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The SILP-Relaxation Method in Optimal Control I: General Boundary Conditions 

H. RUDOLPH 

The paper deals with the relaxation method,a measure-theoretical approach for the treatment of classical control 
problems. After establishing a linear program over measure spaces as a substitute for a control problem, it is possible 
to use methods of semi-infinite linear programming (SILP), especially the semi-infinite simplex method (SISM), in 
order to estimate the solution of the linear program. In this way, approximations for the global optimal solution of 
the control problem can be obtained; a lower bound for the corresponding optimal value can also be found, by means 
of duality theory. 
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Introduction 

The measure-theoretical approach to classical control problems, basing on ideas of YOUNG, GAMKRLIDZE, 

VARGA and developed by RuBlo and VINTER, gives the possibility to develop numerical methods for solving 
nonlinear control problems by means of linear programs in finite dimensions. Recently the autor pointed 
out how to use SILP-methods, for instance SISM, to get estimations for the optimal solutions of the control 
problem and the corresponding LP in measure space. Up to now all the methods listed above work only 
in the case of fixed boundary values; the aim of this note is to show what can be achieved in more general 
situations. 

1. The Control Problem 

We shall study a control problem of the following type: 
Minimize the integral

fT 
r(tx,u) di	 (1.1) 

with respect to the state equation
x=g(t,z,u)	 (1.2a) 

and control reap. state constraints.
u(t) E U,	(t) e X.	 (1.3) 

The boundary conditions are given in one of the forms (1.2b) or (1.2b)': 

= , k E k, x,(T) J. 1E £	 (1.2b) 

resp.	 . 
x(T) = Cz(0).	 (1.2b)'
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Here A:, £ are subsets of {i,..., n} and C is a regular (n, n) matrix. If in case (1.2b) K = £ = {1,..., 
we have a fixed end point problem as studied in [8]. The case (12b)' will be called a coupled boundary value 
problem. 

The following analytical assumptions about data and solution functions of the control problem (1.1)-
(1.3) have to be fulfilled: 

r( . ,, v) is summable over [0, T] for all E X, v E U 
is continuous over X x U for all t E [0,11 
is continuous over [0, T] x X x U 

[x1(.),..., z(.)]T is an n-vector of absolutely continuous state functions 
u( . ) = [Ui( . ) .....u,,(.)]T is an rn-vector of bounded measurable control functions. 

The state equation (1.2a) is to be satisfied almost everywhere over [0,7'] in the sense of CARATHODORY. 
U C R" is - for simplicity - a compact control dom.ain, X C R" a closed connected set. 

Problem (1.1)-(1.3) is assumed to be consistent, that is, there exists at least one admissible pair (ad-
missible process) (x, u), which satisfies all the constraints in (1.l)-(1.3). 

From this follows that initial and end point coordinates, 7' are projections of vectors	T e X.
We denote by W the set of all admissible pairs, and will use the notation 

Z]0,T]xXxU, J[0,T]xX. 

2. Variational Description and the Relaxed Problem 

In this section our goal is to give a relaxed formulation of the control problem by using an imbedding process: 
instead of admissible pairs p = (x, u) we shall consider corresponding measures i on the space Z, where the 
correspondence (x, u) .-. is not injective; the set of admissible measures ji, which will he given by linear 
constraints, is a larger one then the set W. This goal can be achieved by a two-step procedure: variational 
description and relaxation. First let us give the variational description. Let V = ( t, e), (t,) E J, and for 
V E Rm let

9(t , v) =	(t ) + T(t. e)g(t, , v); 
here	denotes the gradient of w with respect to the argument E R' . Then the variational description 
is implicit in the following theorem 

Theorem. A pair p = (x, u) is admissible in (1.1)-(1.3) if 

J
T S(t(t)(t))dt = 	VV G C'(J),(t) G X, u(t) E 	a.e, on[0,T], 

where
Aw = c(T,x(T)) - (O, z(0)) = 

in the case of boundary conditions (1.2b) and 

AV = (T, Cx(0)) - (0, x(0)) =	7', z(0)) 

in the case of boundary conditions (1.2b)'. 

Proof. (i) Let (z, u) be an admissible process in (11)-(13). Then for anyV € C 1 (J) there holds 

fT 
9 (t, :(t), u(t)) dt = f[i(t x(t)) +	(t x(tg(t, x(t), u(t))] 

f
j (t s(t))dt = (T, x(T)) - w( O x(0)) =
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in both cases of boundary conditions; the conditions (1.3) are satisfied by feasibility of (z, u). 
(ii) Let for any pair (x, u) satisfying (13) the infinite set of integral relations be satisfied for all W E C' (j). 

We choose 9,(t,) = 0(t),, (.) e C(0, T) j 6 {1.... . n}. Then we have 

x(t), u(t)) = 0)x (t) + 0(t)95 (t, x(t), u(t); 

and by partial integration there follows 

(*)
	j

7'	 7' 

(t, z(t), u(t)) dt = [b(t)x(t)] - j 0(t)[ij 	- g(t, z(t), ti(t))] dt. 

(a) By choosing i(t) E C(0, T) we get [O(t)x2(t)J' = 0 = Awj and therefore 

J
)[(t) - g,(t,z(i),u(t))Jdt = 0 VO E Co—. 

0 

From this we obtain (t) = g(tx(t),u(t)) ac., such that state equation (1.2a) is satisfied and the integral 
on the right-hand side in (*) is zero. 

(b) The second part of the proof deals with the boundary conditions. In case of boundary conditions 
(1.2b) we obtain from ()

	

for k E k, (0) = 1, (T) = 0:	xk(0) = 

and

	

for lELTI(0)=0,i,&(T)=1:	zj(T)=T, 
but in case of boundary conditions (1.2b)' we get from () for j = 1,..., n by choosing 

(T) = 1, i1( 0 ) = 0	x,(T) = (Cx(0)),. 

Hence the proof is complete, and the control problem (1.1)-(1.3), with the notation 

	

P = {p =(x,u) x(t) E X, u(t) E 	ac. on [0, Tj} 

is equivalent to the following variational description 

1
T	

mm	 (2.1) 

J. w 9 (t x, u)dt = Aw, 	C' (J)	 (2.2) 

	

p=(zu)EP.	 (2.3) 

The second step - the relaxation - consists in introducing a new kind of variables, and so a metamorphosis 
of the whole problem will be obtained (cf. [8]). For given p = (x, u) we consider the mapping 

A9 : C(Z) -, Ri, 

given by the formula

T 
A9 

= 
f f(t, x(t), u(t)) dt. 

Obviously the mapping A9 is well-defined, linear, continuous and nonnegative: for every f > 0 there holds 
A9 f > 0 . Since A9 is a linear continuous functional over C(Z), by Riesz' theorem there exists a regular 
Borel measure .i.,, on Z , such that

AP  = (f) f fd9. z 
10	Analysis. 3d. II. Heft 1(1992)
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Then (21)-(2.3) can be rewritten equivalently as 

(r,i) -. mm	 (2.4) 
;,,:PEP 

	

(c09 ,AP ) = LO, co E C'(J)	 (25) 

P ^:
	 (2.6) 

(where the inequality (2.6) denotes the nonnegativity of the measure in the sense mentioned above and can 
be written as an cone ordering in the space M(Z) of all Radon measures on Z the dual space to C(Z) ). 

If we now omit the correspondence p —. .i., and minimize over arbitrary u satisfying constraints (25) 
(2.6) and suppu C Z, we get the so-called relaxed problem

(2.7) 

jV
9 d	,	C1(J)	 (2.8) 

AL 2 0.	 (2.9) 

This problem can be understood as a nonclassic linearization of the control problem (1.1)-(1.3); in fact 
it is an infinite-dimensional linear program over the spaces M(Z)ICi(J) in the sense of [1, 4]; hence it is 
possible to use LP-techniques (cf. [101) in order to study the relaxed problem. As pointed out in [11], there 
is another interesting fact, which gives some insight in the nature of the relaxed problem: If we construct the 
dual problem to the control problem (1.1)-(1.3) by means of KLÔTZLER'S duality theory (see (6)) and on the 
other hand the dual LP to (2.7)-(2.9), we obtain by each method the same dual. That is, the LP (2.7)-(2.9) 
can also be interpreted as an convexification of the nonlinear (and in general non-convex) control problem. 
If we denote the control problem by (P) , its KLOTZLER dual by (P)" the relaxed problem by (R) and its 
LP-dual by (R)", the connections between the four problems are shown in the following scheme: 

(P)	 C	 (R) 
Relaxation 

/1 
(R)° 

Since we have the imbedding (P) C (R) , we get 

Min (R) < Inf(P)	 (210)

and by duality theory

	

Sup(R)' = Min(R) < Inf(P).	 (2.11) 

There may be a gap between the values of the problems (R) and (P) (for an example see [51), but by means 
of approximation schemes, which are closely related to the concept of asymptotic consistency of DUFFIN [2], 
Ruaio has proved the following theorem about the relations between problem (R) and the control problem 
(P) in the case of fixed boundary values.
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Approximation Theorem (RuBlo [8)). There exists asequence of pairs pJ = (x.', w') with 

z2 =g(i,x',u'), x(0)=°,	1imx2(T)=T 

u'(t)EU,	linip(z'(t),X)=O, tE[O,71 

such that
1T 

urn f r(t, z3 u') di = Min(R) < Inf(P), 
)— Jo 

i.e., p) = (z' u') is an almost feasible (asymptotic feasible) global minimizing sequence for (P) (here p(z, X) 
is the distance between vector x and set X). 

The global optimality of the minimizing sequence seems to be one of the greatest advantages of the 
relaxation approach; most of the numerical methods based on first or higher order necessary conditions like 
PONTRYAGIN'S maximum principle gave only local solutions for the control problem (F). 

3. The Numerical Method 

We now describe our numerical method, which can be called a semi-infinite approach to problem (R). As 
mentioned above the problem (27)-(2.9) resp. (R) is an infinite-dimensional linear program with a variable 

, varying in a measure space. RuBio in his approximation scheme has discretized the equations (2.8) by 
choosing a grid in the set Z = (0, T) x X  U and a finite set of functions p instead of the infinite set 'p E C; 
the result of this discretization procedure was a finite-dimensional linear program with number of equations 
M 25 and number of variables N zz 1000 even in small academic examples. Unfortunately in this approach 
there is no evident possibility to get a lower bound for the optimal value Min(R) of problem (2.7)-(2.9) resp. 
(R) in terms of the values Min(R)MN ; the accuracy of the approximation can be estimated only theoretically 
in proving convergence, with some unknown constants present. For the semi-infinite approach we choose a 
finite set of functions 'p, i = 1.... . M, and consider the semi-infinite LP 

(r, ) —. mm 

('p,)=L'pj, i=1,..., M	(3.1)	 (R)M 

•u	0. 

M 
Theorem. There is an optimal solution f =	of(R)M with 

5=1 

	

Or k ^ 0,ar k = T ,z5 = (4, 5 ,v5 ) E Z	 (3.2) 

(c is the DIRAC measure concentrated in z E Z). 

Proof. By consistency of (1.1)-(1.3) we get the consistency of (R) and hence of (R)M . it is well known 
that the feasible region is weak* compact and the objective functional is continuous; from this the existence 
of follows. The structure of ' as a measure with finite support is an obvious consequence of convexity 
and CARATHODORY'S theorem. 

Time numerical procedure consists of two main procedures: 

I. Numerical estimation of f in (R)M 

10*
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The numerical estimation of f resp.(r, 1f) is possible by the semi-infinite simplex-method SISM (see [10]); 
the "exact' determination of (r, ,u*) needs much computational effort, because SISM has in general only 
linear convergence rate. However in the k-tb step of the algorithm there can be obtained a dual (lower) 
bound

Ik = (r,) -	[(,) -	] <(rjz)	 (3.3) 

with
vector of actual LAGRANGE-multipliers 
measure to exchange in the basic feasible solution, 

so by (2.11), (3.3) we obtain a lower bound for the global minimum in problem (P). 

2. Reconstruction of a corresponding to	process 
The reconstruction of the process (x,u) corresponding to requires an integration of the state equations, 
using all the informations obtained from jf . lndeed, the points zk in (3.2) have to be interpreted as support 
points for mean values of the integrals in (3.1) with weights ar k in a quadrature formula. So we have used as 
an integration routine a RUNGE-KUTTA-FEHLBERG method for solving the initial value problems 

= g(t,,, Uk), Zi(tk) = xkl( ts), t E [ts,i5 + a k],  k = 1.....M (3.4) 

by foreward integration with t 1 = 0, xo(0) = ,° (see the example in Section 4, ,° was given, only T was 
not completely known). The integration routine makes use not only of the computed initial values xj,i(tk) 
in the k-th integration step, but also of the "mean directions" g(t 5 ,., v5 ). The computations have shown 
the efficiency of such an approach. 

4. Application to a Minimum Fuel Space Travel Problem 

We shall now show how the method described above works for a control problem known in the literature as 
minimum fuel space travel problem (see OBERLE [7]). We consider the planar Earth-Mars transfer by a low 
thrust ion rocket, following OBERLE. The problem is to pilot an ion rocket from the Earthiaii orbit to the 
Martian orbit, where both orbits are assumed to be circular and coplanar (HOHMANN'S assumption) and the 
influences of the gravitational fields of Earth and Mars are neglected with respect to the gravitation of the 
Sun. The corresponding control problem is as follows: 

State variables	 Control variables 

r	distance from the sun	 0 E [-ir, ir] 
W	radial velocity	 thrust angle 
V	 tangential velocity	 k E [0, k_,] 
in	mass	 thrust 

The problem is to determine control functions (t), k(t), t 8 [0, T] (T=5.1 is given, i.e. we consider transfer 
in fixed time), such that

F = in(0) - m(T) -. mm	 (4.1)

subject to state equations

(42) 
v = --+ k—cos 

r	in 
in = -k,
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boundary conditions
r(0) = 1,	r(T)	= 1.525 
w(0) 0,	w(T) = 0 

v(0) = 1,	v(T) =
	 (4.3) 

m(0) = 1, 

and control restrictions
(t)	[-f, 4 k(t) E [0, k__ ), t € [0, T[.	 (4.4) 

Physically reasonable state constraints are for instance 

1 < r(t) < rj 
W (t) 2 0,	v(t) 2 0
	

(4.5) 
0< m(t)	1. 

The parameters in the physical model are oc = 1, c = 1.872, kma = 0.075 
Problem (4.1)—(4.5), rewritten with state variables z 1 = r, x 2 = w, x3 = U, Z4 = rn control variables 

T u 1 = k, u = 0, objective functional F = fo u i (t)dt and normalized, such that the control interval is [0, 1]. 
then corresponds to the following semi-infinite relaxed problem: 

(4.6) 

Jcod=coi	iEI, (4.7) 

J8
i d	= 0,	j € J9 (4.8) 

d	^! r,	k E K (4.9) 

(4.10)

where J IJ	15,	I JoI	12,	IKI	10, r	0.75. , .0.99. Here equations (4.7) with functions ip, as 
monomials in t e1 ..... are connected with the boundary conditions, equations (4.8) with functions 8j as 
trigonometric polynomials in t with coefficients in ,, are corresponding to the state equations, and the third 
set of conditions, inequalities (4.9) with indicator functions x k., guarantees the uniform distribution of the 
measure ju with respect to t over the interval [0, 11 in a discrete manner (for details see RuBlo [8], Chapters 
4, 5). We have one free boundary value, namely m(T) = z4 (1); this requires an additional variable for the 
unknown boundary value, Problem (4.6)—(4.10) corresponds to (R)M from Section 3; we will also denote it 
by (R) M . The numerical model, corresponding to (R) M , is as follows: 

Let z = (t,r,w,v,m,k,i,b) = (t,zi .... . x4,u1,u2) E Z, and let {z' : I = 1 .... . N} C Z be a 
grid, u =	a discrete measure. The measure A is feasible in (R)M if 

IV

a )=, zEI 

o 1 9(z')=0,	jEJ9 

ox(z 1 ) ^ T 6k,	k E K 

,2! 0 ,	1=1 .....N
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Let Ti =	Cilcri be a basic feasible solution of (R) M . Then SISM generates z =	as an (e
-) optimal solution of (R) M . Let 'M = Inf(R)M and SM a dual bound (compare (3.3)), namely 

SM = Inf {(r,/.L) -	 - b]: p ^: 0supp = z} 

with some LAGRANGE multipliers {i,} from SISM; then we get 

5M :^ 1M Min(R) < Inf(P)	 (4.11)

such that SM is a lower bound for the global minimum in problem (P). 

Results: With N	450, M	15. . .25 5	0.05 (end point accuracy) a computational test gave the 
following pictures: 

V 

1.0
	 tv 

0.2

	

- * •%	w(t) 
•,	\	 0.1 

F

•\	:. 
t.,•
	

t 

	

0.5	 1.0 

The end point tolerances are
maxjz(T) -	0.03< 5 

(compare with the asymptotic feasibility of x !) and 

m(0) - m(T) = 1.000 - 0.906 = 0.094. 

A dual bound obtained after 21 steps of SISM was: 

SM = 1.000 - 0.908 = 0.092, 

such that (4.11). gives
0.092 < Min ( R) M < Inf(P) <0.096, 

where the value on the right—hand side is taken from OBERLE [7]. It seems to be remarkable that regardless 
of the "great" end point tolerance the computed bound is (numerically) exact; its goodness is depending 
only of the chosen M, but not depending of 5. 
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