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On Classes of Stieltjes Type Operator-Valued Functions with Gaps 

V. E. TSEKANOVSKII 

We introduce and investigate classes of operator-valued functions with gaps, which can be 
realized as fractional linear transformations of operator-valued transfer functions of conser-
vative Scattering systems. 
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Classes of Stieltjes type operator-valued functions with gaps on the positive semi-axis (i.e., 
with intervals of holomorphy and definiteness) are considered. We prove criteria that a given 
function, whose values are operators in a finite-dimensional Hubert space, belongs to these 
classes. Moreover, we investigate classes of Stieltjes type operator-valued functions which 
admit a realization, i.e., which can be represented as fractional linear transformations of 
operator-valued transfer functions of conservative scattering systems of the form 

e=( 5 cc, CS, Al, K,I,E) 

where Al	_], ImAJ = KK, Al D T J A, Al • J T D A, A is a closed Hermitian operator 
in ., and T is closed with dense domain of definition in ,'. 

In the class of realizable Stieltjes type operator-valued functions the following subclasses 
are investigated: 

1. the subclass, where Z(A) 	(T) * (T) 
2. the subclass, where	* Si,, ( T) *	( T) 
3. the subclass, where	* S,,	( T) = Z( T). 

We prove analytical criteria for a given operator-valued function to belong to the mentioned 
subclasses (with gaps). These criteria are analoga, supplements, and refinements of some of 
the results stated by M.G. Krein and A.A. Nudel'man [7]. 

§ 1 The classes Sj[Uj'1(aj , PA of operator-valued functions 

According to M.G. Krern [8], a function V(z), whose values are operators in a finite-dimensi-
onal Hilbert space E, will be called a Stieltjes type operator-valued function if the following 
conditions hold: 

1. V(z) is holomorphic on Ext[O,co) : {z: z 4 [O,)} 
2.V(z)aO for z<O 
3. V(z) is an operator-valued R-function, i.e., ImV(z)/lmz a 0. 

The class of Stieltjes type operator-valued functions will be denoted by S. 
Let	 be a system of mutually disjoint intervals on the positive semi-axis.
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Definition: By	 we denote the class of functions V(z), whose values are 

operators in a finite-dimensional Hubert space E, such that the following two conditions hold: 

1. V(z) s S. 
2. V(z) is holomorphic and positive on all intervals (a3), i.e., (V(z)f, f) > 0 for all f  E, 

ft 0, and all z € (V(z) is holomorphic and negative on the intervals respectively, 
i.e., (V( z)f, f) <0 for all fe E, ft 0, and all z E (a, f3)). 

Theorem 1: A scalar function V(z) belongs to the classes	 if and only if the

following two conditions hold: 

(I) V(z)€S. 
- z	 m	- z 

() [1 i' -	V(z) S	1J ' -	V(z) € S, respectively 
J=1	 (jm=l =1 J 

Proof: First we consider the class	 Let (i) and (ii) be fulfilled. Since (i), a 

well known theorem (see [71) gives us 

V(z)cexpf(__L__ _.j-f)f(t)dt,	 ( 2) 

where c >0, f(t) is a summable function such thast 0 :5 f(t)!g I a.e. and j' (l + t2)'f(t)df 
< . Moreover, the representation (2) is unique. It is not hard to see that 

'3-i 111 - z	 f_j 	 L__\f(f)dt	 (3) j_zcjexPjt_z	l+t2) 
J 

Since (ii), we get. 

__ 
f1i V(z)cjexpf( 
j=i 3	 _co\tZ	 (4) 

in an analogous way, where c1 > 0 and the function 11(t) has the same properties as f(t). Using 
(3) and (4), we obtain 

V(z) - caexpf( 
i	t 

-	- j7i) I (t ) dt, 

where

f1(t)	for t € 
(t)	

(t) - 1 for t € 

Because of the uniqueness of the representation (2) it follows 

V(z) = c exp	f	(4 . _.1_t_.)f(t)dt,	 (5) 

where c >0, 0 :5 f(t):5 1 a.e. on	 By a well known theorem (see [ 7 1), the relation

(5) implies that V(z) is holomorphic and positive on all intervals 

Now assume that V(z)	 Then V(z) € SJJa1 , 13 1 )] . We will show that the 
inclusion (( - z)/(a 1 - z))V(z) € S is true. In fact, setting =	- z)/(x 1 - z) and %'() V(z)
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we get 

Im%') - a j_ z1 2 lmV(z)
a 0, lm	- 13 - a 1	lmz 

hence, V1 ()€ R, i.e., 4() is an R-function. It is not hard to see that z 6 (a1 ,13) implies € (- Cx), 0), 
and since V(z)€ SJJa1 ,13 1 fl, it follows %'()s S. Now a theorem of M.G. Krein (see [81) gives 
us c R. Thus ((13 1 - z)/(a 1 - z))V(z) € R. Since ((13 k - - z))V(z) a 0 if z E (-co,O), we 
obtain (( 131 - z)/(a 1 - z))V(z) E S. 

We will show that the implication 

k13-z	 k*113._z 
LIci' -

 
z V(z)eS(l<k<m)	flj'Z V(Z)ES 

J=1 J	 - j=i .1 

is true. In fact, it is not hard to see that 

k (3 . - z 
fT a - z V(z) € S..{cx,+j,(3k.lfl. 
J=1 J 

Now by analogous arguments as above we get 

k (3-z 

Thus the first part of the theorem is proved. 
Now let V(z) € S[U(a,(3)]. We will show that the ( )-part of (ii) is true. It is not hard 

to see (cf. [61) that V(z) E R if and only if -V(z) -1 € R. Thus, the relation V(z) € Sa1,(31)] 
implies - V(z' € Rand - V(z) - ' > 0, z E (a1 ,0 1 ). Setting = (3 - z)/(a 1 - z) and V() = - V(z)-', 
we get 

(31 - zI	i	 ((31-zI	1 \\-	a1-z 
a1 -	 € R, hence	a1 -	 =	

-z V(z)€ R. 

Since	V(z) 2t 0 if z € (- ,0), it follows 131 z 	S. Using an analogous induction

method as in the first part of the proof we obtain the ( )-part of (ii). 

Now assume (i) and (ii)/( )-part. Consider the function - V(z)' € Rand use analogous ar-
guments as in the proof of the sufficiency in the first part. This gives us that - V(z) is holo-
morphic and positive on all intervals (a,(3). Thus the theorem is proved I 

Theorem 2: A function V(z), whose values are operators in a finite-dimensional Hubert 
space E, belongs to the classes S±[U(a, 0d)] if and only if the following two conditions hold: 

(i) V(z)€S. 

	

(3 . - z	I m 
a-' - 

z (ii)fl ci' - V(z) € S (fl	- V(z) € S, respectively 
j i J	 j1 J 

Proof: Let V(z) € S..fU1(0C,(3)]. Considering the scalar function (z)f,f) e Sand using 
Theorem I we get 

(Vz)f,f)(fI 1	V(z)ff)ES. 

Hence, the operator-valued function fT ' =	V(z) belongs to S. 
J=1 J 

13	Analysis, Bd. II, Heft 2 (1992)



186	V. E. TSEKANOVSKH 

The sufficiency of conditions (i) and (ii) is trivial. The proof for the class S_[U(x,13)j 
is analogous. Thus the theorem is proved I 

Definition: We will say that a function V(z), whose values are operators in a finite-dimen-
sional Hilbert space E, belongs to the class 

n S[U'1(c,dfl 

if the following three conditions hold: 
1. V(z) € S. 
2. V(z) is holomorphic and positive on the intervals	(j =	m). 
3.3. V(z) is holomorphic and negative on the intervals ( Ck, dk) (k = I.....n). 

Theorem 2 immediately implies the following 

Theorem 3: A function VW, whose values are operators in a finite-dimensional Hubert 
space E, belongs to the class	 fl S_[U,I(ck,dk)] if and only if the following 
two conditions hold: 

1. V(z) € S.
'1 c -z 

Xj - Z Jl d, - V(z) £ S. 
IJ 

§ 2 Realizable operator-valued functions of the class S±[LJj(aj . 13j1J 

Let A be a closed Hermitian operator in a Hilbert space 5, whose defect numbers are finite 
and coincide. This operator can be considered as acting from	A) into S. Let A be the 
adjoint operator. Clearly, )(A) = S(where the closure is taken in ).We set (A) and 
introduce the scalar product (f,g) = (f, g) + (Af,Ag) (f,g E S)+ ). We consider the rigged Hil-
bert space $.. C $ C Si- (cf. [21). 

We will say that a closed and densely defined operator T in Sbelongs to the class 0A if 
the following two conditions 

1. T D A, T D A (A is closed and Hermitian) 
2. -i is a regular point of T 

are fulfilled. 
A bounded operator Al: S + -	(i.e., Al £ [ + ,S)j) is called a biextension of the Her-

mitian operator A if Al D A and A1	A. Identifying the dual space of	with S , , we see that 
AJ€	lfAi =A1, then Al is called aselfadjoint biextension of A. 

By A we denote the restriction of Alto	= {f€ S: Al! E S)). It is called a quasikernel

of Al (cf. [10, 11]). A selfadjoint biextension is called a strong biextens ion if  = ,(cf. [10,111). 

Let Ts A• Then Al	is called a (')-extension of Tif 

AID TDA, A13 T DA.	 (6) 
Moreover, if AIR = ( Al Al )/2 is a strong selfadjoint biextension, then Al is called a correct 
()-extension of T. 

By definition, the class AA denotes the set of all operators T £ OA such that A coincides 
with the maximal common Hermitian part of T and T.
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Definition: The operator colligation 

E) - (	
Al	K	J\ 

- S)..CS)CS)	E)	 (7) 

is called rigged if the following four conditions hold: 
1.J=JJ 1 (dimE <OD). 

2. K is a bounded linear operator from E into 
3. Al is a correct ( s )-extension of T E AA , and 

ImAl = (Al - A1)/2i KJK.	 (8) 

4. The ranges of K and Im Al coinside. 

The operaror-valued function 

We(z) = I - 2iK(Al - zI) -1 J<J	 (9)!

is called a Livsic type characteristic function of the colligation e. 
Furthermore, we introduce the function 

Ve(z) = K(AI R - zI) - 1K.	 (10)

It is well known (cf. [3,9]) that the functions V0(z) and We(z) are associated by the relations 

Ve(z) = i(W8(z) +J )'(We(z) - I)J and W9(z) = (I + iVe(z)J) 1(I - iVe(z)J).	(11) 

We consider the conservative system (cf. [91) 

(Al - zI)x a KJp 
p .. = p_ - 2iK"x,
	 (12) 

where x e , p E E, p is the so-called input vector, p is the output vector, and x is the inner 
state. It is not hard to see that the transfer function 11(z) of such a system (i.e., cp. = fl(z)q)) 
coincides with the operator function We(z). If J * I, then the system is called a crossing system 
and if J = I, it is called a scattering system (cf. [ 1 1) . In the following we will write a conserva-
tive system e in the form of a rigged operator colligation. 

Definition: A function V(z), whose values are operators in a finite-dimensional Hilbert 
space E, is called realizable if it can be represented as 

V(z) = Ve(z) = K (AJ R - zI) - 'K = i(We(z) +J)1(V(z) - 1),	 (13)!

where 0 is a conservative scattering system of the form (7). 

Theorem 4: Let V(z) be a realizable function, whose values are operators in a finite-di -
mensional Hilbert space E, i.e., V(z)= K (Al, - zI) -1K. Let A > 0 and let ((X,13) be an arbi-
trary interval of the positive semi-axis. Then V( z) belongs to the class SJja, 0 fl if and only if 
the following two conditions hold: 

1. AI R Z 0. 
2. For an arbitrary set { z1 } 1 of non-real complex numbers such that z1 * i and for all 

p . £ N2 . (where N2 . is the deficiency space of A) it holds 
P

(B(z,,zj )p1 ,pj ) a 0,	 (15) 
i, 1=1 

13
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where
-	- a	

R	
al -(A +i) +	 (16) 

- X)(a -)	+ ( - X)(a-) 

Proof: Assume that the conditions (14) and (IS) hold. We will show that V(z)e SI(a,13)]. 
Since V(z) is realizable, there exists a conservative scattering system 

(	i	 K	J 
E 

such that V(z) = V0(z) = K (AJR - zi ) 'K .The operator Al is a ( . )-extension of some densely 
defined closed operator T, i.e., condition (6) holds, where A is the common maximal Hermitian 
part of Tand T'. Let N be the deficiency space of the Hermitian operator A and let 
be an arbitrary set of non-real complex numbers such that z1 2. Moreover, let p . € N 1 . Ac-
cording to [11], there exists a vector hi E E such that 

cp, (AIR - zI) -1Kh 1	(i	I. ... . p).	 (17) 

Set w, = (3 - zi )/(a - z). We will prove the inequality 

'wV(z)-WV()	\ 
Z -	h, hi) a 0. 

In fact,

.(w'V(z)-W',V() 

i,i=t 
	z, -	h1 phi) 

= ±(wi (AIR -za1) - W(AIR -j1)1, Kh1) 
1	1	 V 

=	
((AIR - 211)_'( wj(A I R - 111)- '(AI - zj!))(AIR _z'1)_1 Khi,Kh1 

=  1	
z. - z1 

1,1 

_______ 
+ Z' 

t? 

-	(f	-a	 a3-3(z +j)+z.j 
- a-z)(a-fl)	+	(a-z)(a-TI)	1)P1Pi 

P 
=	(B(z1, z1)cp1 , 9 1) a 0. 

i'1=1 

Setting p = 1, z 1 z, h1 h, we obtain from (17) and (18)

13V(z) - —4v(2) )

	

lm(2__V(z)) 
h h ^0 and a 0, 

z-Z	'	 Imz 

i.e., the operator-valued function (( - z)(c€ - z))V(z) is an operator-valued R-function. Now 
condition (14) implies that V(z) € S (cf. [ 4 ]) . Since for z < 0 we have (3 - zXa - z) a 0 it holds 

((13 - z)(a - z))V(z) €S. By Theorem 2 we get V(z)€ S.[(a,13fl.

(18)
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Now assume V(z)E SJ[(a,13)]. Thus V(z)€ Sand hence AIR a 0 (cf. [41). It remains to prove 
(15). In fact, by Theorem 2 the condition V(z)e S.[(a,3)] implies that (( - z)(cx - z))V(z) € S. 

Thus, the operator-valued function (( - z)(a - z))V(z) has a representation of the form 

z VW	+ f---i--do(t),	 (19)


where i 2t 0,o( t) is a non-decreasing operator-valued function in E such that J '(l + t ) 'do( t ) < . 
Let {z}/	 p ,be an arbitrary set of non-real complex numbers such that z1 * 2. Let . e N1. 
Then according to [ii] there exist vectors h . € E such that (17) holds. Setting w1 ((3- z1 Xa - z,) 
we obtain

P 
f do(t)h,h1) ^ o. 

P (w V( z1) - wV(Y)) =	

5(t -z )(t -2) I	-	
i,1=1	0	i i. 1=1 

It is clear from the proof of the sufficiency part that the inequalities (15) and (18) are equiva-
lent. Thus, the above inequality yields the needed result I 

Remark:If there is no gap, i.e., if cx = 3, the inequality (15) holds trivially and we obtain the 
results of [41. 

Theorem 5: Let V(z) be a realizable function, whose values are operators in a finite-di-
mensional Hilbert space E, i.e., V(z) = K(AIR - zI) 1K. Let (a,(3) be an arbitrary interval 
of the positive semi-axis. Then V(z) belongs to the class S[(a,13fl if and only if the following 
two conditions hold: 

1. AI R a 0. 
2. For an arbitrary set {z 1 }	of non-real complex numbers such that z1 * z1 and for all 

p, € N 1 (where	is the deficiency space of A) it holds 

P
(B(z1 ,z1 )p,p 3 ) a 0, 

;J=i 

where
cx-(3  B(X,) 

= ((3- x)( -)	((3- x)( -) 

Proof: This theorem can be proved in the same way as Theorem 4 (set w1 = (cx - z1 X(3 - z, ))I 

Note further that in the case cx = 0 (i.e., if there are no gaps) Theorem 5 is an extension of 
results of [4]. Moreover, it is not hard to see that the above used method allows us to obtain 
analogous results for the classes 

S±[U',(cx,(3)] and S.[U+1(cx,(3)] fl S[1J+,(c,dj)]. 

In fact, we have the following 

Theorem 6: Let V(z) be a realizable function, whose values are operators in a finite -di-
mensional Hilbert space E, i.e., V(z) = K (AI - zJ) - 'K. Let (cx,f3) (j = 1..... m ) and (ck, dk) 
(k = I.... . n) be arbitrary mutually disjoint intervals of the positive semi-axis. Then V(z) belongs 
to the class S..[U(cx,(3fl fl S_[Uj.,(c,1, dk YJ if and only if the following two conditions 
hold:

(20)
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1. AI R 2t 0. 
2. For an arbitrary set {z} 1 of non-real complex numbers such that z * I and for all 

€ N, (where	is the deficiency space of A) it holds 

P

(B(z1, z1)p, pj) a 0, 
i, 1=1 

where 

BO, )- '(X) WV AIR + Aw(i)- 4W(X)	 (21) 

and

V/(X) 
= jJ c - A I dk - A 

"3 -X	CkA	 (22) 

§ 3 Some subclasses of realizable Stieltjes type operator-valued functions with gaps 

By a result of M. G. Krein (see [81) each Stieltjes type function V(z), whose values are ope-
rators in a finite-dimensional Hubert space E, can be represented in the form 

V(z)r y Tdo(t) 
0 (t -z)'
	 (23) 

where i 0,0(t) is a non-decreasing operator-valued function in E such that 00 + t ) 'do( t ) < 
According to [5], we introduce the following notion. 

Definition: We will say that a Stieltjes type function V(z), whose values are operators in 
a finite-dimensional Hilbert space E, belongs to the class S(R), if 1f 0 for all fof the sub-
class

E	{f€E: f(do(t)f,f)E <co}.	 (24) 

As it was proved in [5], each operator-valued function V(z) E S(R) can be realized by a 
conservative scattering system e, i.e., it holds (13). 

Definition: Following [5], we introduce the following subclasses of S(R): 
(i) The class S°(R) consisting of all V(z) E S(R) such that 

j'(do(t)f,f) = co (1€ E, f 0).	 (25) 

(ii) The class S 1(R) consisting of all V(z) E S(R) such that i = 0 and 

f(do(t)f,f) < co (f€E)	 (26) 

in the representation (23). 
(iii) The class S° 1(R) consisting of all V(z) E S(R) such that	{0} and E, t E.
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It is not hard to see that 

S(R) = S°(R) u S 1(R) u S° 1(R).	 (27) 

Definition: We introduce the following subclasses of S(R),S°(R),S'(R) and S°1(R). 
(i) The class	 consisting of all VW e S(R) such that V(z)is holomor-

phic and positive (negative) on all intervals (a,3). 
(ii) The class S°[R, U(a , cl)] consisting of all V(z) £ S O(R) such  that V(z) is holomor-

phic and positive (negative) on all intervals 
(iii) The class	 consisting of all V(z)e S 1(R)such that V(z)is holomor-

phic and positive (negative) on all intervals (ct,3). 
(iv) The class S±° 1[R, U''1 (a ,,)] consisting of all V(z)€ S° 1( R)such that V(z)is holomor- 

phic and positive (negative) on all intervals 

Let e be a conservative scattering system of the form (7) such that Ve(z) = V(z) and let A 
and The the operators of (6). Then (cf. [51) 

A)= s, ZM * Z(T) if V(z) € 

(A)*S), Z,(T) = Z(T) if V(z)€ 

(A)*,	(T) Z(T) if V(z) E 

Theorem 7: A function V(z), whose values are operators in a finite-dimensional Hilbert 
space E, belongs to the class S ±°[R,(a, )] if and only if the following two conditions hold: 

(i) V(z)€ S°(R). 

(ii) V(z) E S°(R) (
	

V(z) S°(R), resPectively).	 ( 28) 

Proof: Assume that the conditions (28) hold. Since S°(R) € S, we have V(z) £ Sf[R,(a, Pfl 
by Theorem 2 and, hence, V(z)€ S°[R,(ct,3)]because V(z)E S°(R). Conversely, assume that 
V(z)€ S2[R,(a,3)]. Then, clearly, V(z)€ S°(R). It remains to show the first inclusion of (ii). 
It is well known that 

J'(do(t)f,f) = Ii  (TI lmV(i)f,f),	 (29) 

where 0(t) is the operator-valued measure of the representation (23) (cf. [61). The definitive 
of S°(R)and (29) imply 

lim (ilmV(ii)f,f) r co .	 (30) 
1 1'co 

Since V(z) = K (AI R - zI) - 'K, we obtain 

lmV(z) = Im zK(AIR - 2I) - '( AI R - zI) - 'K.	 (31) 

Set
fn = (AI R - iI)-1Kf.	 (32) 

From (30) - (32) it follows 

lim 2(f
1
f)	urn '((AIR - ii) - 'Kf,(AIR - i l Y I 1Kf)	 (33) 

14'ca
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= urn ii 2(K(AIR + 111I) -1(4R - iiiIY 1Kf,f) = urn (ll lm V(i1)f, f) = 
?1to 

We will show that 

urn	
a 

(1iIm_-4.fl-v(i1)ff) = ).	 (34) 7ltCO 1	Ill 

In fact, setting z1 = z1 i1 in the inequality (18) and regarding the considerations of the proof 

of this inequality we obtain 

lim
1+ 

(iiIm---V(iii)f, r) = lim 
(ll2( - 

a) (AIR F i,,) 
+	

f f + ii	(f f)) 
7)o\	a-Il) a2 + 1 2	 a2 + 12	 a2 + 12 71' 71 

k Urn	
))4	

(f7,f7) = lim	
12 12(f f) = + 12	 7it. a2 + 12 

We mention that we have also used Theorem 4 (AIR ^ 0) and (33). 

Finally, assume that V(z)E S[R,(a,3)]. We will show that ((a -z)/(3 -z))V(z) € S°(R). 
Setting w = (a - iiX - i ll) and using (13) we get 

(IM wV(i1)!,f) = -((wK(AI R - ii)!) 1K - WK(AIR + illIY'K)f,f) 

= --((w(A IR - iii!) - + - - G4, + ii1l )-1)Kf K!) 

( w WAI

	

	
(35) 

w-tt7 Ff) 
+ 2 

- 1(a -) 
(AlRf71,f71) 

+ 1(a +12)(f f71), -	_illI 2	 i1lI2	71' 

where f, has the form (32). But (4R!71,41) = (lm ill V(ill)ff) 
In fact, 

IV(ill)ff) _(inV(ill)+ illV(-il])ff) 
11	'	-	 2i1	/ 

( il)K( A IR - i ll ! ) 1K +i1)K( A IR + i11I)K 
=

2i1	 / 

( (AIR + i l)J) 1( iI](AIR + iii!) + ill(A IR - i ll I ))(AR - 
=

	

	 KFK!)

2i1 

= (AIR 41 , f71) 

Regarding (23) we obtain 

flmiiiV(iii) 

ff

,	
= ( •1* f,f)+f	t	(d(t)!,f). 

) 1	 ot2+fl2 

Using Lebesgue's Dominated Convergence Theorem (cf. [61), it follows 

lirn (AIR !71 , 1',) )	lim (lmiii V(i1)	
= (yi+,f) < .	 (36)YI t CO 11'QD\ 

Now (35) and (36) imply 

limIim ,	- lim a - 171 
V(ill)f, f) - . /12(a - 

2+
	( AIR 	f,,) + 1I3 (f1,	

+	2 1
2(fl , F)) 711' (	 I1	 71a,kll2	 32	2 ' 
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,I urn 12	
- ) ( AIR fl, f) + 2	12(, f)) a	(37) 

7) 1Co\ 132 +	 13 +2 

Thus the theorem is proved I 

Theorem 8: A function V(z), whose values are operators in a finite -dimensional Hilbert 
space E, belongs to the class S[R, (a, 13)] if and only if the following two conditions hold: 

(i) V(z)eS1(R). 

(ii) 13 - Z V(z)e S 1(R) (-_--_v(z) E S 1(R), respectively) a - z 

Proof: The sufficiency is obvious (compare the proof of Theorem 7). Now assume that V(z) 
€ S'.{R,(a,13)]. Clearly, V(z)€ S(R). We will show that ((13 - z)/(a - z))V(z) £ S1(R). Since 
V(z) is realizable, the relation (13) holds. In this relation, the operator AIR is a bounded linear 
operator from into S_. Let R be the (isometric) Riesz-Berezanskii operator, which arises 
in a natural way in the therory of nested Hubert spaces (cf. [21).The operator R has the pro-
perties (f,g)_ =(Rf,Rg)+ =(Rf,g) =(f,Rg) (f,g€	Thus 

I(AI R %,f7) )I = I(RAJ RI1 ,1'7) )+I 1 II RA II II7)II = II RAI RII(lI f7)11 2 + IIA71U2)	 (38) 

= IRAIRIKIIf7)I1 
2	

2 II7)II 2 )	IIRAIRII0 +2)IIf7)II2, 

where P is the orthoprojector of S, onto CA.) and the operator A is the maximal common Her- 
mitian part of the operators Tand T that arise realizing the operator-valued function V(z) as 
a transfer function of the conservative scattering system (7). Furthermore, as it was noted in 
the proof of Theorem 7, we have 

Ii  1Im—h1-V(i11)ff) = lim (2(13 - a)(AIRf	+ 2&	
+	(f f 

71t'o= 1 a2 +	 2 + 2	a2 + 2	1' 11) 

Suncefdo(t)i,f) = limi 2(f7) ,f7) ) < a, the realization (38) implies lim(iIn_L!ZLV(ii1)f,f) Tlt—
< Co . Now assume V(z)e S[R,(a, 13)]. We will show that ((a - z)1(3 - z))V(z) € S 1(R). Using 
(37) we get

ill
	

"]2&3 2  
13i	 7)\132+ :5 limI	U'71!'7) + 

In order to obtain the last estimates we have used the fact that AIR 2: 0. 

The following theorem is an immediate consequence of Theorems 7 and (8). 

Theorem 9: A function V( z), whose values are operators in a finite -dimensional Hilbert 
space E, belongs to the class S° 1 [R , (a, 13)] if and only if the following two conditions hold: 

(i) V(z)c S"( R). 

(ii) - Z V(z) £ S°1(R) (----V(z) S° 1(R), respectively) 

Combining the results of Theorems 7 - 9 and regarding (27) we obtain the following
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Theorem 10: A function V(z), whose values are operators in a finite-dimensional Hubert 
space E, belongs to the class S[R , (cs, 3)] if and only if the following two conditions hold: 

(i) V(z)sS(R). 

() ---v()€ S(R) (.:-Lv(z)E S(R), respectively) 

Theorem 11: A function V(z), whose values are operators in a finite-dimensional Hubert 
space E, belongs to the class S°[R,	, 3)] if and only if the following two conditions hold: 

(i) V(z) E s°(R). 
m ._z	 im • - z 

(ii) fT '. -	V(z) S°(R) (LI	-	V(z) E S°(R), respectively 
J=1 J	 J=i J 

Proof: The sufficiency of the conditions is easy to prove. Since S°(R)c S, we have V(z)s 
because of Theorem 2. But since V(z)€ S°(R),we obtain V(z)E S [R,U(aj J3)j. 

The necessity is proved with aid of mathematical induction. For n = 1 the result was proved 
in Theorem 7. Now assume that form pfrom V(z)€	 it follows that 

(i) V(z) € S°(R). 
P 3 . - z 

(ii) fT . -	V(z) € S°(R). 
j=1 J 

We will show that this fact remains true for n p + 1. Assume that V(z)€ S2[R,U(.,13fl. 
Then, clearly, V(z)€ S2[R,UJ1(,)] and hence 

(i) V(z)€ S°(R). 
P*13. - z 

(ii) fT '. -	V(z) E S°(R). 
J=1 J 

Since V(z) is holomorphic and positive on the interval	 we obtain 
P 3 . - II ' - V(z) e S2[R,(a.1,3.)] 

J=1 J 

Hence by Theorem 7, 

	

- z ..	- z	 P11- z 
- 2	-	

V(z) =	-	V(z) € S°(R). ap+j

An analogous proof works in the case V(z) € S° ER, UJj(cx,l3flU 

It is not hard to see that for the classes

and 

analogous results hold. Combining the above stated theorems we get the following 

Theorem 12: A function V(z),whose values are operators in a finite-dimensional Hilbert 
space E, belongs to the class S +[R, U(cx 

jm j , Pj )1 n S[LJ, j ( ck, dk )] if and only if the following 
two conditions hold: 

(i) V(z)€ S(R).
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" Cz 
(U) 1 a - z	- z V(z) E SM. 

j=1 i

Note that analogous results can be formulated for the classes 

S+TR, U(a , j)] n S[Ul( Ck, dkfl, 

fl S[Uj(ck,dkfl, 

n 

Definition: Let A be a symmetric operator in a Hubert space S,.The interval (a,13) is called 
a gap of the operator A if 

Ikf
 - (x

2_
f 11 2! -j- 11111 for all f €

	 (39) 

Theorem 13: Let V(z) b a realizable operator-valued function in a finite-dimensional Hil-
bert space E, i.e., V(z) = K*(AI R - zI) - 'K, where (6) holds. Let VAT= S.2 and  a 0. Let (a,3) 
be an arbitrary interval of the positive semi-axis. Then V(z) E S+LJU,3YJ and (aj3)is a gap of 
the operator A if and only if the following two conditions hold: 

(i) AR ^! 0. 

(ii) (AIq,p) +—(p,p) - --&(Ap, p) - --<,Ap) +—(A• ,A)^ 0 V € S.(40) 

Proof: Assume that (40) holds. Let { z 1 } 11 be an arbitrary set of non-real complex num-
bers such that z * z1 . Let Nzk be the deficiency space of the operator A and p- e N 1 . Set p 
=	'1(a - z1)-1p . Since A9 1 = z, p,, we obtain from (40) 

( AIR p,p) +	—(cp,) -	—(Ap,p) - --&(p,Ap) + 

P	 p 
=	 I +  

(a - zXa - )( AIRP I Pl)	-	(a - z1)(a _2fpj,pj) 

P	 p 

	

- ..J.....	 (Aq,cp1) - ---:(a - - 
1,1=1	

z1 )(a - z1

P 

+ —i --: - )(AP Ap1) 
i, 1=1 

	

-a	(a-z3Xa- z, 
P 

=	 13 - a	 a13-(3(z, +y,) zij 

	

- z )(a - _)AIR +	(a - zXa - )	I)Pi 1) 

= -1-(B(z1 ,zj )p 1,p j ) a 0, 
1,1=1 

where B(X,i) has the form (16). Thus Theorem 4 yields V(z)€ S+[(a,13)]. 
Now we will show that (a,13) is a gap of A. In fact, if the vector p of the inequality (40) 

belongs to (A), then with regard to the inclusions A D A and AIR D A we obrain 

(AIR P,p) ' (p,p) - --&(Ap,p) - ---(p,Ap)+ --(Ao,A'p)
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= (Ap,(p) + 	(,p, q)) +	 Ap) 

=
+L_{Ap,Ap) - t(Acp, p) a 0. 

This implies 

(a + 13)(A cp,p) --^ a3(p,p) + (Ap,Ap).	 (41)


But conditions (39) and (41) are equivalent. In fact, if (39) holds, we get 

((A - 0'+_1)p,(A - j- i)) 
a (fi_)2(p) 

hence 

(Ao,Ap) - (a +13)(Ap,p) 
+(j_)2(p,p) (-j-)p,p 

and (a + 13)(Ap,(p) 15 a 13( p , p ) +(Acp,ço), i.e., (41). It is not hard to see that the converse con-
clusion is also true. Thus, the interval (a, 13) is a gap of the operator A. 

Now let V(z)€ S+[( a ,13 )] and the interval (a,13) be a gap of the operator A. Then by Theo-
rem 4 it holds (15). As it was proved above, this yields the inequality (40) for all vectors p of 
the form

(42) 

where { z1 } / 1 be an arbitrary set of non-real complex numbers such that z1 * z1 and p1 is an 
arbitrary vector of the deficiency space N21 . Let	V.a N2 , where the closure is taken 
with respect to the metric of the space S. Then, clearly, ,S) = where the subspaces $ 
and S)2 are invariant subspaces of the operator A and the operator A2 A!,2 is selfadjoint. 
Thus, A A1 > A2 , where A 1 = AI1 . It is easy to see that A = AcA2 . It follows that each 
vector p E S).. can be representeds in the form p = p1 + p 2 , where p1 € Z(A) and p2 € 

Since the operators AIR and A are continuous operators from 9 	5)_, we can extend the

inequality (40) from all vecotrs of the form (42) to all vectors p €(A).lt is easy to see that 
an arbitrary selfadjoint extension A of the operator A has the form A2, wherte A l is a 
selfadjoint extension of the operator A1 in the space 5)1• Since by assumption the interval (a, 13) 
is a gap of the operator A, it is also a gap of the operator A2 . Thus, for the operator A2 it holds 
(39) and hence (41), as it was shown above. Setting p = 9 1 +cp2 in (40) we obtain 

(ARp,p)+--.(p,p)-	_&(Arp, p )	(o,Ap)+-1--(A'\o,Ap) 

= (AIR pI ,pl )	 - --(Ap1,p1)- --(pA p1 ) +—(ApAcp1) 

+ (A IR p2 ,p2 )+(p2 ,p2 )	Ap,p2)-	p2,Ap2)+Ap2,Ap2) 

= ( A R pt, p) 
+ Pj ) - _1. &( Ap1 , 

91) ---&1 , 
Ap1 ) + 

+((p2 , p2 ) +L&(A2p2 ,A 2 p2 )	 2:. 

We note that the last inequality holds since the terms in the big brackets are non-negative I
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Theorem 14: Let V(z) be a realizable operator-valued function in a finite-dimensional 
Hubert space E, i.e.,V(z) r K(AIR - zIY 1K, where (6) holds. Let i4) = S, and  a 0. Let 
(a, 13 ) be an arbitrary interval of the positive semi-axis. Then V(z) E S.fa, 3fl and (a, 13) is a gap 
of the operator A if and only if the following two conditions hold: 

(i) Al a 0. 

(ii) -(Alp,p) +-(q, p)- ---(Ap,p)-	p,Ap)+-1-(Ap,A'cp)^ 0 Vp E	. (43) 

Proof: Assume that (43) holds. Let {z}11 be an arbitrary set of non-real complex num-
bers such that z, * z1 . Let N, be the feficiency space of the operator A and Y i € N 1 . Setting 
p =j! 1(a -zY'p in (43), we obtain with regard to Ap 1 z1cp 

-(.4p,p) +(p,p)- - (Ap,p)-	(p,Ap)+ -1- (Ap,Ap) 

= _(13 -z	 -z1X13 1)(PiPJ) 

	

p	 p 
_)(AIPl)—

- 00- 
1)(PAPJ) 

P

-z1X3 

p 
=	

-0(((	

a-13	 c43-a(z + TI) +z.Y

) AIR + 

	

.	13-z1X13-	 (13-z)(13-) 

=	--&(B(z,z1)p1,p,) ;^ o, 
1,1=1 

where B(A,ii) has the form (20). This implies the inclusion V(z)€ S_lia,13fl by Theorem 5. 
We will now show that (a,13) is a gap of the operator A. In fact, if the vector p in the ine-

quality (43) belongs to (A), then with regard to the inclusions A D A and AIR D A we obtain 

—(AJcp,p)+—(p,p)- --(Ap,p)- 

2a

= -(Ap,p) 

+ 13- a'	
(Acp,p)+—(Acp,Ap) 

= --(p,(P)+-1--(Ap,Ap)- ---Cpa0. 

This yields (a + 13)(Acp,p) :^ a13(cp,p) +(.4q,Ap).Thus, the relation (41) is true for the operator 
A. As it was shown above, this implies that the interval (a,13) is a gap of A. The necessity part 
can be proved in an analogous way as the necessity part of Theorem 131 

As a corollary of Theorems 13 and 14 we obtain the following general 

Theorem 15: Let V(z) be a realizable operator-valued function in a finite-dimensional Hil-
bert space E, i.e., V(z) = K*(AI R - zI) -1K, where (6) holds. LetA = p and  a 0. Let (as , 13j) 

(j = 1,..., m) and (ck, dk) (k = I.... . n) two arbitrary sets of mutually disjoint intervals of the po-
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sitive semi-axis. Then V(z) E S+[tJJ'1 (c,i3fl n S[U,j(ck,dkfl and all intervals (a,3)and 
( Ck, dk) are gaps of the operator,,4 if and only lithe following tree conditions hold: 

(i) Al^:O.

________	 ___ ( cp	3j	 ________ A,cp)- (ii) - . -	.	
-	

(p,Ap)+	1	(Ap,A) a 0 

for each p€S. and all j=1.....m. 

ck dk	 ck	•	ck 
(p,Aq	 p )+	(A,Acp),0 (iii) -(AR 	d - k c	dk - ck '	dk - ck	dk-ck 

for each p€S and all kr1.....n. 

Remark: Theorems 14 and 15 were obtained in collaboration with E. R. Tsekanovskii. 
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