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On Classes of Stieltjes Type Operator-Valued Functions with Gaps

V. E. TSEKANOVSKII

We introduce and investigate classes of operator-valuéd functions with gaps, which can be
realized as fractional linear transformations of operator-valued transfer functions of conser-
vative scattering systems. :
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Classes of Stieltjes type operator-valued functions with gaps on the positive semi-axis (i.e.,
with intervals of holomorphy and definiteness) are considered. We prove criteria that a given
function, whose values are operators in a finite-dimensional Hilbert space, belongs to these
classes. Moreover, we investigate classes of Stieltjes type operator-valued functions which
admit a realization, i.e., which can be represented as fractional linear transformations of
operator-valued transfer functions of conservative scattering systems of the form

0=(HCHCH A KILE)

where Al e [$.,, H_-], ImA=KK* ADTD>A A*DT"D A, Ais a closed Hermitian operator
in §, and T is closed with dense domain of definition in $.

In the class of realizable Stieltjes type operator-valued functions the following subclasses
are investigated:

1. the subclass, where D(A) = §, D(T) + D(T")

2. the subclass, where D(A) + §, D(T) + D(T*)

3. the subclass, where D(A) +§, D(T) = D(T").
We prove analytical criteria for a given operator-valued function to belong to the mentioned
subclasses (with gaps). These criteria are analoga, supplements, and refinements of some of
the results stated by M.G. Krein and A.A. Nudel’'man (7}

§ 1 The classes S.[U ﬁ:‘(aj, B;)] of operator-valued functions

According to M.G. Krein [8], a function V(z), whose values are operators in a finite-dimensi-
onal Hilbert space E, will be called a Stieltjes type operator-valued function if the following
conditions hold:

1. V(z) is holomorphic on Ext[0,®) := {z: z ¢ [0,)}

2.V(z)20forz <0

3.V(z) is an operator-valued R-function, i.e., ImV(z)/Imz 2 0.
The class of Stieltjes type operator-valued functions will be denoted by S.

Let {(ozj,Bj)}j':"1 be a system of mutually disjoint intervals on the positive semi-axis.
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Definition: By S,[U m(a ,B; )] we denote the class of functions V(z), whose values are
operators in a finite-dxmensxonal Hilbert space E, such that the following two conditions hold:

1. V(z)e S.

2.V(2z) is holomorphic and positive on all intervals {«; ;,B;), i.e., (V(2)f.f) > O for all fe E,
f+0,and all z ¢ (a 8, i) (V(z) is holomorphic and negative on the intervals (a G 5B8; ), respectnvely,
e, (V(2)f,f)<0 for allfe E,f+0,and all z¢ (ch,BJ)).

Theorem 1: A scalar function V(z) belongs to the classes S,[U ;2\(a;,8;)]) if and only if the
following two conditions hold:

(i) V(z) €S.

(ii) H 5 "z V(z)e S (HB V(z)e S, respectlvely)

Proof: First we consider the class S{UjZ(aj,Bj)]. Let (i) and (ii) be fulfilled. Since (i), a
well known theorem (see [7]) gives us

V(z) = cexpf( )f(t)dt (2)

t-z 1+t2

where ¢ > 0, f(¢) is a summable function such thast 0 s f(t)<1a.e. and ft:(l +t2)F(t)dt
< . Moreover, the representation (2) is unique. It is not hard to see that

B;, -z
aj?—c expf('_z l+t )f(t)dt 3)
Since (ii), we get- '

m B< -z + Q0 1
jl:l;ajfTV(z) =c, exp_L(t S ] e )f(t)dr (4)

in an analogous way, where ¢, > 0 and the function fl(i) has the same properties as f(¢). Using
(3) and (4), we obtain

V(z)=¢c, expf( )f(t)dt

t-z 1+t2

where
() £i(t) for te[R\Um(a,B)
v £{t) - 1 for t e UM a;,8,)

Because of the uniqueness of the representation (2) it follows

V(z)=c exp f <1— )f(t)dt ' (s)

t-z 1 +12
R\U; (. 8;)
where ¢>0,0< f(t)s1a.e. on [R\Uj l( i+B; ). By a well known theorem (see [7]), the relation
(S) implies that V(z) is holomorphic and positive on all mtervals(oz .Bj ).
Now assume that V(z) ¢ SLU;Z\(a;,B;)]. Then V(z) e S.[la,,B )] We will show that the
inclusion ((B, - 2)/(a, - 2))V(z) € S is true. In fact, setting £ =(B, - z)/(a, - z) and V,(£) = V(z)
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we get

ImV(E) la, -zI> ImV(2) .

ImE By -« Imz

hence, V{(E)€e R, i.e., V,(E) is an R-function. It is not hard to see that z ¢ (o, B,) implies £ € (-, 0),

and since V(z) ¢ S,[{e,B,]], it follows V,(£)¢ S. Now a theorem of M.G. Krein (see [8]) gives

us EV{(E) € R. Thus ((B, - 2)/A«, - 2))V(2) € R. Since (B, - 2)/(a, - 2))V(z) 2 0 if z € (-,0), we

obtain (B, - 2)/e, - z))V(z2) € S. . -
We will show that the implication

k B -2 k+1 B -z
HﬁV(Z)ES(1<k< m) = HﬁV(Z)ES
j=1 J oog=tJ

is true. In fact, it is not hard to see that

H %z 2 V(z) e S[{0tgessBreay)]:

Now by analogous arguments as above we get

e v - i Fvores.

Thus the first part of the theorem is proved.

Now let V(z)¢ S_[Ujg’l(aj,ﬁj)]. We will show that the ( )-part of (ii) is true. It is not hard
to see (cf. [6]) that V(z) ¢ R if and only if -V(2) *¢ R. Thus, the relation V(z)e S_[{ey,B,)]
implies -V(2z)"'¢ Rand -V(z)™* > 0, z e (a,,B,). Setting £ =(B, - z)/(a, - z) and V,(E) =-V(2)™?,
we get

Ei . ; (- 7(12—)) € R, hence -(Si - ; (— V(lz)))_l = Z‘ V(z)eR.

-z
——V(z) € S. Using an analogous induction

Since Z:—:iv(z) 20 if ze(-,0), it follows%:
method as in the first part of the proof we obtain the ( )-part of (ii).

Now assume (i) and (ii)/( )-part. Consider the function - V(z)™* ¢ R and use analogous ar-
guments as in the proof of the sufficiency in the first part. This gives us that -V(z)™! is holo-

morphic and positive on all intervals (aj,Bj). Thus the theorem is proved B

Theorem 2: A function V(z), whose values are operators in a finite-dimensional Hilbert
space E, belongs to the classes S,[:U J-Tl(aj,B j)] if and only if the following two conditions hold:

® V(z)e S.
(ii) H—-’—V(z)e S (I_[ 5 V(z)e S, respectnvely)

(X'Z

Proof: Let V(z)e¢ S,[UF, aj,Bj)]. Considering the scalar function (V(z)f, f) ¢ S and using
Theorem 1 we get

i@ vonn = (g vend) es.
m B -z
Hence, the operator-valued function [ g~—=5-V(z) belongs to S.
j=tJ

13 Analysis, Bd. 11, Heft 2 (1992)
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The sufficiency of conditions (i) and (ii) is trivial. The proof for the class S_[Uj;",(aj,ﬁj)]
is analogous. Thus the theorem is proved il

Definition: We will say that a function V(z), whose values are operators in a finite-dimen-
sional Hilbert space E, belongs to the class

s«[Uj’:‘(aj'Bj)J n S-[Ujg, ijdj)]

if the following three conditions hold:
1.V(2)eS.
2.V(z) is holomorphic and positive on the intervals (ozj,BJ-) (j=1,...,m).
3.V(z) is holomorphic and negative on the intervals (cy,dy) (k =1,...,n).

Theorem 2 immediately implies the following

Theorem 3: A function V(z),whose values are operators in a finite—dimens.ional Hilbert
space E, belongs to the class S{Uf:l(aj,ﬁj)] N S U= (e, di )] if and only if the following
two conditions hold:

1L.V(z)eS.

-2z n

2. 1‘[-1—5 72

o; - 2

dc V(z) €S.

§ 2 Realizable operator-valued functions of the class S,[U,7,(a;,8,]]

Let A be a closed Hermitian operator in a Hilbert space §, whose defect numbers are finite
and coincide. This operator can be considered as acting from §), = D(A) into §. Let A® be the
adjoint operator. Clearly, D(A®) = § (where the closure is taken in §). We set $H. = D(A") and
introduce the scalar product (f,g), = (f,g) + (A’f, A%) (f,g € $.). We consider the rigged Hil-
bert space $, C § C §_ (cf. [2]).

We will say that a closed and densely defined operator T in §) belongs to the class (1, if
the following two conditions

1. TDA, T*> A (Ais closed and Hermitian)

2. ~i is a regular point of T
are fulfilled.

A bounded operator Al: §, > §_ (i.e., Al € [$H.,9H_]) is called a biextension of the Her-
mitian operator A if Al > A and AI® > A. Identifying the dual space of §; with §., we see that
Ace [S,).,S) ). If A = A", then Al is called aselfadjomt biextension of A.

By A we denote the restriction of Al to D(A) = {fe$.,:Afe H}. It is called 2 quasikernel
of Al (cf. [10,11]). A selfadjoint biextension is called a strong biextension if A= A%Ccf.[10,11]).

Let Te¢Qu. Then Al € [$,,8_] is called a (s)-extension of Tif

ADTD>A A°>T*DA. (6)

Moreover, if Alg = (A + A%)/2 is a strong selfadjoint biextension, then Al is called a correct
(*)-extension of T.

By definition, the class A, denotes the set of all operators T ¢ Q4 such that A coincides
with the maximal common Hermitian part of T and T°.
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Definition : The operator colligation

°<(s.cHes. © ) - @

is called rigged if the following four conditions hold:
1.J=J"=J"* (dimE < ),
2. K is a bounded linear operator from E into §_.
3. Alis a correct (*)-extension of T ¢ Ay, and

ImAl = (A - A%)/2i =KJ°K". (8)
4. The ranges of K and Im Al coinside.

The operaror-valued function
Wol(z) = 1- 2K A - zI)*KJ (9)

is called a Livsic type characteristic function of the colligation ©.
Furthermore, we introduce the function

Vo(z) = K*(Alg - zI) K. (10)

It is well known (cf. [3,9]) that the functions Vg(z) and W(z) are associated by the relations
Vol(z) = i(Wa(z) +1)7(Wp(2) -1)J and Wg(z) = (1+iVp(2)J) "Y1 -iVp(z)). (11)
We consider the conservative system (cf. [9])

4 - s = e o

P. = 9. - 21K,
where x € 9., ¢, € E, ¢_ is the so-called input vector, ¢, is the output vector, and x is the inner
state. It is not hard to see that the transfer function IT(z) of such a system (i.e., ¢, = [T(z)¢.)
coincides with the operator function Wg(z). If J # I, then the system is called a crossing system
and if J =/, it is called a scattering system (cf. [1]). In the following we will write a conserva-

tive system 8 in the form of a rigged operator colligation.

Definition: A function V(z), whose values are operators in a finite-dimensional Hilbert
space E, is called realizable if it can be represented as

V(z) = Vg(2) = K* (AR - 21)7 K = i(W(z) +1) ' (Wpl2) - 1), (13)
where © is a conservative scattering system of the form (7).

Theorem 4 Let V(2) be a realizable function, whose values are operators in a finite-di-
.mensional Hilbert space E, i.e., V(z)=K*(Alg - zI)"'K. Let A> 0 and let («,B) be an arbi-
trary interval of the positive semi-axis. Then V(z) belongs to the class S,[(a,B)] if and only if
the following two conditions hold:

1. Alg 2 0.
2. For an arbitrary set {z;}i’:’l of non-real complex numbers such that z; * Z; and for all
®; € Nz; (where Nz, is the deficiency space of A) it holds

P
= (B(z;,z)e;,9,) 2 0, (15)

i, 1=1

]3‘.
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where

B-a ., aB-BO )X,
a-MNa-m R (@-Na-7)

B(\,u) = { (16)
Proof: Assume that the conditions (14) and (15) hold. We will show that V(z)e S,[(«,B)].
Since V(z)is realizable, there exists a conservative scattering system
o = A K J
T\H.CHCTH E
such that V(z) = Vg(z) = K*(Ag - 2z1)7'K.The operator Al is a (+)-extension of some densely
defined closed operator T, i.e., condition (6) holds, where A is the common maximal Hermitian
part of Tand T° Let N, be the deficiency space of the Hermitian operator A and let {zi},»pﬂ

be an arbitrary set of non-real complex numbers such that z; + Z;. Moreover, let @; ¢ Nz;. Ac-
cording to [11], there exists a vector h; € E such that

P; :(A]R - Zl)—tKh,' (l = 1, ,p) (]7)

Set w; = (B —z,:)/(cx - z;j). We will prove the inequality

P_ 1w, V(z;) - wV(z)
z; - Z;

h,.,h,) 2 0. (18)

iI=1
In fact,
P_w; V(z;) - wyV(z3)
( i i hi’hl)

Z Z'_Z_I

il=1 !

_ ~<E(WilAR -zil) - W(AlR -Zil) .
- > o Kh Kh)

i, I=1

- i((:‘l'R -z Y (Wi(AlgR -7 ) - ‘171(A|R -z I NAlg -z;I)!

7 Kh,.,Kh,)

iI=1

P ffw;, -w zZ; Wy - Zyw;

= (E T )

o (. B S L% 1k 8
1= W - z; )Xo - 27) R (o0 - z; N - Z3) q’"’q”)

P
= = (B(z;,2)%; , ¢1) 2 0.

il=1

Setting p = 1, z, = 2, h, = h, we obtain from (17) and (18)

B-z B-Z .. B-z
a—_z'V(Z) pr— V(z) Im (a — V(z))
— h,h|{ 20 and hence ———— 20,

z -z Imz

i.e., the operator-valued function (B - z)(« - z))V(z) is an operator-valued R-function. Now
condition (14) implies that V(z) ¢ S (cf. [4]). Since for z < 0 we have (B - zXa - z) 2 0 it holds
((B - z)e - 2))V(2) € S. By Theorem 2 we get V(z)¢ S.[(«,B]].
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Now assume V(z)¢ S,[(«,B]]. Thus V(z) e S and hence Alg 2 0 (cf. [4]). It remains to prove
(15). In fact, by Theorem 2 the condition V{z)e S.[(«,B)] implies that (B - zX« - 2))V(2) € S.
Thus, the operator-valued function (B - zXe --z))V(z) has a representation of the form

B2 y(z) =y + [+1=dalr), : (19)

1
-z st-2
where vy 2 0,0(t ) is a non-decreasing operator-valued function in E such that f:il +¢ ) do(t)< oo,
Let {z;},f_.,be an arbitrary set of non-real complex numbers such that z; # Z;. Let @; € Nz,
Then according to [11] there exist vectors h; € E such that (17) holds. Setting w; = (B - z; Xa - 2;)

we obtain

P (w; V(z;) - ®;V(Z) ) P (°° 1

> = hihy) = > ———dc(t)h-,h)zo.

i.l=1( % "4 B A= J(‘ -z Mt -7p) »

It is clear from the proof of the sufficiency part that the inequalities (15) and (18) are equiva-
lent. Thus, the above inequality yields the needed result B

Remark:If there is no gap, i.e., if a = B, the inequality (15) holds trivially and we obtain the
results of [4].

Theorem 5: Let V(z) be a realizable function, whose values are operators in a finite-di-
mensional Hilbert space E, i.e., V(z) = K*(Alg - zI)'K. Let (a,B) be an arbitrary interval
of the positive semi-axis. Then V(z) belongs to the class S_[(a,B)] if and only if the following
two conditions hold:

1. Alg 2 0.

2. For an arbitrary set {z;}2, of non-real complex numbers such that z;* z; and for all
P;e N (where Ny, is the deficiency space of A) it holds

P
= (Bl(z;,z))9;,91) 2 0,

i1=1
where
R a-PB +01[3-czz()w*[,})\*)\;]
L Y ) K M RSV R I (20)

Proof: This theorem can be proved in the same way as Theorem 4 (set w; =(a-z; Xp - z; ))&

Note further that in the case a = B (i.e., if there are no gaps) Theorem S is an extension of
results of [4]. Moreover, it is not hard to see that the above used method allows us to obtain
analogous results for the classes

S, [UZ(a;,8)] and S.[U;T\(a;,8;]] N S_[U2,(c;.d;)].

In fact, we have the following

Theorem 6: Let V(z) be a realizable function, whose values are operators in a finite-di-

" mensional Hilbert space E, i.e., V(z) = K*(Alg - zI)'K. Let (aj,Bj) (j=1,...,m)and (c, dy)

(k =1,...,n) be arbitrary mutually disjoint intervals of the positive semi-axis.Then V(z) belongs

to the class S,.[Uj':,(aj,ﬁj)] N S_[UiL ek, di)] if and only if the following two conditions
hold:
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1. Alg 20.
2. For an arbitrary set {z,~},~‘=’1 of non-real complex numbers such that z; + Z; and for all
¢; €Nz, (where Nz, is the deficiency space of A) it holds

P

= _(B(z;, z)e;,91) 2 0,

il=1

where
B - )= )y Nelg)- ) @
and
m B-X n Ci - A (22)
- flE 1 253

§ 3 Some subclasses of realizable Stieltjes type operator-valued functions with gaps

By a result of M. G. Krein (see [8]) each Stieltjes type function V(z), whose values are ope-
rators in a finite~-dimensional Hilbert space E, can be represented in the form

<@©

V(z) =y *fdo(t)

t-z)

(23)

{=o)
where v 2:0,0(t ) is a non-decreasing operator-valued function in E such that fo(l +1) *do(t )< oo,
According to [5], we introduce the following notion.

Definition: We will say that a Stieltjes type function V(z), whose values are operators in
a finite-dimensional Hilbert space E, belongs to the class S(R), if vf = 0 for all f of the sub-
class

EX = {fe E: T(do(r)f, e < oo}. (24)

As it was proved in [S], each operator-valued function V(z) ¢ S(R) can be realized by a
conservative scattering system ©, i.e., it holds (13).

Definition: Following [S], we introduce the following subclasses of S(R):
(i) The class S°(R) consisting of all V(z) ¢ S(R) such that

=3

J(do(e)f,£) = (£eE, £+0). ' (25)

o

(ii) The class S*(R) consisting of all V(z) ¢ S(R) such that y = 0 and

<«

[(do(e)if) < (feE) (26)

o

in the representation (23).
(iii) The class S°YR) consisting of all V(z) ¢ S(R)such that E: + {0} and E; +F.
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It is not hard to see that

S(R) = S°(R) U SYR) U S°YR). @2n

Definition: We introduce the following subclasses of S(R), S°(R), SXR) and S°Y(R).
(i) The class St[:R,UjT,(aj,Bj)] consisting of all V(z) ¢ S(R)such that V(z)is holomor-
phic and positive (negative) on all intervals (aj,Bj).
(ii) The class S[R,U;I\(a;,B;)] consisting of all V(z)e S°(R)such that V(z)is holomor-
phic and positive (negative) on all intervals(a;,8;)-
(iii) The class SJ{R,U;Z (a;,B;)] consisting of all V(2)e S R)such that V(z)is holomor-
phic and positive (negative) on all intervals(«;,8;).
(iv) The class SR, Uj':,(aj,Bj)] consisting of all V(z)e S°{ R)such that V(z)is holomor-
phic and positive (negative) on all intervals(«;,B;).

Let B be a conservative scattering system of the form (7) such that Vg(z)= V(z) and let A
and Tbe the operators of (6). Then (cf. [S])

D(A)= 9, D(T)+D(T") if V(2) ¢ Sfo[R,UjT‘(Gjyﬁj)]y
DA)+H, D(T)=D(T") if V(2) e SIR,U;T(;,B;)],
D(A)+ 9, D(T)+D(T") if V(z) e S2[R,U;T(«;,B,)].
Theorem 7: A function V(z), whose values are operétors in a finite-dimensional Hilbert

space E, belongs to the class S2[R,(a,B)] if and only if the following two conditions hold:
(i) V(2)e S°(R).

(i) HV(Z) e S%(R) (g — i V(z) e S°(R), respec!ively). (28)

Proof: Assume that the conditions (28) hold. Since S°(R) e S, we have V(z)e S,[R,(a,B)]
by Theorem 2 and, hence, V(z) ¢ S2[R,(«,B)] because V(z)e S°(R). Conversely, assume that
V(z) e SI[R,(a,B)]. Then, clearly, V(z)e SXR). It remains to show the first inclusion of (ii).
It is well known that

T(do(r)f, f) =nn&(nlmv(m)f, f), (29)

where o(t) is the operator-valued measure of the representation (23) (cf. [6]). The definitive
of S°(R)and (29) imply

nlm(n ImV(in)f, )= oo, (30)
Since V(z) = K *(Alg - 2/)7*K, we obtain

ImV(z) = Im zK*(Alg - ZI) '(Alg - zI) K. (31)
Set

£, = (Alg - in])KF. . (32)
From (30) - (32) it follows

. 2 Y 2 i -1 _ -1
nl'xfrgbn (£, £) nl}r&n ((Alg - inI)*Kf,(Alg - inl)'Kf) (33}
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= li?m n*(K*(Alg +inl) W(Ag - inI)Kf,f)= li$m (n1m V(in)f, f) = co.
nNTeo ntoco
We will show that
. - in up. .
Jim (n1m B8y 1) = o (34)

In fact, setting z; = z; = iy in the inequality (18) and regarding the considerations of the proof
of this inequality we obtain

2 4+ n2 2-¢.n2

hm(nlmHLV(m)ff) lim (ML)(AIan,f,I)*r—n—L-(fn,f) L(fn f,,))

i = =
anggo_,;a2+n2(f f)) = Ilm -L2+n21](f,f,‘) ©

We mention that we have also used Theorem 4 (Alg 2 0) and (33).

Finally, assume that V(z) ¢ S°[R,(«, B)]. We will show that ((ee -2)/(B - 2))V(z) € S°(R).
Setting w = (& ~ inXPB - in) and using (13) we get

(ImwV(in)f, ) = ((WK (Alg - in])K - WK *(Alg +inl)*K)F, f)

=W Ag - inD)* - w(ag +in1) YKz, k)

(35)
_(w-W w-w
”(T"“an' fn) t Tty f)
- e -B) n(aB +n2)
I —imiz AR f) * ST s )
where £, has the form (32). But (Ag £, £,) = (MLVn) ¢ £ 11 oy,
n
(Iminnvgiy) f’f) =( inV(in)ziJrnin v(-in)“)
) (inK‘(AIR -inl) K +inK*(Ag + inl)"K‘,f)
- 2in o
Ag +inI)"'(in(Alg +inl)+in(Alg - in/ -inl)
=(( r *inI) Y(in(Alg +in )f in(Alg - inI )(Ag - inl) Kf’Kf)
2in
=(Algfy, f,).
Regarding (23) we obtain
IminV(in) , /) - Tt
( L E ) = (£ ) +°ft“nz (do(t)f, f).
Using Lebesgue’s Dominated Convergence Theorem (cf. [6]), it follows
. _ 1:on (Imin V(in) -
nl#ng:(ﬁan, f,) = nllggo( M ff|=(Yf,f) <o, (36)

Now (35) and (36) imply

11m (nlm.B_"Lv(m)f f) = llm (n‘;gTﬁ)(A|Rf ) + (f f,]) _7;82 ppers] ( )
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. 2
2 lim (H(A'Rf )t g fn)) 2 . (37)
Thus the theorem is proved B

Theorem 8: A function V(z), whose values are operators in a finite-dimensional Hilbert
space E, belongs to the class S:[R,(a,B)] if and only if the following two conditions hold:
(i) V(z)e SXR).

(i) 'LV(Z)E SYR) (a Zy(z)e SYR), respecnvely)

Proof: The sufficiency is obvious (compare the proof of Theorem 7). Now assume that V/(z)
€ S\[R.(a,B]]. Clearly, V(z)e S¥R). We will show that ((B - z)/(«x - z))V(z) ¢ SYR). Since
V(z) is realizable, the relation (13) holds. In this relation, the operator Alg is a bounded linear
operator from §), into $_.Let R be the (isometric) Riesz-Berezanskii operator, which arises
in a natural way in the therory of nested Hilbert spaces (cf. [2]).The operator R has the pro-
perties (f,g)_ = (Rf,Rg)+ =(Rf,g) = (f,Rg) (f,ge $_). Thus

(AR £y, £3)] = (RAR £y, )] s [RARI ]2 = IRAR[CIE]® + 1A% 1%) (38)

= RARN(I£]) %+ n*[IP£]1%) < [R AR+ 01 £]I2,

where Pis the orthoprojector of § onto D(A) and the operator A is the maximal common Her-
mitian part of the operators Tand T " that arise realizing the operator-valued function V(z) as
a transfer function of the conservative scattering system (7). Furthermore, as it was noted in
the proof of Theorem 7, we have

Jim (n[muV(m)ff) = (ML)(AI f, f)+—’1—9—(f f)+ o 2( f,]))

2 4+ n2 24,2

Sincefo (do(t)f, £) = Aip‘mnz(f"'f“) < o, the realization (38) impliesnycrg(nlnﬁ - :: V(in)f, f)
< . Now assume V(z)e Sf[R,(a,B)]. We will show that ((a - z)/(B - z))V(z) ¢ SXR) Using
(37) we get

Ilm(nlmB—TLV(m)ff)s lim (Bz" (. £ + —Tﬁ(f’n.fn)) < o,

In order to obtain the last estimates we have used the fact that Alg 200
The following theorem is an immediate consequence of Theorems 7 and (8).

Theorem 9: A function V(z), whose values are operators in a finite-dimensional Hilbert
space E, belongs to the class S9*[R,(«,B]] if and only if the following two conditions hold:

(i) V(z)e S°(R). :
Gv) %V(z) € S°YR) (g - ‘; V(z) e S°YR), respective]y)_

Combining the results of Theorems 7 - 9 and regarding (27) we obtain the following
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Theorem 10: A function V(z),whose values are operators in a finite-dimensional Hilbert
space E, belongs to the class S,[R,(«,B]] if and only if the following two conditions hold:
(i) V(2)e S(R).

(ii) -;L:-i—V(z) ¢ S(R) (g - ; V(z)e S(R), respectively>.

Theorem 11: A function V(z),whose values are operators in a finite-dimensional Hilbert
space E, belongs to the class S;’[R UJ (a B )] if and only if the following two conditions hold:
(i) V(z)e S°(R).

(ii) na"_—ZV(Z) € S°(R) (I_I 5, V(z) € S°(R), respectlve]y)

Proof: The sufficiency of the conditions is easy to prove. Since S°(R)C S, we have V(z)e
2[UJ ‘( ,B; )] because of Theorem 2. But since V(z)e S R),we obtain V(z)e S AR, UJ (05 B; 7]
The nece551ty is proved with aid of mathematical induction. For n =1 the result was proved

in Theorem 7. Now assume that for m = p from V(z)e Sf[R,Uj’:,(%,Bj )] it follows that

(i) V(z)e S°(R).

(ll) naj_—zV(Z) € SO(R)

We will show that this fact remams true for n = p +1. Assume that V(z)e S[R, Up"(aj B; H
Then, clearly, V(z)¢ S°[R (05 B; J] and hence

(i) v(z)e S°(R).

(i) n bz visyesur).

a'Z

Since V(z)is holomorphic and positive on the interval (« ), we obtain

pr1 Bpﬂ

H %z Z V(2)e SR, (apey,Bpu]]-

Hence by Theorem 7,

Bper -2 P B;-2z
iﬂ‘ ZJ-I:I";' -z V(2)= H&J-_ZV(Z)ESO(R)

An analogous proof works in the case V(z)¢ S2[R,U;Z,(a;,B,;)] 0

It is not hard to see that for the classes
SR Ul («;,8;)] S2R.U;T\(«;,8,)] and S,[R, U2 (a;,8,)]
analogous results hold. Combining the above stated theorems we get the following
Theorem 12: A function V(z),whose values are operators in a finite-dimensional Hilbert
space E, belongs to the class S.[R,U;Z\(o;,8;)] N S_-[U,Z,(cy.d, )] if and only if the following

two conditions hold:
(i) V(2)e S(R).
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m

» B: -z o -2z
(i) J];Il a; — I:de: — V(2) ¢ S(R).

Note that analogous results can be formulated for the classes
SIR.UZe;,8,)] N SSLUE (crndic]],
Si[R.U;Za;,8,)] N ST[Uizi(er i),
53‘[:R,Uj'="‘(d_,-,ﬁj)] NS [UE ek dic)]-

Definition: Let A be a symmetric operator in a Hilbert space $.The interval («,B) is called
a gap of the operator A if '

lar - 2587 2 B52ifIl for all £ e D(A). (39)

Theorem 13: Let V(z) b a realizable operator-valued function in a finite-dimensional Hil-
bert space E, i.e., V(z) = K *(Alg - zI) 'K, where (6) holds. Let D(A) = § and A2 0. Let («,B)
be an arbitrary interval of the positive semi-axis. Then V(z)e S.[(«,B]] and («,B)is a gap of
the operator A if and only if the following two conditions hold:

(i) Alg 2 0.

(i) (Alg 9, ) +B—°ﬁ%(q>.q>) - ‘[;"_S—a(A'(P.@) - [3_‘-3_«(""’4"") +B—1-;(A‘¢>,A‘<p)z 0VeeH.. (40)

Proof: Assume that (40) holds. Let {zi}i’._f1 be an arbitrary set of non-real complex num-
bers such that z;  z;. Let Nz, be the deficiency space of the operator 4 and @; ¢ Nz;. Set ¢
= 3.P(a-2,)"1e;. Since A%; = z; ;, we obtain from (40)

(Age,®) + B—%%(qmp) - B—I}—G(A'wp) - B—?—a(tp,A‘cp) + ﬁ(A'qo,A'fp)
P

P
= 1 ,_oB Z 1
B Z(a -z;Xa - z_,)(AIR‘P"'CP‘) B - o (o - ;) -71)(@"'(91)

i l=1

P p
B 1 . B ) )
B-aZ(a-zi)(a—a)(A¢f'¢l) B-MZ‘:(a—zi)(a-fl)(cpi’A(P')

p
L~ 1 . as
e (e -z Xe AT ATe)
p

1 B- aB -Blz; +Z;) +2; 7
B- aZ(((a -z, )(:_ ;I)AlR + (o zi)(al— = 1 /)cpi,q),)

iy1=1

P
B 1 aZ(B(zi- z))0;,%,) 2 0,

i1=1

where B(X,p) has the form (16). Thus Theorem 4 yields V(z)e S.[{«,B)].
Now we will show that (a,B) is a gap of A. In fact, if the vector ¢ of the inequality (40)
belongs to D(A), then with regard to the inclusions A® D 4 and Alg D A we obrain

(Are,9) +B—(f%(<p,<p) - EEL&(A'%@) - B—%(%A”P)*B}—G(A‘ 1A")
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= (Ap,p) + B—"f%(qa,q)) + 52:5; (Ap, ) +B—1;(A<p, Ae)

B—"f%(qa,cp) *B—E&(Acp,mp) - g—fg(mpm) 2 0.

This implies
(a +B)Ap, @) < aBlp,e) +(Ap, Ap). (41)

But conditions (39) and (41) are equivalent. In fact, if (39) holds, we get
((A - %ﬁl)qo,(A - %ﬁl)cp) 2 (Lég)z(qom),

hence
(A0, A7) - (o + B A9, 0) +(432 0.0 2 (B52Vip.0)

and (& + B)(A@, ) s aB(p,¢) +(Ap, @), i.e., (41). It is not hard to see that the converse con-
clusion is also true. Thus, the interval (a,B) is a gap of the operator A.

Now let V(z) ¢ S,[(«,B]] and the interval (a,B) be a gap of the operator A. Then by Theo-
rem 4 it holds (15). As it was proved above, this yields the inequality (40) for all vectors ¢ of
the form

q>=.§ (a-2z;) ', (42)
=1

where {z;} £, be an arbitrary set of non-real complex numbers such that Z; % z; and ¢; is an
arbitrary vector of the deficiency space Nz, . Let , = V43 N;, where the closure is taken
with respect to the metric of the space §. Then, clearly, = H, @ $.,, where the subspaces §,
and §), are invariant subspaces of the operator A and the operator A, =A[92 is selfadjoint.
Thus, A = A; @ A,, where A, = Alg . It is easy to see that A° = AT@A,. It follows that each
vector ¢ € §, can be representeds in the form ¢ = P, *+@,, wWhere o, € D(A]) and @, e D(A,)
Since the operators Al and A” are continuous operators from $. into H_, we can extend the
inequality (40) from all vecotrs of the form (42) to all vectors @ em.lt is easy to see that
an arbitrary selfadjoint extension 4 of the operator A has the form A = Z, ©A,, wherte Z; is a
selfadjoint extension of the operator A, in the space $,-Since by assumption the interval (o, f)
is a gap of the operator A4, it is also a gap of the operator A, . Thus, for the operator A, it holds
(39) and hence (41), as it was shown above. Setting ¢ = @, *+ ¢, in (40) we obtain

(Are,9) *B—°fﬁg(<;w) - B—%(A‘cpxp) - B—%(%A'<P) + Bﬁ(A‘%A'(p)

(AIR Py ‘Px) + B_a_%(¢p¢1) - F%(A‘¢pq>1) - B_%(¢,,A.¢l) + B*la_(A‘(PlYA.(pl)

} +(AIR¢2:¢2)*B_&“_ 7 (2:92) - —L<B AR 0,) B—ﬁ—<_ (P20 ATR,) + g L_(A%,.4%,)

((AIR P@)* ﬁ%(wx:q"l) - B—%(Aﬁpmp,) - B—I_s—a(tp,,A,‘w,) * B—IG(A{%AI%))

*<B_a-%(<p2"p2) ’B+a(A2(p2’A2(pz) - g_tg(Az(pz’ (?2)) 2 0.

We note that the last inequality holds since the terms in the big brackets are non-negative B
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Theorem 14: Let V(z) be a realizable operator-valued function in a finite-dimensional
Hilbert space E, i.e.,V(z) = K *(Ag - zI) 'K, where (6) holds. Let D(A) = § and A 2 0.Let
(e, B) be an arbitrary interval of the positive semi-axis. Then V(z)e¢ S_Ba,ﬁ)] and («,B) is a gap
of the operator A if and only if the following two conditions hold:

(i) Al 2 0.

(i) -(Age,®) +B—°f%(qo,<p) - B%(A’cp,qa) - (ﬁ—a(%Aﬂp)*ﬁ(A’P.Aﬁp)z 0Vee$H,. (43)

Proof: Assume that (43) holds. Let {z;};_, be an arbitrary set of non-real complex num-
bers such that z; #+ z;. Let Nz, be the feficiency space of the operator A and ¢; € Nz,. Setting
@ =22 (a-z;)"'p; in (43), we obtain with regard to A’p; = z;¢;

~(Are,@) g% {,0) - g2 A%@) -

5o A%) + (A%, A%)

p
1 af 1
Z(B z; XB -z )(AIRCP”(pI) - "%(B 'ziXB _2—1)(@,',(91)

il=1

< P
x 1 . o ) .
B i.zl;x:([3 -z;XB - Z_I)(A P er)” B- GLZIM:(B -2;XB - ?1)(%',:4 P;)

p
S 1 o s
B_ai1=;(B'ziXB'2_1)(A‘Pi'Acp1)

L = -

_1 -B #GB"G(Zi +Z)*z; Z

B - aZ(((B z;XB - z,) ®-2,)B I_ %) 11)<P,-,<P1)
P

° B EaZ(B(Z;: Z))e;, cp,) 20,

il=1

where B(X\,) has the form (20). This implies the inclusion V(z)e S_[{o,8]] by Theorem 5.
We will now show that («,B) is a gap of the operator A. In fact, if the vector ¢ in the ine-
quality (43) belongs to D(A), then with regard to the inclusions A* > A and Alg D A we obtain

-(Are®) + —L(v ?)- gL APP)- ——a(q7,A'<p)*B+a(A'<P,A’@)
= (Ap, @) + 5= —(A ¢ Aj)

= [ﬁ%(w,v)*ﬁ—f—&(A%Aw - E‘—f%(AWP) 2 0.

This yields (& + B)(Ae, @) < aB(p,¢) +{Ap, Ap).Thus, the relation (41) is true for the operator
A. As it was shown above, this implies that the interval («,B) is 2 gap of A. The necessity part
can be proved in an analogous way as the necessity part of Theorem 138

As a corollary of Theorems 13 and 14 we obtain the following general

Theorem 1S: Let V(z) be a realizable operator-valued function in a finite-dimensional Hil-
bert space E, i.e.,V(z) = K*(Ag - 1) 'K, where (6) holds. Let D(A) = §y and A 2 0. Let (a5, B)
(j=1,...,m) and (cy, dy) (k =1,...,n) two arbitrary sets of mutually disjoint intervals of the po-
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sitive semi-axis. Then V(z) ¢ S.[U_, NC? .B; 1] N S_[UL (e di]] and all intervals («; G, B;) and

(ci, di) are gaps of the operator A if and only if the following tree conditions hold:
(i) Alz0.

() (Ameop) g L "B () - i (A% - ,‘fa (6,4°) + g (A0 A7) 2 0
B Bj
foreacho € §, andall j=1,...,m

(iii) (Achp,q:%—A(cpmp)- (A ‘P, @)~ ;- (fp A’p) + (A ?,A%) 20

foreache € 9, andallk=1,....n

Remark: Theorems 14 and 1S were obtained in collaboration with E. R. Tsekanovskii.
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