega_{\epsilon}.
$$
\n(4)
\nthis and all following Neumann problems in the class of functions

Asymptotics of a Solution 175

d by the superscript c. A Neumann

sidered: (4)

on $\partial \Omega_{\epsilon}$. (4)

u problems in the class of functions

lvability condition is satisfied. For We look for the solution of this and all following Neumann problems in the class of functions with behaviour o(1) at infinity. A solution exists, if a solvability condition is satisfied. For problem (4) the condition *I*_{*d*}, $\frac{\partial v}{\partial \nu} = \frac{1}{6}$
ollowing Neuron exists, if
 $\int_{\alpha} \frac{\partial u_{\epsilon}}{\partial \nu} ds = 0$ $\Delta v_{\epsilon} = 0$ in Ω_{ϵ}^{c} , $\frac{\partial v_{\epsilon}}{\partial \nu} = \frac{\partial u_{\epsilon}}{\partial \nu}$ on $\partial \Omega_{\epsilon}$.

of this and all following Neumann problems in the ninity. A solution exists, if a solvability conditionally conditionally of $\frac{\partial u_{\epsilon}}{\partial \nu}$ as

$$
\int\limits_{\partial\Omega_{\epsilon}}\frac{\partial u_{\epsilon}}{\partial\nu}\,ds=0
$$

is fulfilled because of the harmonicity of u , in Ω , and Green's formula.

We follow the approach of [61, which goes back to one of the authors. The representation formulae for harmonic functions,

$$
\int_{\partial\Omega_{\epsilon}} \frac{\partial u_{\epsilon}}{\partial \nu} ds = 0
$$
\nbe of the harmonicity of u_{ϵ} in Ω_{ϵ} and Green's formula.

\na approach of [6], which goes back to one of the authors. The monic functions,

\n
$$
u_{\epsilon}(x) = \frac{1}{2\pi} \int_{\partial\Omega_{\epsilon}} \left(u_{\epsilon}(y) \frac{\partial}{\partial \nu_{y}} \log |x - y| - \frac{\partial u_{\epsilon}}{\partial \nu_{y}}(y) \log |x - y| \right) ds_{y}
$$

for $x \in \Omega$, and

$$
\int_{\partial\Omega_{\epsilon}} \frac{\partial u_{\epsilon}}{\partial \nu} d s = 0
$$

se of the harmonicity of u_{ϵ} in Ω_{ϵ} and Green's formula.
ne approach of [6], which goes back to one of the authors. The
monic functions,

$$
u_{\epsilon}(x) = \frac{1}{2\pi} \int_{\partial\Omega_{\epsilon}} \left(u_{\epsilon}(y) \frac{\partial}{\partial \nu_{y}} \log |x - y| - \frac{\partial u_{\epsilon}}{\partial \nu_{y}}(y) \log |x - y| \right) ds_{y}
$$

$$
v_{\epsilon}(x) = -\frac{1}{2\pi} \int_{\partial\Omega_{\epsilon}} \left(v_{\epsilon}(y) \frac{\partial}{\partial \nu_{y}} \log |x - y| - \frac{\partial v_{\epsilon}}{\partial \nu_{y}}(y) \log |x - y| \right) ds_{y}
$$
on the boundary $\partial\Omega_{\epsilon}$

for $x \in \Omega_c^c$, yield on the boundary $\partial \Omega_c$

Is infinite because of the harmonicity of
$$
u_c
$$
 in st_c and Green's formula.
\nWe follow the approach of [6], which goes back to one of the authors. The representation formulae for harmonic functions,
\n
$$
u_c(x) = \frac{1}{2\pi} \int_{\partial\Omega} \left(u_c(y) \frac{\partial}{\partial \nu_y} \log |x - y| - \frac{\partial u_c}{\partial \nu_y} (y) \log |x - y| \right) ds_y
$$
\nfor $x \in \Omega_c$ and
\n
$$
v_c(x) = -\frac{1}{2\pi} \int_{\partial\Omega_c} \left(v_c(y) \frac{\partial}{\partial \nu_y} \log |x - y| - \frac{\partial v_c}{\partial \nu_y} (y) \log |x - y| \right) ds_y
$$
\nfor $x \in \Omega_c^c$, yield on the boundary $\partial\Omega_c$
\n
$$
\frac{1}{2} \psi = T \psi - \frac{1}{2\pi} \int_{\partial\Omega_c} \frac{\partial u_c}{\partial \nu} \log |x - y| ds_y
$$
\nand
\n
$$
\frac{1}{2} v_c = -T v_c + \frac{1}{2\pi} \int_{\partial\Omega_c} \frac{\partial u_c}{\partial \nu} \log |x - y| ds_y
$$
\ntaking into account the jump conditions of the double-layer potential. Equation (5) and the boundary condition of (4) lead to
\n
$$
\frac{1}{2} (\psi - v_c) + T (\psi - v_c) = \psi \text{ on } \partial\Omega_c,
$$
\nwhich shows that $(\psi - v_c)|_{\partial\Omega_c}$ is a solution of the boundary integral equation (3). Since (3) is uniquely solvable, we can represent its solution by
\n
$$
\mu_c = (\psi - v_c)|_{\partial\Omega_c}.
$$
\nIn order to find asymptotics of μ_c , the following method (see [3]) is applied to the problems (1) and (4):

taking into account the jump conditions of the double-layer potential. Equation (5) and the boundary condition of (4) lead to

$$
\frac{1}{2}(\psi - v_{\epsilon}) + T(\psi - v_{\epsilon}) = \psi \quad \text{on } \partial \Omega_{\epsilon},
$$

which shows that $(\psi - v_{\epsilon})|_{\partial \Omega_{\epsilon}}$ is a solution of the boundary integral equation (3). Since (3) is uniquely solvable, we can represent its solution by

$$
\mu_{\epsilon} = (\psi - v_{\epsilon})\big|_{\partial \Omega_{\epsilon}}.\tag{6}
$$

In order to find asymptotics of μ_{ϵ} , the following method (see [3]) is applied to the problems (1) and (4):

An approximation for the solution of a boundary value problem in Ω_c is obtained by solving an analogous problem in the limit domain Ω . This leads to an error concentrated near the origin. The asymptotics of the error function are determined and by the transformation $\xi = \frac{\pi}{2}$ the scale is changed. Then, a second auxiliary boundary value problem is solved in the unbounded domain ω . The solution equalizes the main term in the asymptotics of the error function, if it is multiplied by ϵ to a certain power. $\left| \int_{\partial \Omega_{\epsilon}} \right|$ (6)
 $\left| \int_{\partial \Omega_{\epsilon}} \right|$ $\left| \int_{\partial \Omega_{\epsilon}} \right|$ and by the transformation $\xi = \frac{x}{\epsilon}$ the scale

value

Using this method a representation for the solution v_c of problem (4) is obtained:

$$
v_{\epsilon}(x) = v(x) + \epsilon^{\tau} w\left(\frac{x}{\epsilon}\right) + R(x). \tag{7}
$$

The Dirichlet solution of (1) appears in (4) on the right-hand side. Therefore, we have to look for its asymptotics according to the same scheme: $\overline{=}$
 s in (4) on the right-hand side. Therefore, we have to look

same scheme:
 $= V(x) + \epsilon^{\beta} W(\frac{x}{\epsilon}) + R_1(x).$ (8)

Dirichlet problem (1). The Taylor expansion is valid for ψ :
 $= \psi(0) + \tau \nabla \psi(0) + \mathcal{O}(\tau^2)$ AFINKE

APINKE

APINKE

APINKE

APINKE

APINKE

OPPEATS in (4) on the right-hand side. Therefore, we have to look

to the same scheme:
 $u_{\epsilon}(x) = V(x) + \epsilon^{\beta}W(\frac{x}{\epsilon}) + R_1(x)$. (8)

of the Dirichlet problem (1). The Taylor exp

$$
u_{\epsilon}(x) = V(x) + \epsilon^{\beta} W\left(\frac{x}{\epsilon}\right) + R_1(x). \tag{8}
$$

We start with the treatment of the Dirichlet problem (1). The Taylor expansion is valid for ψ :

$$
\psi(x) = \psi(0) + x \nabla \psi(0) + \mathcal{O}(r^2).
$$

A first approximation for the solution u_c of (1) is obtained by solving the following Dirichlet problem in Ω :

$$
\Delta V = 0 \text{ in } \Omega, \quad V = \psi|_{\infty} \quad \text{on } \partial \Omega. \tag{9}
$$

For the study of the asymptotic behaviour of V near O , it is suitable to consider 3 cases:

Case 1: $0 < \alpha < \pi$

The asymptotics of *V* contain terms with integer exponents of $r (r = |x|)$ caused by the function ψ and solutions of the homogeneous Dirichlet problem for a wedge:

$$
r^{j\lambda}a_j\sin j\lambda\varphi \text{ with } \lambda = \pi/\alpha \quad (j = 1, 2, \ldots),
$$

where a_j are certain constants. We have

$$
\sin j\lambda \varphi \quad \text{with } \lambda = \pi/\alpha \quad (j = 1, 2, ...),
$$

 We have

$$
V(x) = \psi(0) + x \nabla \psi(0) + f_1(r, \varphi)
$$
 (10)

with $f_1 = \mathcal{O}(r^{\min\{\lambda,2\}})$ near O. The remainder function $R_0 = u_{\epsilon} - V$ is harmonic in Ω_{ϵ} and has the boundary values

terms with integer exponents of
$$
r (r = |x|)
$$
 caused by the function
enecous Dirichlet problem for a wedge:
 $u_j \sin j\lambda\varphi$ with $\lambda = \pi/\alpha$ $(j = 1, 2, ...),$
s. We have

$$
V(x) = \psi(0) + x\nabla\psi(0) + f_1(r, \varphi)
$$
(10)
2. The remainder function $R_0 = u_\epsilon - V$ is harmonic in Ω_ϵ and has

$$
R_0 = \begin{cases} (\psi - V)|_{\gamma_\epsilon} & \text{on } \gamma_\epsilon \\ 0 & \text{on } \partial\Omega_\epsilon \setminus \gamma_\epsilon. \\ \text{asymptotics of the right-hand side has the order $r^{\min\{\lambda, 2\}}$. This
by the solution W of a Dirichlet problem in ω . As it will turn out
$$

Hence, the main term in the asymptotics of the right-hand side has the order $r^{\min\{\lambda,2\}}$. This term has to be compensated by the solution W of a Dirichlet problem in ω . As it will turn out later, this function W does not influence the first terms in the asymptotics of v_{ϵ} in this case, since $\beta > 1$. $V(x) = \psi(0) + x \nabla \psi(0) + f_1(r, \varphi)$ (10)

with $f_1 = \mathcal{O}(r^{\min(\lambda, 2)})$ near O . The remainder function $R_0 = u_c - V$ is harmonic in Ω_c and has

the boundary values
 $R_0 = \begin{cases} (\psi - V)|_{\gamma_c} & \text{on } \gamma_c \\ 0 & \text{on } \partial \Omega_c \setminus \gamma_c. \end{cases}$ (1

In order to solve the exterior Neumann problem (4), we consider the solution of the following problem:

$$
\Delta v = 0 \quad \text{in } \Omega^c, \quad \frac{\partial v}{\partial \nu} = \frac{\partial V}{\partial \nu} \quad \text{on } \partial \Omega. \tag{12}
$$

 $\int_{\partial \Omega} \frac{\partial V}{\partial \nu} ds = 0$ is satisfied, since *V* is harmonic in Ω . The asymptotics problem:
 $\Delta v = 0$ in Ω^c , $\frac{\partial v}{\partial \nu} = \frac{\partial V}{\partial \nu}$ on $\partial \Omega$. (12)

The solvability condition $\int_{\partial \Omega} \frac{\partial V}{\partial \nu} ds = 0$ is satisfied, since V is harmonic in Ω . The asymptotics

of v near O contain terms caused by of v near O contain terms caused by the right-hand side $\frac{\partial V}{\partial \nu}$ and solutions of the homogeneous exterior Neumann problem for a wedge *49v* the right-hand side $\frac{\partial V}{\partial \nu}$ and solutions of the homogeneous
 49ge
 49v with $\sigma = \pi/(2\pi - \alpha)$ $(j = 1, 2, ...),$
 49vi $\sigma = \pi/(2\pi - \alpha)$ $(j = 1, 2, ...),$
 49vi $\sigma = \pi/(2\pi - \alpha) + \pi \nabla \psi(0) + \mathcal{O}\left(r^{\min\{2\sigma,\lambda\}}\right)$.

$$
r^{j\sigma}b_j\cos j\sigma(\varphi-\alpha) \text{ with } \sigma=\pi/(2\pi-\alpha) \quad (j=1,2,\ldots),
$$

where b_j are certain constants. It reads as follows:

$$
v(x) = v(0) + r^{\sigma} b_1 \cos \sigma (\varphi - \alpha) + x \nabla \psi(0) + \mathcal{O} \left(r^{\min\{2\sigma,\lambda\}} \right).
$$

The function *v* is not defined everywhere in Ω_{ϵ}^{c} and has to be extended within Ω by v^{i} . The extension is chosen in this manner:

The conditions

$$
v^{i} = v \quad \text{and} \quad \frac{\partial v^{i}}{\partial \nu} = \frac{\partial v}{\partial \nu}
$$
 (13)

are satisfied on ∂K and v^i has the prescribed asymptotics near O:

$$
v^{i}(x) = v(0) - r^{\sigma} b_1 \cos \lambda \varphi + x \nabla \psi(0) + f_2(r, \varphi)
$$
 (14)

with $f_2 = \mathcal{O}(r^{\min\{2\sigma,\lambda\}})$, so that (13) is fulfilled by the main terms of the asymptotics. The remainder function $R_2 = v_t - v$ solves the problem

Asymptotics of a Solution 177
\non
$$
\partial K
$$
 and v^i has the prescribed asymptotics near O:
\n
$$
v^i(x) = v(0) - r^{\sigma}b_1 \cos \lambda \varphi + x \nabla \psi(0) + f_2(r, \varphi)
$$
\n
$$
0 \tbinom{\min\{2\sigma,\lambda\}}{\sinh\{2\}} \text{ so that (13) is fulfilled by the main terms of the asymptotics. The\nfunction $R_2 = v_c - v$ solves the problem
\n
$$
\Delta R_2 = \begin{cases}\n(\sigma^2 - \lambda^2)b_1 r^{\sigma - 2} \cos \lambda \varphi - \Delta f_2 & \text{in } D_c \\
0 & \text{in } \Omega_c^c \setminus D_c,\n\end{cases}
$$
\n
$$
\frac{\partial R_2}{\partial \nu} = \begin{cases}\nb_1 \frac{\partial}{\partial \nu} (r^{\sigma} \cos \lambda \varphi) + \frac{\partial}{\partial \nu} (f_1 - f_2) + \frac{\partial R_0}{\partial \nu} & \text{on } \gamma_c \\
0 & \text{on } \partial \Omega_c \setminus \gamma_c.\n\end{cases}
$$
\n
$$
\text{From of the error concentrated near } O \text{ has to be compensated by a function } w_+ \text{. By\nmation } \xi = \frac{x}{\epsilon} \text{ the scale is changed and the problem takes the form}
$$
\n
$$
\Delta w_+ = \begin{cases}\n(\sigma^2 - \lambda^2) b_1 |\xi|^{\sigma - 2} \cos \lambda \varphi & \text{in } D_1 \\
0 & \text{in } \omega^c \setminus D_1,\n\end{cases}
$$
\n
$$
(16)
$$
$$

$$
\frac{\partial R_2}{\partial \nu} = \begin{cases} b_1 \frac{\partial}{\partial \nu} (r^{\sigma} \cos \lambda \varphi) + \frac{\partial}{\partial \nu} (f_1 - f_2) + \frac{\partial R_0}{\partial \nu} & \text{on } \gamma_{\epsilon} \\ 0 & \text{on } \partial \Omega_{\epsilon} \setminus \gamma_{\epsilon}. \end{cases}
$$

The main term of the error concentrated near O has to be compensated by a function w_+ . By

$$
\frac{\partial R_2}{\partial \nu} = \begin{cases}\n(\sigma^2 - \lambda^2)b_1\sigma^{-2}\cos\lambda\varphi - \Delta f_2 & \text{in } D_c \\
0 & \text{in } \Omega_c^c \setminus D_c,\n\end{cases}
$$
\n(15)
\n
$$
\frac{\partial R_2}{\partial \nu} = \begin{cases}\n\frac{\partial}{\partial \nu}(\sigma^{\sigma}\cos\lambda\varphi) + \frac{\partial}{\partial \nu}(f_1 - f_2) + \frac{\partial R_0}{\partial \nu} & \text{on } \gamma_c \\
0 & \text{on } \partial\Omega_c \setminus \gamma_c.\n\end{cases}
$$
\n(15)
\n
$$
\frac{\partial R_2}{\partial \nu} = \begin{cases}\n\frac{\partial}{\partial \nu}(\sigma^{\sigma}\cos\lambda\varphi) + \frac{\partial}{\partial \nu}(f_1 - f_2) + \frac{\partial R_0}{\partial \nu} & \text{on } \gamma_c \\
0 & \text{on } \partial\Omega_c \setminus \gamma_c.\n\end{cases}
$$
\n(15)
\n
$$
\Delta w_+ = \begin{cases}\n(\sigma^2 - \lambda^2)b_1|\xi|^{\sigma-2}\cos\lambda\varphi & \text{in } D_1 \\
0 & \text{in } \omega^c \setminus D_1,\n\end{cases}
$$
\n(16)
\n
$$
\frac{\partial w_+}{\partial \nu} = b_1 \frac{\partial}{\partial \nu}(|\xi|^{\sigma}\cos\lambda\varphi) & \text{on } \partial\omega.\n\end{cases}
$$
\nThe solvability condition is satisfied and equation (7) is valid with $\tau = \sigma$. The function w_+ shows the following asymptotic behaviour at infinity:

The solvability condition is satisfied and equation (7) is valid with $\tau = \sigma$. The function w_+ shows the following asymptotic behaviour at infinity:

$$
w_{+}(\xi)=|\xi|^{-\sigma}c_{1}\cos\sigma(\varphi-\alpha)+\mathcal{O}(|\xi|^{-2\sigma})
$$

with a certain constant c_1 . Since it is not defined for $x \in D_2$, we extend w_+ by a function w_+^i according to (13). It has the prescribed asymptotics:

$$
w_{+}^{i}(\xi) = -|\xi|^{-\sigma} c_1 \cos \lambda \varphi + \mathcal{O}(|\xi|^{-2\sigma})
$$

tion (7):

$$
\frac{\partial w_{+}}{\partial \nu} = b_{1} \frac{\partial}{\partial \nu} (|\xi|^{\sigma} \cos \lambda \varphi) \qquad \text{on } \partial \omega.
$$
\nThe solvability condition is satisfied and equation (7) is valid with $\tau = \sigma$. The function w_{+} shows the following asymptotic behaviour at infinity: $w_{+}(\xi) = |\xi|^{-\sigma} c_{1} \cos \sigma(\varphi - \alpha) + \mathcal{O}(|\xi|^{-2\sigma})$
\nwith a certain constant c_{1} . Since it is not defined for $x \in D_{2}$, we extend w_{+} by a function w_{+}^{i} according to (13). It has the prescribed asymptotics: $w_{+}^{i}(\xi) = -|\xi|^{-\sigma} c_{1} \cos \lambda \varphi + \mathcal{O}(|\xi|^{-2\sigma})$
\nat infinity. From (15) and (16) we derive the problem for the remainder function R in equation (7):
\n
$$
\Delta R = \begin{cases}\n-\Delta f_{2} & \text{in } D_{\xi} \\
-\epsilon^{\sigma} \Delta w_{+} & \text{in } D_{2} \\
0 & \text{in } \Omega_{\xi}^{c} \setminus \{D_{\xi} \cup D_{2}\},\end{cases}
$$
\n
$$
\frac{\partial R}{\partial \nu} = \begin{cases}\n\frac{\partial}{\partial \nu}(f_{1} - f_{2}) + \frac{\partial R_{0}}{\partial \nu} & \text{on } \gamma_{\xi} \\
-\epsilon^{\sigma} \Delta w_{+} + \frac{\partial R_{0}}{\partial \nu} & \text{on } \gamma_{2} \\
\frac{\partial R_{0}}{\partial \nu} & \text{on } \partial \Omega_{\xi} \setminus \{\gamma_{\xi} \cup \gamma_{2}\}.\end{cases}
$$
\nIn Section 3 it will be useful to have this problem in variational formulation. Throughout this
\ngating test functions and their restrictions on the boundary are denoted by Φ .

In Section 3 it will be useful to have this problem in variational formulation. Throughout this paper test functions and their restrictions on the boundary are denoted by *4.*

$$
\frac{\partial v}{\partial \nu} = \begin{cases}\n-\epsilon^{\nu} \Delta w_{+} + \frac{\partial v}{\partial \nu} & \text{on } \gamma_{2} \\
\frac{\partial R_{0}}{\partial \nu} & \text{on } \partial \Omega_{\epsilon} \setminus \{\gamma_{\epsilon} \cup \gamma_{2}\}.\n\end{cases}
$$
\nIn Section 3 it will be useful to have this problem in variational formulation. Throughout this
\npaper test functions and their restrictions on the boundary are denoted by Φ .
\nSince $\frac{\partial}{\partial \nu} (f_{1} - f_{2}) = 0$ on $\partial D_{\epsilon} \setminus \gamma_{\epsilon}$ and $\frac{\partial w_{+}}{\partial \nu} = 0$ on $\partial D_{2} \setminus \gamma_{2}$, Green's formula implies
\n
$$
\int_{\Omega_{\epsilon}^{\epsilon}} \nabla R \nabla \Phi \, dx = \int_{D_{\epsilon}} \nabla (f_{1} - f_{2}) \nabla \Phi \, dx - \epsilon^{\sigma} \int_{D_{2}} \nabla w_{+} \nabla \Phi \, dx - \int_{\partial \Omega_{\epsilon}} \frac{\partial R_{0}}{\partial \nu} \Phi \, ds, \tag{17}
$$

with f_1 and f_2 defined in (10) and (14), respectively. The solvability condition is satisfied, since R_0 is harmonic in Ω_c .

Case 2: $\pi < \alpha < 2\pi$

Since $1/2 < \lambda < 1$, the asymptotics of *V* read as follows:

$$
d R. MAH NKE
$$

asymptotics of V read as follows:

$$
V(x) = \psi(0) + r^{\lambda} a_1 \sin \lambda \varphi + x \nabla \psi(0) + f_1(r, \varphi)
$$
(18)
oblem is set to compensate the term $r^{\lambda} a_1 \sin \lambda \varphi$ on γ_t :

with $f_1 = \mathcal{O}(r^{2\lambda})$.

The second limit problem is set to compensate the term $r^{\lambda}a_1\sin\lambda\varphi$ on γ_{ϵ}

178 V.G. MAZ:YA and R. MAHINE
\nCase 2:
$$
\pi < \alpha < 2\pi
$$

\nSince $1/2 < \lambda < 1$, the asymptotics of V read as follows:
\n
$$
V(x) = \psi(0) + r^{\lambda} a_1 \sin \lambda \varphi + x \nabla \psi(0) + f_1(r, \varphi)
$$
\n
$$
\text{with } f_1 = \mathcal{O}(r^{2\lambda}).
$$
\nThe second limit problem is set to compensate the term $r^{\lambda} a_1 \sin \lambda \varphi$ on γ_i :
\n
$$
\Delta W(\xi) = 0 \qquad \text{in } \omega,
$$
\n
$$
W(\xi) = \begin{cases}\n-|\xi|^{\lambda} a_1 \sin \lambda \varphi & \text{on } \gamma_1 \\
0 & \text{on } \partial \omega \setminus \gamma_1\n\end{cases}
$$
\nand equation (8) is valid with $\beta = \lambda$. The function W shows the asymptotic behaviour $\mathcal{O}(|\xi|^{-\lambda})$
\nat infinity. The solution v of (12) has the asymptotics
\n
$$
v(x) = v(0) + r^{\lambda} a_1 \frac{1}{\cos \lambda \pi} \sin \lambda (\varphi - \pi) + x \nabla \psi(0) + \mathcal{O} \left(r^{\min\{2\lambda,\sigma\}}\right)
$$
\nnear O and is extended according to (13) with the prescribed asymptotics
\n
$$
v^i(x) = v(0) + r^{\lambda} a_1 (\tan \lambda \pi + \sin \lambda \varphi) + x \nabla \psi(0) + f_2(r, \varphi)
$$
\nwith $f_2 = \mathcal{O} \left(r^{\min\{2\lambda,\sigma\}}\right)$. Compared with Case 1, the function w_- has to compensate the additional term $\frac{\partial W}{\partial \nu}$ on $\partial \omega$. The problem takes the form
\n
$$
\Delta w = \begin{cases}\n-\lambda^2 a_1 \tan \lambda \pi |\xi|^{\lambda-2} & \text{in } D_1\n\end{cases}
$$

and equation (8) is valid with $\beta = \lambda$. The function *W* shows the asymptotic behaviour $\mathcal{O}(|\xi|^{-\lambda})$ at infinity. The solution *v* of (12) has the asymptotics

$$
v(x) = v(0) + r^{\lambda} a_1 \frac{1}{\cos \lambda \pi} \sin \lambda (\varphi - \pi) + x \nabla \psi(0) + \mathcal{O}\left(r^{\min\{2\lambda,\sigma\}}\right)
$$

near *0* and is extended according to (13) with the prescribed asymptotics

$$
v^{i}(x) = v(0) + r^{\lambda} a_{1}(\tan \lambda \pi + \sin \lambda \varphi) + x \nabla \psi(0) + f_{2}(r, \varphi)
$$
 (20)

additional term $\frac{\partial W}{\partial \nu}$ on $\partial \omega$. The problem takes the form with $f_2 = \mathcal{O}(r^{\min\{2\lambda,\sigma\}})$. Compared with Case 1, the function w_+ has to compensate the

and equation (8) is valid with
$$
\beta = \lambda
$$
. The function W shows the asymptotic behaviour $\mathcal{O}(|\xi|^{-\lambda})$
at infinity. The solution v of (12) has the asymptotics

$$
v(x) = v(0) + r^{\lambda} a_1 \frac{1}{\cos \lambda \pi} \sin \lambda (\varphi - \pi) + x \nabla \psi(0) + \mathcal{O}(\tau^{\min\{2\lambda, \sigma\}})
$$

near O and is extended according to (13) with the prescribed asymptotics

$$
v^i(x) = v(0) + r^{\lambda} a_1 (\tan \lambda \pi + \sin \lambda \varphi) + x \nabla \psi(0) + f_2(\tau, \varphi)
$$
(20)
with $f_2 = \mathcal{O}(\tau^{\min\{2\lambda, \sigma\}})$. Compared with Case 1, the function w₋ has to compensate the
additional term $\frac{\partial w}{\partial \nu}$ on $\partial \omega$. The problem takes the form

$$
\Delta w_{-} = \begin{cases} -\lambda^2 a_1 \tan \lambda \pi |\xi|^{\lambda-2} & \text{in } D_1 \\ 0 & \text{in } \omega^c \setminus D_1, \end{cases}
$$
(21)

$$
\frac{\partial w_{-}}{\partial \nu} = -a_1 \tan \lambda \pi \frac{\partial}{\partial \nu} (|\xi|^{\lambda}) + \frac{\partial W}{\partial \nu}
$$
 on $\partial \omega$.
The solvability condition is satisfied, since W is harmonic in Ω_c . Equation (7) is valid with $\tau = \lambda$.
The function w_{-} shows the asymptotic behaviour $\mathcal{O}(|\xi|^{-\lambda})$ at infinity, because it satisfies the
condition $\frac{\partial w_{-}}{\partial \nu} = \frac{\partial W}{\partial \nu}$ on $\partial \omega$ and we have $\lambda < \sigma$. Hence, the extension w_{-}^i has the same behaviour
at infinity.
We derive the problem for the remainder function R:

$$
\int \nabla R \nabla \Phi \, dx = \int \nabla (f_1 - f_2) \nabla \Phi \, dx - \epsilon^{\lambda} \int \nabla (w_{-} - W) \nabla \Phi \, dx - \int \frac{\partial R_1}{\partial \nu} \Phi \, ds
$$
(22)
with f_1 and f_2 defined

The solvability condition is satisfied, since W is harmonic in Ω_{ϵ} . Equation (7) is valid with $\tau = \lambda$.
The function w_{-} shows the asymptotic behaviour $\mathcal{O}(|\xi|^{-\lambda})$ at infinity, because it satisfies the condit at infinity. *VR* V = 1 *D* on $\partial \omega \setminus \gamma_1$
 VR V: The solution v of (12) has the asymptotics
 $v(x) = v(0) + r^{\lambda} a_1 \frac{1}{\cosh \lambda \pi} \sin \lambda (\varphi - \pi) + x \nabla \psi(0) + \mathcal{O}(\tau^m)$

and is extended according to (13) with the prescribed asymptotic
 v

We derive the problem for the remainder function *R:*

$$
\frac{\partial w}{\partial \nu} = \frac{\partial W}{\partial \nu} \text{ on } \partial \omega \text{ and we have } \lambda < \sigma. \text{ Hence, the extension } w_{-}^{\dagger} \text{ has the same behaviour}
$$
\n
$$
y.
$$
\n
$$
\int_{\Omega_{\xi}^{c}} \nabla R \nabla \Phi \, dx = \int_{D_{\xi}} \nabla (f_{1} - f_{2}) \nabla \Phi \, dx - \epsilon^{\lambda} \int_{D_{2}} \nabla (w_{-} - W) \nabla \Phi \, dx - \int_{\partial \Omega_{\xi}} \frac{\partial R_{1}}{\partial \nu} \Phi \, ds \qquad (22)
$$
\n
$$
\int_{\Omega_{\xi}^{c}} \nabla R \nabla \Phi \, dx = \int_{D_{\xi}} \nabla (f_{1} - f_{2}) \nabla \Phi \, dx - \epsilon^{\lambda} \int_{D_{2}} \nabla (w_{-} - W) \nabla \Phi \, dx - \int_{\partial \Omega_{\xi}} \frac{\partial R_{1}}{\partial \nu} \Phi \, ds \qquad (22)
$$
\n
$$
\int_{\Omega_{\xi}^{c}} \nabla R \nabla \Phi \, dx = \int_{D_{\xi}} \nabla (f_{1} - f_{2}) \nabla \Phi \, dx - \epsilon^{\lambda} \int_{D_{2}} \nabla (w_{-} - W) \nabla \Phi \, dx - \int_{\partial \Omega_{\xi}} \frac{\partial R_{1}}{\partial \nu} \Phi \, ds \qquad (22)
$$
\n
$$
\alpha = \pi
$$
\n
$$
\text{partial case the asymptotics of } V \text{ read as follows:}
$$
\n
$$
V(x) = \psi(0) + r(\psi_{x_{1}}(0) \cos \varphi + a_{1} \sin \varphi) + f_{1}(r, \varphi) \qquad (23)
$$
\n
$$
= \mathcal{O}(r^{2}). \text{ The index } x_{1} \text{ denotes the partial derivative in } x_{1} \text{-direction. The problem for}
$$
\n
$$
\Delta W(\xi) = 0 \qquad \text{in } \omega,
$$
\n
$$
W(\xi) = \begin{cases} |\xi|(\psi_{x_{2}}(0) - a_{1}) \sin \varphi & \text{on } \gamma_{1} \\ 0 & \text{on } \partial \omega \setminus \gamma_{1}
$$

with f_1 and f_2 defined in (18) and (20), respectively.

Case 3: $\alpha = \pi$

In this special case the asymptotics of *V* read as follows:

$$
V(x) = \psi(0) + r(\psi_{x_1}(0)\cos\varphi + a_1\sin\varphi) + f_1(r,\varphi)
$$
\n(23)

with $f_1 = \mathcal{O}(r^2)$. The index x_1 denotes the partial derivative in x_1 -direction. The problem for *W* is set:

$$
\Delta W(\xi) = 0 \qquad \qquad \text{in } \omega,
$$

$$
\begin{array}{ll}\n\frac{1}{D_t} & \frac{1}{D_2} & \frac{1}{\partial \Omega_t} \\
\text{in (18) and (20), respectively.} \\
\text{asymptotics of } V \text{ read as follows:} \\
V(x) = \psi(0) + r(\psi_{x_1}(0) \cos \varphi + a_1 \sin \varphi) + f_1(r, \varphi) \\
\text{index } x_1 \text{ denotes the partial derivative in } x_1 \text{-direction. The problem for} \\
W(\xi) = 0 & \text{in } \omega, \\
W(\xi) = \begin{cases}\n|\xi|(\psi_{x_2}(0) - a_1) \sin \varphi & \text{on } \gamma_1 \\
0 & \text{on } \partial \omega \setminus \gamma_1.\n\end{cases}\n\end{array} \tag{24}
$$

Equation (8) is valid with $\beta = 1$. The function *W* shows the asymptotic behaviour $\mathcal{O}(|\xi|^{-1})$ at infinity. The solution v of (12) has the asymptotics $v(x) = v(0) + r(b_1 \cos \varphi + a_1 \sin \varphi) + f_2(r, \varphi)$ (25) infinity. The solution *v* of (12) has the asymptotics

$$
v(x) = v(0) + r(b_1 \cos \varphi + a_1 \sin \varphi) + f_2(r, \varphi)
$$
\n
$$
(25)
$$

with $f_2 = \mathcal{O}(r^2)$. The same asymptotics are prescribed for the extension v^i . The function w solves the problem

Asymptotics of a Solution 179
\nwith
$$
\beta = 1
$$
. The function W shows the asymptotic behaviour $O(|\xi|^{-1})$ at
\n v of (12) has the asymptotics
\n $v(x) = v(0) + r(b_1 \cos \varphi + a_1 \sin \varphi) + f_2(r, \varphi)$ (25)
\ne same asymptotics are prescribed for the extension v^i . The function w_-
\n $\Delta w_- = 0$ in ω^c ,
\n $\frac{\partial w_-}{\partial \nu} = (\psi_{x_1} - b_1) \frac{\partial}{\partial \nu} (|\xi| \cos \varphi) + \frac{\partial W}{\partial \nu}$ on $\partial \omega$.
\nwith $\tau = 1$. The function w_- as well as its extension w_-^i show the

Equation (7) is valid with $\tau = 1$. The function w_+ as well as its extension w_-^i show the asymptotic behaviour *O* ($|\xi|^{-1}$) at infinity. The remainder function solves problem (22) with f_1 and f_2 defined in (23) and (25), respectively.

Remark 1: Since the perturbation was inside the wedge, we had to construct an extension of v inside Ω _c. If the perturbation lies outside the wedge, an extension has to be constructed for the function V outside Ω_{ϵ} . In the case that the boundary is perturbed partly inside and partly outside the wedge, the Dirichlet solution and the Neumann solution has to be extended within $\Omega_{\epsilon} \setminus \Omega$ and $\Omega \setminus \Omega_{\epsilon}$, respectively. the perturbation was inside the wedge, we had to
perturbation lies outside the wedge, an extension
side Ω_c . In the case that the boundary is pertu
ge, the Dirichlet solution and the Neumann solu:
 Ω_c , respectively.
r

We summarize the results of Section 2, taking into consideration equations (6) and (7):

Lemma 1: The solution μ_{ϵ} of the boundary integral equation (3) for the Dirichlet prob *lem (1) has* the *following asymptotics:*

$$
\text{matrix the wedge, the Dirichlet solution and the Neumann solution has to be}
$$
\n
$$
\sqrt{12} \text{ and } \Omega \setminus \Omega_{\epsilon}, \text{ respectively.}
$$
\n
$$
\text{matrix the results of Section 2, taking into consideration equations (6) and}
$$
\n
$$
\text{max the following asymptotics:}
$$
\n
$$
\mu_{\epsilon}(x) = \begin{cases}\n\left(\psi(x) - v(x) - \epsilon^{\pi/(2\pi - \alpha)} w_{+}\left(\frac{x}{\epsilon}\right) - R(x)\right) \Big|_{\partial \Omega_{\epsilon}} & \text{if } 0 < \alpha < \pi \\
\left(\psi(x) - v(x) - \epsilon^{\pi/\alpha} w_{-}\left(\frac{x}{\epsilon}\right) - R(x)\right) \Big|_{\partial \Omega_{\epsilon}} & \text{if } \pi \leq \alpha < 2\pi,\n\end{cases}
$$

where v is the solution of (12), w_+ and w_- are the solutions of (16), (21) and (26), respectively.

Remark 2: The expression $\psi(x)-v(x)$ on the right-hand side in the asymptotics of Lemma 1 can be understood as an extension of the solution μ of the boundary integral equation for the Dirichlet problem (9) in Ω (cp. equation (6)).

3. Estimates for the remainder function

In order to demonstrate the quality of the asymptotics of Lemma 1, we want to estimate the remainder function R . For that purpose a new origin is chosen, which lies inside Ω . The distance to this origin is denoted by ρ . The weighted Sobolev space $H_{1,\delta}(\Omega_{\epsilon}^c)$ is defined as the space of functions with the finite norm x) – $v(x)$ on the right-hand

i of the solution μ of the

uation (6)).
 r function

ty of the asymptotics of

purpose a new origin is

by ρ . The weighted Sobo

oorm
 $\left(\frac{|R|^2}{\rho^2} + |\nabla R|^2\right) \rho^{2\delta} dx\right)^{\frac{1}{2}}$ **13. Estimates for the remainder function**

In order to demonstrate the quality of the asymptotics of Lemma 1, we want to estimate the

remainder function *R*. For that purpose a new origin is chosen, which lies inside $\$

$$
\|R\|_{1,\delta}=\bigg(\int\limits_{\Omega_{\epsilon}^c}\left(\frac{|R|^2}{\rho^2}+|\nabla R|^2\right)\rho^{2\delta}dx\bigg)^{\frac{1}{2}}\quad \Big(0<\delta<\frac{1}{2}\Big),
$$

where the derivatives are understood in the generalized sense. A problem of the form

$$
\int_{\Omega_{\xi}^c} \nabla R \nabla \Phi \, dx = \int_{\Omega_{\xi}^c} \vec{g} \, \nabla \Phi \, dx + \int_{\partial \Omega_{\epsilon}} h \Phi \, ds \tag{27}
$$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac$

condition $\iint_{\partial\Omega_{\epsilon}} h ds = 0$ is satisfied. The estimate below is valid for the solution *R*:
 $||R||_{1,\delta} \leq C \bigg(\int |\vec{g}|^2 \rho^{2\delta} dx + ||h||_{-\frac{1}{2}}^2\bigg)^{\frac{1}{2}}.$

$$
\text{MAHINE}
$$
\n
$$
\text{find. The estimate below is valid for the solution } R:
$$
\n
$$
\|R\|_{1,\delta} \le C \bigg(\int_{\Omega_{\epsilon}^c} |\vec{g}|^2 \rho^{2\delta} dx + \|h\|_{-\frac{1}{2}}^2 \bigg)^{\frac{1}{2}}.
$$
\n
$$
(28)
$$

Here and in all following estimates the letter *C* stands for a positive constant which does not depend on ϵ . This constant may be different in different inequalities. In a sequence of estimates indices will be used.

The unique solvability of (27) can be proved in the spirit of the papers by Kondratjev $[1]$ and Maz'ya and Plamenevsky [4].

The unique solvability of (27) can be proved in the spirit of the papers by Kondratjev [1]
 Maz'ya and Plamenevsky [4].
 Lemma 2: *The remainder function R*_{$|\omega_{\Omega_{\epsilon}}|$ of Lemma 1 can be estimated in the norm of the
}

Here and in all following estimates the letter C stands for a positive
\ndepend on
$$
\epsilon
$$
. This constant may be different in different inequalities.
\nindices will be used.
\nThe unique solvability of (27) can be proved in the spirit of the
\nand Maz'ya and Plamenevsky [4].
\n**Lemma 2:** The remainder function $R|_{\partial\Omega_{\epsilon}}$ of Lemma 1 can be est
\ntrace space $H^{\frac{1}{2}}(\partial\Omega_{\epsilon})$. R satisfies the inequalities
\n
$$
||R||_{\frac{1}{2}} \leq \begin{cases} C\epsilon^{\min\{\frac{\pi}{\alpha}, \frac{2\pi}{2\pi - \alpha}\}} & \text{if } 0 < \alpha < \pi \\ C\epsilon^{\min\{\frac{2\pi}{\alpha}, \frac{\pi}{2\pi - \alpha}\}} & \text{if } \pi < \alpha < 2\pi \\ C\epsilon^2 & \text{if } \alpha = \pi. \end{cases}
$$

\nProof: The cases are distinguished according to Section 2:
\n1) Problem (17) has the form (27). The three terms on the right

Proof: The cases are distinguished according to Section 2:

1) Problem (17) has the form (27). The three terms on the right-hand side are estimated in the following corresponding norms.

11.1001. The cases are distinguished according to section 2:
\n1) Problem (17) has the form (27). The three terms on the right-hand side are est
\nthe following corresponding norms.
\n(i)
$$
\left(\int_{D_{\epsilon}} |\nabla (f_1 - f_2)|^2 \rho^{2\delta} dx\right)^{\frac{1}{2}} \leq C_1 \left(\int_{D_{\epsilon}} (r^{\min\{\lambda, 2\sigma\}})^{-1} (2r^{\lambda}) \right)^{\frac{1}{2}}
$$
\n
$$
\int_{D_{\epsilon}}^{r \equiv \epsilon t} C_1 \left(\int_{D_1} (\epsilon t)^{2\min\{\lambda, 2\sigma\}} - 2 \epsilon^2 dx_t\right)^{\frac{1}{2}} \leq C_2 \epsilon^{\min\{\lambda, 2\sigma\}}.
$$
\n(ii)
$$
\epsilon^{\sigma} \left(\int_{D_2} |\nabla w_+|^2 \rho^{2\delta} dx\right)^{\frac{1}{2}} \leq C_1 \epsilon^{2\sigma} \left(\int_{D_2} r^{-2\sigma-2} \rho^{2\delta} dx\right)^{\frac{1}{2}} \leq C_2 \epsilon^{2\sigma},
$$
\nsince $\delta < \sigma$.

since
$$
\delta < \sigma
$$
.

(ii)
$$
e^{\sigma} \left(\int_{D_2} |\nabla w_+|^2 \rho^{2\delta} dx \right)^{\frac{1}{2}} \leq C_1 \epsilon^{2\sigma} \left(\int_{D_2} r^{-2\sigma-2} \rho^{2\delta} dx \right)^{\frac{1}{2}} \leq C_2 \epsilon^{2\sigma},
$$

\nsince $\delta < \sigma$.
\n(iii) $\left\| \frac{\partial R_0}{\partial \nu} \right\|_{-\frac{1}{2}} = \sup_{\|\Phi\|_{\frac{1}{2}} \leq 1} \left| \int_{\partial \Omega_{\epsilon}} \frac{\partial R_0}{\partial \nu} \Phi ds \right| = \sup_{\Omega_{\epsilon}} \left| \int_{\Omega_{\epsilon}} \nabla R_0 \nabla \Phi dx \right| \leq C_1 \|\nabla R_0\|_{L_2(\Omega_{\epsilon})},$ (29)

because of the duality between $H^{-\frac{1}{2}}(\partial\Omega_\epsilon)$ and $H^{\frac{1}{2}}(\partial\Omega_\epsilon)$ and the existence of a continuous extenbecause of the duality between $H^{-\frac{1}{2}}(\partial \Omega_{\epsilon})$ and $H^{\frac{1}{2}}(\partial \Omega_{\epsilon})$ and the existence of a continuous exten-
sion operator from $H^{\frac{1}{2}}(\partial \Omega_{\epsilon})$ onto $H^1(\Omega_{\epsilon})$. Since R_0 is the solution of the Dirichlet pro its gradient can be estimated by the gradient of an extension of the right-hand side of the bound-

ary condition. We choose as extension the function $(\psi - V)\eta$, where $\eta \in C_0^{\infty}(\mathbb{R}^2)$ is a cut-of-

function with $\$ ary condition. We choose as extension the function $(\psi - V)\eta$, where $\eta \in C_0^{\infty}(\mathbb{R}^2)$ is a cut-off function with $\eta \equiv 1$ in $B_c(O)$ and $\eta \equiv 0$ in $\mathbb{R}^2 \setminus B_{2c}(O)$:

$$
\|\nabla R_0\|_{L_2(\Omega_\epsilon)} \leq C_2 \bigg(\int\limits_{B_{2\epsilon}(O)} r^{2\min\{\lambda,2\}-2} dx\bigg)^{\frac{1}{2}} \stackrel{r=\epsilon t}{=} C_2 \bigg(\int\limits_{B_2(O)} (\epsilon t)^{2\min\{\lambda,2\}-2} \epsilon^2 dx_t\bigg)^{\frac{1}{2}} \tag{30}
$$

The estimates of (i),(ii) and (iii) and inequality (28) imply $||R||_{1,\delta} \leq C\epsilon^{\min\{\lambda,2\sigma\}}$ and the proposition of the lemma follows from the trace lemma.

2) and 3) Problem (22) has the form (27). The first two terms on the right-hand side can be treated as in Case 1, taking into consideration the different behaviour of f_1, f_2, w_- and W. The function R_1 in the third term solves the Dirichlet problem

$$
\triangle R_1 = 0 \text{ in } \Omega_{\epsilon}, \quad R_1(x) = \psi(x) - V(x) - \epsilon^{\lambda} W\left(\frac{x}{\epsilon}\right) \text{ on } \partial \Omega_{\epsilon}.
$$

If we write R_1 as a sum of two harmonic functions $R_1 = R_{1,1} + R_{1,2}$ with supp $R_{1,1}|_{\partial \Omega} \subset \gamma$ and supp $R_{1,2}|_{\partial\Omega} \subset \gamma_2$, the function $R_{1,1}$ can be estimated according to (30) and the estimate for R_1 , reads as follows:

$$
\|\nabla R_{1,2}\|_{L_2(\Omega_\varepsilon)} \leq C_2 \varepsilon^\lambda \bigg(\int\limits_{\Omega_\varepsilon} |\nabla \left(W(1-\eta)\right)|^2\,dx\bigg)^{\frac{1}{2}} \leq C_3 \varepsilon^{2\lambda},
$$

where *n* is a cut-off function with support in a circle which does not contain a point of γ_2 . Analogously to (29) we obtain $||\partial R_1/\partial \nu||_1 \leq C\epsilon^{2\lambda}$ and the proposition of the lemma follows I

It is desirable to get stronger estimates for the remainder function $R|_{\partial\Omega}$. Let Q_1 and Q_2 be domains obtained by intersection of Ω_{ϵ}^c and circles containing Ω_{ϵ} and let $Q_1 \subset Q_2$. Following the paper of Meyers [5], the gradient of *R* can be estimated in an L_p -norm with $2 < p < 2 + \kappa$, where $\kappa > 0$ the paper of Meyers [5], the gradient of *R* can be estimated in an L_p -norm with $2 < p < 2 + \kappa$, where $\kappa > 0$ does not depend on ϵ :

$$
\|\nabla R\|_{L_p(Q_1)} \leq C \bigg(\|\vec{g}\|_{L_p(Q_2)} + \|h\|_{W_p^{-\frac{1}{p}}(\partial \Omega_{\epsilon})} + \|R\|_{L_2(Q_2)} \bigg).
$$

Sobolev's imbedding theorem implies

not depend on
$$
\epsilon
$$
:
\n
$$
\|\nabla R\|_{L_p(Q_1)} \leq C \Big(\|\vec{g}\|_{L_p(Q_2)} + \|h\|_{W_p^{-\frac{1}{p}}(\mathfrak{M}_\epsilon)} + \|R\|_{L_2(Q_2)} \Big).
$$
\ning theorem implies

\n
$$
\|R\|_{C^{0,\delta}(\overline{Q}_1)} \leq C_1 \|R\|_{W_p^1(Q_1)}
$$
\n
$$
\leq C_2 \Big(\|\vec{g}\|_{L_p(Q_2)} + \|h\|_{W_p^{-\frac{1}{p}}(\mathfrak{M}_\epsilon)} + \|R\|_{L_2(Q_2)} \Big)
$$
\n
$$
(31)
$$

with $\delta < \frac{\kappa}{2+\kappa}$

 $\frac{1}{2} \delta < \frac{1}{2 + \kappa}$.
Lemma 3: The remainder function $R|_{\delta\Omega_{\epsilon}}$. $\mathop{\mathsf{can}}\nolimits$ be estimated in the norm of the space $C(\partial\Omega_{\boldsymbol\epsilon})\mathpunct{:}$

the paper of Meyers [5], the gradient of R can be estimated in an
$$
L_p
$$
-norm with $2 < p < 2 +$
\nwhere $\kappa > 0$ does not depend on ϵ :
\n
$$
\|\nabla R\|_{L_p(Q_1)} \leq C \Big(\|\vec{g}\|_{L_p(Q_2)} + \|h\|_{W_p^{-\frac{1}{p}}(Q_1)} + \|R\|_{L_2(Q_2)} \Big).
$$
\nSobolev's imbedding theorem implies
\n
$$
\|R\|_{C^{0,\delta}(\overline{Q_1})} \leq C_1 \|R\|_{W_p^1(Q_1)}
$$
\n
$$
\leq C_2 \Big(\|g\|_{L_p(Q_2)} + \|h\|_{W_p^{-\frac{1}{p}}(Q_1)} + \|R\|_{L_2(Q_2)} \Big)
$$
\nwith $\delta < \frac{\kappa}{2+\kappa}$.
\nLemma 3: The remainder function $R|_{\partial\Omega_{\epsilon}}$ can be estimated in the norm of the space $C(\partial\Omega)$
\n
$$
\|R\|_{C(\partial\Omega_{\epsilon})} = \begin{cases} O\left(\epsilon^{\min\left\{\frac{\pi}{\alpha}, \frac{2\pi}{2+\alpha}\right\}-\delta\right)} & \text{if } 0 < \alpha < \pi \\ O\left(\epsilon^{\min\left\{\frac{2\pi}{\alpha}, \frac{\pi}{2+\alpha}\right\}-\delta\right)} & \text{if } \pi < \alpha < 2\pi \\ O\left(\epsilon^{2-\delta}\right) & \text{if } \alpha = \pi \end{cases}
$$

\nwith arbitrary small $\delta > 0$.
\nProof: We estimate the terms of the right-hand side in (31). For the last summandt results of Lemma 2 can be applied. The estimates of the terms $\|\vec{g}\|_{L_p(Q_2)}$ and $\|h\|_{W_p^{-1/p}(\partial\Omega_{\epsilon})}$
\n(1) $\Big(|\nabla (f_1 - f_2)|^p dz \Big)^{\frac{1}{p}} \leq C_1 \Big(\int (\epsilon t)^{\min\{\lambda, 2\sigma\} - p} \epsilon^2 dx_t \Big)^{\frac{1}{p}} \leq C_2 \epsilon^{\min\{\lambda, 2\sigma\} - \delta}$

with arbitrary small $\delta > 0$.

Proof: We estimate the terms of the right-hand side in (31). For the last summand the are *(8o)* carried out as in the proof of Lemma 2. In Case 1 we obtain with arbitrary small $\delta > 0$.
 Proof: We estimate the terms of the right-hand side in (31). For the last

results of Lemma 2 can be applied. The estimates of the terms $\|\vec{g}\|_{L_p(Q_2)}$ and $\|h\|$

carried out as in the

(i)
$$
\left(\int_{D_{\epsilon}} |\nabla (f_1 - f_2)|^p dx\right)^{\frac{1}{p}} \leq C_1 \left(\int_{D_1} (\epsilon t)^{p \min\{\lambda, 2\sigma\} - p_{\epsilon}^2 dx_t\right)^{\frac{1}{p}} \leq C_2 \epsilon^{\min\{\lambda, 2\sigma\} - \delta}
$$

with $\delta < \frac{\epsilon}{2 + \epsilon}$.

182 V.G. MAZ'YA and R. MAHNKE
\n(ii)
$$
\epsilon^{\sigma} \left(\int_{D_2 \cap Q_2} |\nabla w_+|^p dx \right)^{\frac{1}{p}} \leq C_1 \epsilon^{2\sigma}.
$$

\n(iii) $\left\| \frac{\partial R_0}{\partial \nu} \right\|_{w_p^{-\frac{1}{p}}(\partial \Omega_\epsilon)} = \sup_{\substack{||\Phi|| \leq 1 \\ w_n^{\frac{1}{p}}(\partial \Omega_\epsilon)}} \left\| \frac{\partial R_0}{\partial \nu} \right\|_{w_p^{\frac{1}{p}}(\partial \Omega_\epsilon)}$

182 V.G. MAZYA and R. MAHNKE
\n(ii)
$$
\epsilon^{\sigma} \left(\int_{D_2 \cap Q_2} |\nabla w_+|^p dx \right)^{\frac{1}{p}} \leq C_1 \epsilon^{2\sigma}.
$$

\n(iii) $\left\| \frac{\partial R_0}{\partial \nu} \right\|_{w_p^{-\frac{1}{p}}(\partial \Omega_{\epsilon})} = \sup_{\substack{||\Phi||_{\frac{1}{p}} \to \infty \\ w_p^{\frac{1}{p}}(\partial \Omega_{\epsilon})}} \left| \int_{\partial \Omega_{\epsilon}} \frac{\partial R_0}{\partial \nu} \Phi ds \right| = \sup_{\Omega_{\epsilon}} \left| \int_{\Omega_{\epsilon}} \nabla R_0 \nabla \Phi dx \right|$
\n $\leq C_1 \|\nabla R_0\|_{L_p(\Omega_{\epsilon})}$

and

$$
w_p \n $\langle \delta n_{\epsilon} \rangle$ \n
$$
\leq C_1 \|\nabla R_0\|_{L_p(\Omega_{\epsilon})}
$$
\n
$$
\|\nabla R_0\|_{L_p(\Omega_{\epsilon})} \leq C_2 \bigg(\int_{B_2(O)} (\epsilon t)^{p \min\{\lambda, 2\} - p} \epsilon^2 dx_t\bigg)^{\frac{1}{p}} \leq C_3 \epsilon^{\min\{\lambda, 2\} - \delta}.
$$
$$

The other cases can be treated in the same way. The proposition of the lemma follows from (31), since the domain Ω_{ϵ} is bounded **I**

References

- [1] KONDRATYEV,V.A.: *Boundary value problems for elliptic equations in domains with conical or* angular points. Trudy Moskov. Mat. Obsch. 16 (1967), 209-292.
- [2] LEVIN, A.V. and V.G.MAZ'YA: On the asymptotics of densities of harmonic potentials near a conic point. Z. Anal. Anw. 8 (1989), 501-514.
- [3] MAZ 'YA ,V.G., NAZA ROV,S. A. and B. A. PLAM EN EVSKY: *Asymptotische Theorie elliptischer* Randwertaufgaben *in singular gestórten Gebieten* 1. Berlin: Akademie-Verlag 1991.
- [4] MAZ'YA, V.G. and B.A.PLAMENEVSKY: Estimates in L_p and in Hölder classes and the Miranda-*Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular* points on the boundary. Amer. Math. Soc. Transl. (2) 123 (1984), 1-56.
- *[5] MEYERs,N.G.: An Lu -estimate for the gradient of solutions of second order elliptic divergence* equations. Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 189-206.
- (6) ZARGARYAN,S.S. and V.G.MAZ'YA: On the asymptotic behaviour of solutions of integral equations in potential theory in a neighbourhood of corner points of the contour. Prik. Mat. Mech. 48 (1984), 169-174.

Received 16.05 tions in potential theory in a neighbourhood of corner points of the contour. Prik. Mat. Mech. 48 (1984), 169-174. ZARGARYAN, S.S. and V.G.MAZ'YA: On the ations in potential theory in a neighbourhood of cc

(1984), 169-174.

Received 16.05.1991; in revised form 17.09.1991

Prof. Vladimir G. Maz'ya Ralf Mahnke

Department of Mathematics

Received 16.05.1991; in revised form 17.09.1991

Sources Terestries, in Terises form Triestries

Prof. Vladimir G. Maz'ya

Department of Mathematics

University of Linköping, Sweden O-2500 Rostock, Germany

S-581 83 Linköping, Sweden O-2500 Rostock, Germany

Department of Mathematics Department of Mathematics, University of Rostock