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Asymptotics of the Solution of a Boundary Integral Equation
Under a Small Perturbation of a Corner

V.G. Maz’vya and R. MA_HNKB

The boundary integral equation of the Dirichlet problem is considered in a plane domain with a smooth
boundary which is a small perturbation of a contour with an angular point. The asymptotics of the
solution are given with respect to a perturbation parameter ¢. The problem studied in this article serves
as an example of the use of a general method which is also applicable to the three-dimensional case, to
the Neumann problem and to problems of hydrostatics and elasticity.
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1. Introduction

In the present article we consider the boundary integral equation of the Dirichlet problem in
a plane domain if the boundary is smoothed near an angular point. The main terms of the
asymptotics of the solution are given with respect to a perturbation parameter e.

Let © C R? be a bounded domain with an angular point on its contour Q. A domain 9,
with smooth boundary is obtained by a small perturbation of 9Q near the vertex of the angle.
Let 1 be a smooth function in R2. It is the classical approach to solve the Dirichlet problem

Du =0 inQ, u =Pl ondN (1)
by expressing the function u, in the form of a double-layer potential
()= 55 [ mlo) o logle - vid @
U = or By 3 0og Y| a8y,
a0,

where v denotes the outward unit normal vector to 32, . This leads to the well-known boundary
integral equation

1
5[‘( +Tu, =1y (3)

The operator T is the direct value of the double-layer potential (2). The density function . is
expressed in terms of solutions of auxiliary boundary value problems, using a method which is
described in [3]. The following representations are the main results of this article:

€

(4601 - s(@) - e (%)) it x <a<om,

8N,

o) (¢(z) - v(z) - (w/<e,-a)w+(z))|m‘ fo<a<w

where a denotes the size of the angle. The functions v, wy and w_ are solutions of certain
exterior Neumann problems. The remainder function can be estimated uniformly in the norm
of C(89,) by O(¢") with v > 1, which is proved in Section 3.
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The considered problem serves as an example for the use of a general method which is also
applicable to the three-dimensional case, to the Neumann problem and to problems of hydrody-
namics and elasticity. Moreover, the method can be used to obtain complete asymptotic series
for solutions of boundary integral equations.

2. Formal asymptotics

We suppose that the origin O belongs to the boundary 99 of the domain Q and that 8Q \ {0}
is smooth. In a neighbourhood of the origin Q coincides with the wedge

K={z=(re)|r>0,p€(0,a)} (0<acx?2n).

Let w be a domain with smooth boundary, which coincides with K\ B;(0) outside the unit circle
By(0). For the sake of simplicity it is assumed  C K, w C K (see Remark 1 below).
Now, domains w, and §, are introduced, which depend on a small positive parameter e¢:

w,:{z|§€w}, Q2. =QNuw,.

Later, several subsets of these domains and their boundaries dw, and 9, will be considered.
For that purpose the following notation is used:

D, = Q\ﬁu Y = 39(\69,
D, = K\E, N = O0w\9dK,
D, = K\, Y2 = 09\ 0w,
Clearly, D, C B;(0). '
K
1] w
a
o h
K D,
w Q T2
D, N
o I o

Figure 1: Example with ¢ = 0.6 and a = 35°.
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Complementary domains with respect to R? are denoted by the superscript ¢. A Neumann
problem which is related to the Dirichlet problem (1) is considered:

b _ du.
ov ~ v
We look for the solution of this and all following Neumann problems in the class of functions
with behaviour o(1) at infinity. A solution exists, if a solvability condition is satisfied. For
problem (4) the condition

Ay, =0 in g, on 99,. (4)

du,

ov
a0,

ds=0

is fulfilled because of the harmonicity of u, in Q, and Green’s formula.
We follow the approach of {6), which goes back to one of the authors. The representation
formulae for harmonic functions,

1 a ou,
w(@) = g [ (st togls =3l = S logle - 1) ds,

<

for z € 2, and

1 I’ dv,
v(z) = —== [ (v (y)o—loglz — yl - 7=(y)log|z — y| ] ds,
2r vy dv,
.

for z € U, yield on the boundary 99,

1 1 du,
o=To- 5 [ Glogla-slds,
an.
and (3)
1 1 dv,
3V = -Tv, + P / a—”loglz —ylds,
a0,

taking into account the jump conditions of the double-layer potential. Equation (5) and the
boundary condition of (4) lead to

B+ T -v)= ¥ on R,

which shows that (¥ — v )|, is a solution of the boundary integral equation (3). Since (3) is
uniquely solvable, we can represent its solution by

e = (§ =)y, - )

In order to find asymptotics of p,, the following method (see [3]) is applied to the problems (1)
and (4):

An approximation for the solution of a boundary value problem in Q. is obtained by solving
an analogous problem in the limit domain 2. This leads to an error concentrated near the origin.
The asymptotics of the error function are determined and by the transformation £ = £ the scale
is changed. Then, a second auxiliary boundary value problem is solved in the unbounded
domain w. The solution equalizes the main term in the asymptotics of the error function, if it
is multiplied by € to a certain power.

Using this method a representation for the solution v, of problem (4) is obtained:

v (z) = v(z) + (ﬂu(%) + R(z). (M
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The Dirichlet solution of (1) appears in (4) on the right-hand side. Therefore, we have to look
for its asymptotics according to the same scheme:

u(z) = V(z) + J’w(f) + Ri(z). (8)
We start with the treatment of the Dirichlet problem (1). The Taylor expansion is valid for ¥:

¥(z) = $(0) + z2V9(0) + O (+?).

A first approximation for the solution u, of (1) is obtained by solving the following Dirichlet
problem in Q:
AV =0 inQ, V=4¢|, ondQ 9)

For the study of the asymptotic behaviour of V near O, it is suitable to consider 3 cases:
Casel: 0<a<r

The asymptotics of V' contain terms with integer exponents of r (r = |z|) caused by the function
¥ and solutions of the homogeneous Dirichlet problem for a wedge:

rj’\a,- sinjAp withA=n/a (j=1,2,...),

where a; are certain constants. We have

V(z) = ¥(0) + z2V¥(0) + fi(r,¢) (10)
with fi = O (r"‘i“{’\'ﬂ) near O. The remainder function Ry = u, — V is harmonic in 2, and has
the boundary values

_J -V, on v,
Ro_{ 0 on 99 \ 7. (1

Hence, the main term in the asymptotics of the right-hand side has the order rmin{}:2}, This
term has to be compensated by the solution W of a Dirichlet problem in w. As it will turn out
later, this function W does not influence the first terms in the asymptotics of v, in this case,
since 8 > 1.

In order to solve the exterior Neumann problem (4), we consider the solution of the following

problem:

. e Ov BV
Av =0 in Q°, %= o on 99Q. (12)

The solvability condition | %% ds = 0 is satisfied, since V is harmonic in Q. The asymptotics
an

of v near O contain terms caused by the right-hand side %% and solutions of the homogeneous
exterior Neumann problem for a wedge

9b;cos jo(p—a) withe =n/(2r—a) (j=1,2,...),
where b; are certain constants. It reads as follows:
v(z) =v(0)+ r°bycoso(p— a) + zVyY(0)+ O (r“‘i“(z"”\)) .

The function v is not defined everywhere in ¢ and has to be extended within Q by v'. The
extension is chosen in this manner:
The conditions on 9
. A\
v*= v and a_t; = a—: (13)



Asymptotics of a Solutlon

are satisfied on 8K and v' has the prescribed asymptotics near O:

v'(z) = v(0) — r°by cos Ap + zVH(0) + fa(r, )

with f; = O (r™ir{20A}) | 50 that (13) is fulfilled by the main terms of the asymptotics.

remainder function R; = v, — v solves the problem

AR = (02 = A)biro"2cosdp - Afy in D,
= 0 in Q¢\ D,

) oRy
03_R2_ - bl%(r cos '\S") + ay(fl - f?) + v on vy,
v 0 on aQ( \ Ye-

177

(14)
The

(15)

The main term of the error concentrated near O has to be compensated by a function wy. By

the transformation £ = £ the scale is changed and the problem takes the form

(0 = A)Hy|€|°"2cos A in Dy
AW+ = .
0 inw®\ Dy,

3w+
v

blga;(]fl” cosAyp) on Jw.

(16)

The solvability condition is satisfied and equation (7) is valid with 7 = 0. The function w4

shows the following asymptotic behaviour at infinity:

w4 (§) = |§] " ercos oy — @) + O (I¢17*)

with a certain constant ¢;. Since it is not defined for z € D,, we extend w4 by a function w‘+

according to (13). It has the prescribed asymptotics:
wh(§) = || ercos Ap + O (I€]7*7)

at infinity. From (15) and (16) we derive the problem for the remainder function R in equa-

tion (7):
—Afz in D(
AR = -CAwy in D,
0 in Q¢ \ {D. U Dy},
7] 9
selh-f)+ 52 onn
OR a
W - - Dwy + a—lio- on Y2
ij
o on 82, \ {7c Uz}

In Section 3 it will be useful to have this problem in variational formulation. Throughout this

paper test functions and their restrictions on the boundary are denoted by &.
Since Z(f1 - f2) =0on dD.\ v, and 95‘%*- = 0 on 3D, \ 72, Green’s formula implies

ov

/vzzv«wzz:/v(fl —jg)Véd:—f”/Vw+V(I>dz— / ORo g 44,
1434 Dy afl,

(17

with f, and f, defined in (10) and (14), respectively. The solvability condition is satisfied, since

Ro is harmonic in Q..
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Case 2: 1 <a<2r
Since 1/2 < A < 1,.the asymptotics of V read as follows:

V(z) = $(0) + raysin Ap + zV(0) + fi(r, ) (18)
with fy = O (r2}).

The second limit problem is set to compensate the term ra, sin Ap on 7,:

AW(E) = 0 inw,
. (19)
_ —|é*aysinde  on Ty
W = { (l) on dw\ 1

and equation (8) is valid with 8 = A. The function W shows the asymptotic behaviour © (1€17%)
at infinity. The solution v of (12) has the asymptotics

v(z) = v(0) + r'a,

1 .
: _ min{2\,0}
ooag Sin Me-7)+2zVy((0)+ O (r )

near O and is extended according to (13) with the prescribed asymptotics
v'(z) = v(0) + r*a;(tan Ar + sin Ap) + VH(0) + fo(r, 9) (20)

with fo = (’)(r“‘i“{”"’)). Compared with Case 1, the function w. has to compensate the
additional term %—‘g— on Jw. The problem takes the form

_ —A%a; tan Aw|€|*-2 in Dy
Auw- = { 0 inwe\ Dy,
(21)
3w_ _ 0 A 6W
al/ = - tan Aﬂ'—a;(!fl ) + E— on 6.)

The solvability condition is satisfied, since W is harmonic in Q,. Equation (7)is valid with r = A.

The function w_ shows the asymptotic behaviour O (|§|"\) at infinity, because it satisfies the

condition 2¥= = 2% o5 w and we have A < 0. Hence, the extension w* has the same behaviour
B v

at infinity.
We derive the problem for the remainder function R:
/VR Vddz = /V(fl - f2)Vddz - e’\/V(w_ -W)Védz - / %%lCP ds (22)
¢ ¢ D, D, N
with f, and f; defined in (18) and (20), respectively.
Case 3: a=r1
In this special case the asymptotics of V read as follows:
V(z) = ¥(0) + r(z,(0) cosp + ay sin @) + fi(r,¢) (23)

with fj = O (r2). The index z; denotes the partial derivative in z,~direction. The problem for

W is set:
AW(E)

0 in w,

. (24)
_ | [€l(¥x,(0) = a1)sing  onm
we = { 0 on dw\ 1.
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Equation (8) is valid with 8 = 1. The function W shows the asymptotic behaviour O (1€1°1) at
infinity. The solution v of (12) has the asymptotics

o(z) = v(0) + r(by cos @ + ar sin @) + a(r, ) (25)

with fo = O (rz). The same asymptotics are prescribed for the extension v'. The function w_
solves the problem

Aw_. = 0 in we,
(26)
ow_ a ow
3 = (= - b1) g, (€l cosp) + 5 on Ow. A
Equation (7) is valid with 7 = 1. The function w_ as well as its extension w' show the

asymptotic behaviour O (|€|~?) at infinity. The remainder function solves problem (22) with f,
and f, defined in (23) and (25), respectively.

Remark 1: Since the perturbation was inside the wedge, we had to construct an extension
of v inside €. If the perturbation lies outside the wedge, an extension has to be constructed
for the function V outside §2,. In the case that the boundary is perturbed partly inside and
partly outside the wedge, the Dirichlet solution and the Neumann solution has to be extended

“within Q,\ Q@ and Q\ Q,, respectively.

We summarize the results of Section 2, taking into consideration equations (6) and (7):

Lemma 1: The solution p, of the boundary integral equation (3) for the Dirichlet prob-
lem (1) has the following asymptotics:

(1/)(15) -v(z) - ("/(2"“’)w+(§) - R(z))‘ if0<a<mw

Be(z) = (111(2) — o(z) - (,,/o,w_(é) _ R(z)) on.

if 1 <a<2n,

M

where v is the solution of (12), wy and w_ are the solutions of (16), (21) and (26), respectively.

Remark 2: The expression ¥(z)—v(z) on the right-hand side in the asymptotics of Lemma 1
can be understood as an extension of the solution y of the boundary integral equation for the
Dirichlet problem (9) in Q (cp. equation (6)).

3. Estimates for the remainder function

In order to demonstrate the quality of the asymptotics of Lemma 1, we want to estimate the
remainder function R. For that purpose a new origin is chosen, which lies inside Q.. The
distance to this origin is denoted by p. The weighted Sobolev space Hj s(£2) is defined as the
space of functions with the finite norm

R||,, = R VR|?) p*d ' 0<6< >
1Rl = ([ (5 +1V8F) %) (0<6<3),
nc

<

where the derivatives are understood in the generalized sense. A problem of the form

/vnv¢dz=/g*v¢dz+/h¢ds (27)
Qe Qe an,

with [ |§]%p*dz < o0 and h € H_&(OQ() has a unique solution in H, 5 (QF), if the solvability
¢
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condition [ hds =0 is satisfied. The estimate below is valid for the solution R:
an,

4
IR, <C( [ 131%p%dz + 1A%, ) . (28)
4
a¢

Here and in all following estimates the letter C stands for a positive constant which does not
depend on e. This constant may be different in different inequalities. In a sequence of estimates
indices will be used.

The unique solvability of (27) can be proved in the spirit of the papers by Kondratjev {1}
and Maz’ya and Plamenevsky [4]

Lemma 2 The remainder function R|,,, of Lemma 1 can be estimated in the norm of the

trace space H (0R2). R satisfies the inequalities
lmn{ 2” .
Ce™"Mar Zr—at jf0<cax<r
.2
IRl <§ cemelS 72} it rcacon
Ce? if a=m.

Proof: The cases are distinguished according to Section 2:

1) Problem (17) has the form (27). The three terms on the right-hand side are estimated in
the following corresponding norms.

(/lV(fl - f2)|2p26dz) : < O (/(rmin{A,zo)_l)zdz) 2
D, De /

1
r=at lod (/(d)2 nﬁn(k,?o)—ZCdet) : < Czcmin{/\ﬂo}-
D

1 1
: ;
(ii) e"( / |Vw+|2p26d::) < Clcz"( / r-’°-2p”dz)’ < Cye,

Dz D2

since § < o.

dRo

(i) === =”q?S”“P<1 —‘I’ds = sup| [ VRoV®dz| < C1||VRoll,,q, (29)
Q

because of the duahty between H (60,) and H}((?Qc) and the existence of a continuous exten-
sion operator from 1{} (09) onto H'(Q,). Since Ry is the solution of the Dirichlet problem (11),
its gradient can be estimated by the gradient of an extension of the right-hand side of the bound-
ary condition. We choose as extension the function (¢ — V)n, where 7 € CZ(R?) is a cut-off
function with n = 1in B,(0) and n =0 in R?\ B, (0):

1 1
Cz( / r2min(,\.2)—2dz) T ra Cz( / (d)Zmin(/\J)—?e?dz‘) 2
B2(0) (30)

B3.(0)
< Cscmin(/\ﬂ}‘

IV ol 0.y

IA

The estimates of (i),(ii) and (jii) and inequality (28) imply || R]|, s < Cemin{A29} 3nd the propo-
sition of the lemma follows from the trace lemma.
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2) and 3) Problem (22) has the form (27). The first two terms on the right-hand side can
be treated as in Case 1, taking into consideration the different behaviour of fi, f2, w- and W.
The function R, in the third term solves the Dirichlet problem

AR =0 inQ, Ri(z)=v(z)-V(z)- e*we) on 9Q..

If we write R, as a sum of two harmonic functions Ry = Ry + Ry with supp lem‘ C v
and supp Rlﬂ'm. C 72, the function R;, can be estimated according to (30) and the estimate
for R, 3 reads as follows:

L
2
IV Riall,n < cae*( Jiwwa-mi dz) < Gy,
Q.

where 7 is a cut-off function with support in a circle which does not contain a point of 7v,.
Analogously to (29) we obtain ||OR,/0v|| ) < Ce** and the proposition of the lemma follows §

It is desirable to get stronger estimates for the remainder function R|,, . Let Q; and Q; be
domains obtained by intersection of ¢ and circles containing Q. and let Q; C Q2. Following
the paper of Meyers [5], the gradient of R can be estimated in an Ly-norm with 2< p <2+,
where x > 0 does not depend on e

uvnum,)50(||g1|£,,(q,)+||hn N +||R||L,(Q,)).

wy, T (80¢)
Sobolev’s imbedding theorem implies

IRl gosz,y < CillRlluyq,

31
C2(”§"Lp(02) +A -, o+ ”R”Lz(oz)) 31

w, P(ono)

IA

with § < —~—.
24+ K

Lemma 3: The remainder function R|,,, can be estimated in the norm of the space c(a9,):

O(c"‘i"{g'%}‘s) if0o<ac<m
”R"c(on,) = (V) ((min{%'"_";}_6) ifr<a<?rm
0 (279 ifa=m

with arbitrary small § > 0.

Proof: We estimate the terms of the right-hand side in (31). For the last summand the

results of Lemma 2 can be applied. The estimates of the terms ||§]|LP(°2) and ||| _,,, are
Wy (80¢)

carried out as in the proof of Lemma 2. In Case 1 we obtain
1

1
O ([I96-spie) < oo [lapmadania)” < cueninan=s
D,

(3

with & < 7.
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(i)

(iii)

V.G. MAZ'YA and R. MAHNKE

1
c”( / |Vw+|”dz)PS Cre”.
D3;NQ2
0
I_Ro = sup a—Rod’ds = sup /VROVQ dz
ol _, oy, < ov
wp P(m‘) wppl (891) « Q.

< Cl”VROHL,,(nt)

and

1
||VR0||LP(0¢) < Cg( / (et)vnﬁn{x,z}—vezdzt)v < Caemin{r2)-5,
B3(0)

The other cases can be treated in the same way. The proposition of the lemma follows from (31),
since the domain Q, is bounded
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