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1. Introduction 

When solving bisingular integro- differential equations by collocation and Galerkin methods 

one naturally asks whether the approximate solutions exist, are uniquely determined and 

converge to the exact solution. These problems were studied in [2],[6) for Toeplitz and 

singular integral operators by means of Banach algebra techniques. The integro-differential 

operator treated here acts from one Banach space E1 into another Banach space E2 , where 

E2. Thus, there is no multiplication operation in the set £(E1 , E2 ) of all bounded 

linear operators. This necessitates the consideration of special paraalgebras which allows 

us to reduce the original problem of the applicability of collocation and Galerkin methods 

to the investigation of the invertibility of certain elements in a quotient paraalgebra A/J. 

This problem can be solved using a local principle for paraalgebras (cf. [3]) generalizing 

the well-known local principle of Gohberg-Krupnik [5]. We note that some results on the 

approximate solution of pseudodifferential equations are already contained in [9]. 

2. The concept of paraalgebras 

We suppose that the reader is familiar with the theory of Banach algebras, especially with 

the local principle proposed in [5]. The modifications for the case of paraalgebras will be 

given in the sequel. For convenience, we restrict ourselves to the case of paraalgebras of 

operators. (The reader is referred for further details and for the general case to [10] and [31.)
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Definition 2.1: (a) Let Ej be a Banach space and let A, be a subalgebra of £(E1) 
£(E1 , E),i = 1, 2. Further let S and S2 be closed subspaces of C(E 1 , E2 ) and £(E2 , E1), 
respectively. If for any operators A E Si, B E S2 , C  A 1 , D E A 2 we have AB E A 2 , BA C 
A 1 , DA, AC C S 1 , BD, CB C 52, then the system 

A2) 

is called a paraalgebra of operators. It is called a paraalgebra with identities if A 1 contains 

the identity operator on E1 , i = 1,2. The elements of A 1 U A 2 U S1 U S2 are called the 

elements of the paraalgebra P. 

(b) A two-sided ideal of a paraalgebra P is a paraalgebra 

A) 

with .JC P such that for any two elements A C 3', B C P for which the operation AB or 

BA is performable, the product AB or BA belongs to J. It can be verified that in this case 

P/— AI/A, SI/Sil  
S2/S" 

is a paraalgebra again. It is called the quotient-paraalgebra of P with respect to J. 

(c) Let M (' ) be a localizing class in A,i = 1,2 (cf.[5]). They are said to commute with 

respect to an element A C S 1 if 

(i) for each C C M' there exists a D C M 2 such that AC = DA, 

(ii) for each D C M 2 there exists a C C MW such that AC = DA. 

Two elements A, A' E S are called {M ( ' ) , M (2) }—equivalent if 

inf II( A - A')CII = inf II D ( A - A ')II = 0. 
CEM(')	 D€Mt2 

An element A E S1 is called {M ( ' ) , M (2) }—invertible if there exist C C	D C M 2 and 

B C S2 such that 

BAC=C and DAB =D. 

Theorem 2.2 (Local principle for paraalgebras, cf.[3, Theorem 3.1]): Let {M,}n be 

a covering system of localizing classes in A 1 (1 = 1,2) commuting for each W C Q with respect 

to an element A E Si . Further let A be {M ),2))_eqjva/efl to A C Si for each W. 

Then A is invertible if and only if A, is {MP,M!2}_invertible for each w  fl 

Now we proceed to the construction of a paraalgebra which can be related to approxi-

mation methods for certain classes of operator equations in a pair of Banach spaces. Let
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X, Y, Z, V be Banach spaces. We will denote the strong convergence of an operator sequence 

{A} 1 to A by A — A as n —* co. Assume that {P,} 1 ,p e {X, Y, Z, V} , are operator 

sequences defined on p, where 

(I) (P)2 = pnII
 

(ii) P —* J (the identity operator on	as n —* oo. 

Analogously to [7],[12), we assume that we are given operator sequences {W,'} 1 and 

{W,'} 1 on Y and V, respectively, which satisfy 

(iii) (Wfl 2 = P,' , (W,') 2 = 

(iv) W,' P,' = W , W,' P' = W' 

(v) the operators W,W,(W,'),(W,')- converge weakly to zero as n —* i. 

(vi) (Pfl —. Iy• , ( Pfl —* Iv . as n —* oo. 

Further, denote by C' the set of all sequences {C} 1 , C, : imP' — imP,' for which there 

exist operators C,' € £(Y) such that 

C,P,1'—.c, w,'cw,'—+O, 

C,(Pfl — C* , (W ' CWfl(Pfl' — 

as n —*oo. Suppose that there is an invertible operator B E £(X, Y) being subject to the 

condition 

BPX = P, ' BP, n = 1,2..... 

Now define the Banach spaces AXY,AYX,AX,AY as follows: 

AXY = { { A} 1 : A =	 E CY} 

AYX = { ( A,j 1 : A =	 ECY 

Ax = {{A} 1 : A = PBCBP,'; {C} 1 E c'} 

AY = Cy. 

The operations in these spaces are defined in a natural way, and the norm is given by 

II( A )II = sup JJA n JJ. Assume further that there exists an invertible operator D E £(Z, V) 

with DP, = P,'DP, for all n = 1,2.....As above, we define the Banach spaces 
AZV , AVZ , AZ, A V with the help of the operator D. Define 

AXY,ZV - AXY ® AZV + 

14	Analysis. ed. II. Heft 2 (1992)
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where AXY ® As" denotes the tensorial product of Ax%' and AZV, i.e., the closure with 

respect to the supremum norm of the set of all sequences of the form 

{A.} 00
 = {	

B 0 D)} 

where m= 1,2,3,..., {B$)1 	E AXY , {D1')}oo1 E AZV , and Al' is the set of all sequences

of operators N' E £(X 0 Z, Y 0 V) tending uniformly to zero as n —p oo. Similarly, put 

= AYX ® A' + 

= Ax ® AZ + i111, 

= A ' (9 Ày + 

Remark 2.3: Notice that {A} e AX1',ZV implies that there exist operators A e 

£(X, Y) ® £(Z, V) and C, CI, C2 , C3 E L(Y) ® £(V) satisfying the following relations as 

72 —* cx: 

A(P,' 0 P) — A
	 (1) 

C':= (W,r® P' )A(P 0 P)B	 o 0 D- ')( W,' P,') — C 1	 (2) 

C:= (PX ®W' )A(P,' 0 P,)B' ® D')( P' ®W) — C2	 (3) 

C:= (W,!1'®W' )A(P' (D P)B' (9 D)( W,r0W,') — C3	 (4) 

EA(P,' 0 P)(B (9 D')(P ' 0 P,')I[P,' 0 P] —+ C	 (5) 

(C) (P, ' o P,]' — C, i = 1,2,3.	 (6) 

For the sake of brevity we shall assume that the spaces Y, V satisfy IC(YE)V) - 

where K(j) 'designates the set of all compact operators on the Banach space it. Observe 

that all spaces occuring in Section 4 possess this property. So we can define the ideal 

of our paraalgebra by means of tensorial techniques. To this end define the sets JXY C 

AXY,JYX C AYX , JX C A ' ,J ' C A' by 

jXY =	in = P,rTBP + WMWBP + N)} 

jYX = {{J} 1 J. = PB'P, ' TP, ' + PB' WX MW + N2)} 

jX = {{Jn}i Jn = PB'P'TBP + PB' WMWXBP + N3)} 

JY = { { in}- i : i, = P,?'TP,r + W,'MW, " + N14)},
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where are operators on the adequate spaces satisfying II N II - 0 as n —p oo(i = 

1, 2,3,4) and T,M run through K(Y). Similarly, we define J ' E AZV,JVZ E A'z,Jz E 
AZ,JV E As'. 

Now let 

7XY,ZV = XY ®3ZV gI	jXZ = jX ®jZ +i1" 
YX,VZ = 3YX ØJVZ+HIl	JY,V = 3Y®3V +A', 

where	 are as above. Finally, we introduce one more notation. 

Definition 2.4: Given a sequence of projections {P,} 1 on the Banach space E,i = 

1, 2. For A E £(E1 , E2 ) let An E £(imP,1),imP,2)) be the restriction of P, 2 A to imP,. 

We denote by fl{P,Y, p,2)} the set of all operators A for which 

(I) 0) A P — A as n —i 00 

(ii) An is invertible for all sufficiently large ii , say n 

sup> II A;'II < 00 

(iv)	i as n —* 

Remark 2.5: The importance of the set ll{P (1) , P,(2)
 } can be illustrated by the following: 

If A E fl { P, ) , p,2)) , then for all y E E2 the sequence	, where x,. € imP, is the 

(unique) solution of AnZn =	converges to an element x € E1 which satisfies Ax = y. 

3. General theorem 

As in [4, Theorem 1.2), we prove

Lemma 3.1: The sets 

A = (AX'Z 
AYX,VZ 

A' v) and i = (.xz

	

	XY,ZV JYV)
jy  

are a paraalgebra with identities and a closed two-sided ideal in A , respectively. 

Denote by {A} (€ Ali) the coset containing the sequence {A}. The next theorem 

states a criterion for A € H{P,' ® P, P,' 0 P,'} in terms of the invertibility of certain 

elements in a quotient-paraalgebra. -	 - 

Theorem 3.2: Let A € £(X 0 Z, V 0 V) be an operator for which {A} 1 E 

and A(PX ® P,) — A as n - 00 , where A n is defined according to Definition 2.4 (with 

=	® P, P, = P,' 0 Pfl. For A € fl{P 0 P, P,' ® Pfl it is necessary and 

14*
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sufficient that the operators A, C 1 , C2 , C3 from Remark 2.3 are invertible and the coset IA. Y 

is invertible in A/j. 

Proof: We shall give a proof for the sufficiency part only. Assume that the coset {A} 

is invertible in A/J. Then there exists a sequence {B} 1 E A'x,'z such that 

BA = P,' ®P+(PB P®PD'P )T( BP®P,DP) 

P,'DP,) 

BP®W,"DP) 

+(P'BW'®PD'W,' )S( W,rBP'ØW,'DP,)+ N, 

where T, M, H, S E X(Y ® V) and IINII —* 0 as n — oo. Since the operators A E L(X ® 

Z, Y 0 V), C 1 , C2 , C3 E £(Y (9 V) are invertible we can define a sequence {B} 1 by 

B = Bn—(PBP,'OPDPflT(BOD)A(P,'®Pfl 

—( P,'B' P,' ®PD W,")RC (P,r ®Wfl 

—(P'BW'0PD'W,") SC3 I (W,roW,') 

and calculate the product B' A 

B' A = P,' 0 P + (P ' BP, ' (D PD'P,')T(B 0 D)A 

x [A — (P' 0 P,')A(P,' 0 P)](P," (@ P) 

+ (PBW, ' 0 PD'P,')MCj1 

x [C1 — (W' ®	 o PD P V' )](W,rBP (9 P,'DP) 

+ (P'B'P, ' 0 PD 1 W,')RC 1	 (7) 

+ (P,'B'W,'( ® PDW,')SCç' 

By virtue of (1) - (6), we derive from (7) that 

A-In ,l — — 'A P®P+N, 

where II N,1I —* 0 as n —* oo . hence, the operators A	im(P 0 P,) —p im(P,' 0 P,') are

left invertible for all sufficiently large n. Analogously, we find a sequence {B} 1 with 

A "—P'øP,'+N,'" , II N,'II- 0 as fl-4 tX).	 (9) — 

Now the proof follows immediately from the relations (8),(9).

(8)
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Next we proceed to a result about the invertibility in Ali. Therefore we introduce the 

paraalgebras 

= (Ax øJZ+Jtu!I! A
XY ®JZV +jV' A'øJv+JVTh') 

AYx ®JvZ + Ar!! 

xY.2 = jx 0 AZ + Ar
jxY ®AZV +A1' j  0 A +Ar1v ) . (	

JYX ® AVz + Al" 

Note that they are both ideals in A. So we can consider the quotient- paraalgebras A/iI'zV 

and Aix1',2 The corresponding cosets containing the sequence {A} 1 e A will be 

denoted by {A}, and {A};, respectively. 

Remark 3.3: Observe that the quotient- paraalgebras A/J"' and A/Jx1',2 are smaller 

than Ali , since i is properly contained in both j I ' zV and iX1',2 . Therefore one can 

expect that, in special situations, the question of invertibility in Alj' ,Zv and A/JX'2 

is simpler to be investigated than in Ali. Actually, this is the case for the paraalgebras 

considered in Section 4. There the invertibility in the smaller paraalgebras is tackled with 

the local principle (Theorem 2.2). This, together with Lemma 3.4, will solve the problem of 

invertibility in .A/J. 

Lemma 3.4: Let {A} 1 E A. The coset { An y is invertible in A!.] if and only if the 

cosets {A}' and {A}; are invertible in A/i 1'' and A1 .]x1',2 , respectively. 

Proof: Since .7 C J1ZV and i c jXY,2 , the invertibility of {A) and {A8 }T follows 

from the invertibility of {A0 } For the proof of the reverse implication suppose that {A} 

and {A} are invertible. Then there exist sequences	, { BS 2 }	E A such that 
m1 

B(' ) A	=	 (10) n
k=1 
M2 

=	 (11) U n 0
j= 1 

where {F,} E Ax , {T,} € 7Z (k = 1,2,...,mi) , {M,'} E 3X {G} € AZ (j = 

l,2,...,m2) and IIN0(:)__.0asn_-+oo(z=l,2). From (l0),(Il)weget 
MI m2 

(B + B 21 - B' ) A0 B, 2) ) A 0 = P,' 0 P, -	(F,)M,) 0 T,G) + 
k=I j=I 

Since
mj m2	 00	 - 

{ > 	( Fn ) M,' ) T, ) G' ) ) + N,(3)In=1 € 
" k=I j=I  

{A0 ) is left invertible in Ali. The right invertibility can be shown in a similar way.
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4. Approximate solution of bisingular int egro- differential 
equations 

Let I' = { t E C : Itl = 1) be the unit circle with the center at the origin of coordinates. 

It is known [5] that the operators S1, S2 defined by 

1 1 p(r,t 2 )dr	 I f ço(t1,r)dr 
;

( S 1 )(t 1 , t2) =
	J	-	, ( S2 )(t, t2) = ;;

	T - r	 1 

are bounded on L2 (F x ). Denote by P++, P+, P+ , P	the projections 

= I (I±S1)(I±S2). 

Define the derivative of a function 1(t) = fktk by 

(kfkt1) = =+—1
ky-I 

	

In a similar way, we define partial derivatives	of functions r on 1' x F, and we denote 
them for short by X(rp) (r,p = 0,1,2,...). 

Let m, q be fixed positive integers and consider the following bisingular integro- differential 

equation 

Kx aqP4x(m) + bmq Px(m + cqP_+x(m) + dmqPz("M 

	

M-1 q-1	 (12) 
+ >	I {a,.9Pz('P) + brpP xfrP) + c,. 9 Px(") + drpP	(''9)} = I ,=0 p=0 

with the condition 

!	
= 0	(r = 0,1,... ,m - 1; p = 0,1,... ,q - 1),	(13) 

where a,.9 , b,. 91 c,.9 , d,.9 are bounded functions on F x F (r = 0,1,..., m; p = 0,1,..., q) and 

f 	L 2 (1' x ). Let p E L2 (1' x F). Denote by cjk (j,k = 0,±1,...) its Fourier-coefficients: 
2 

1 
Pjk= (2)2 f f ço(e°, e)e)°ek1d9dii. 

00 
We shall seek an approximate solution to equation (12) in the form 

n+mfl+g	fl+m -1 
x(t 1 ,t 2 ) =	X/jtt + E E xtt 

km jrg	km j=-n 
-1 n+q	-1	-1 

	

+ >	Ztt+ 
k—n jq	k=—,i j—u
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where the coefficients Xkj are determined by the following system of linear algebraic equati-

ons:

, (rn+k)!(g+j)! (rn,q) 
k!!	a,_,3_jzrn+k,q+, 

k=o.=O  
n g+n 

+	 _ 
1q (rn+k)!(j-I)! (m)

Xm+k,q_J 
k=O j=q+I	

k!(j-q-I)!	l_k,s+j  

n+m n 
+ _ l)" (k-i)!(g+j)! (rn,q) 

	

k=rn+I =O	
(k_rn-I)!j! j,3_Xrn_k,q+, 

n+rn "+q 
+	:	(i' 	 (m) 

	

k=rn+ I j=q+I	
(k-rn-I )!(j-q-1)! 1,,1Zrn_k,q_) 

rn-i q-I n+rn-' n+q-p 
+ £

	I k=-r	

(r+k! a3x+k,p+	

(15) 

-r fl+P 
+	

+m
	 1)P(+	! b(T) 

	

k=m-r ji	
k!(j-p--I)!	i_k 

	

p+	
,3+j+k,P3 

n+r n+q-p 
+	

y(k_ 
(	

1 I)!(P+i)!	(r,p) 

	

krr+I j=q-p
	Cxr_k,p+) 

n+ ,. n+p 
+	E	(- 1)	(k-I)!ç-I)!	d' 

	

k=+i jp+I	
(k--I)!(j-p-I)!	 r-kp-J = u.s 

s = -n, -n+ 1.... . n. 

Here fik,aik	 (r = 0,1,...,m; p = 0,1,...,q; j,k = 0,±1,...) are the 

Fourier coefficients of the functions 1 a,.,, Crp, drp, respectively. In the following we shall 

investigate the solvability of the system (15) and the convergence of the sequence {x} of 

approximate solutions to the exact solution of problem (12),(13). 

We introduce some necessary notations. Denote by H = H(r) the set of q—times 

differentiable functions	which possess absolutely continuous derivatives () (j = 0, 1,. 

q - 1) and satisfy

(j=0,1,...,q— 1) 

and for which there exists (q) E L2 (F). Similarly, 11h1,q = H'(F x ) is the set of functions 

which possess absolutely continuous mixed derivatives (k3) (k = 0,1,... ,in - 1; j = 

0,l,...,q— 1)and satisfy 

	

i f ,(t 1 ,t2 )t	 ,. tdt1 dt 2 = 0 (k = 0, 1..,m— 1; j = 0, 1,.. .,q —1) / 
and for which there exists (mq) E L2 (I' x 1'). We consider the following sequence 

of projections on H9:	-	- 

	

n+9	
tk (P)(t) =
	

+	where k =	
I ^P(e

'o )e ik— 'dO (k = 0, ±1,...).
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Obviously, {P )	with P = P°	is a sequence of projections acting on L 2 (F) = H(r). " n=I 

It is known that P = P. and 

-	, P	A+t2 as n 

Further we need the projections P+ , P- being defined on L 2(F) by 

(Pp)(t) = >'kt k , (Po)(t) = 

where 'Pk are as above. 

Let D denote the operator (Dc)(t) = ()(t). According to [11J, the operators 

B - (P +tm P)Dr: H - L2 and D=(P++tP)D: H - 

are invertible, and from [1] we can derive the validity of the identities 

BP=PB P.m =PB , DP,=PDP,=PD.	 (16)

Now it can be seen that the linear algebraic system (15) is equivalent to the equation 

(P 0 P)K(P 0	= (P (9 P)f, 

where K is defined as in (12). 

For a function I E L(F x F) put 

= A il, t2),	 (17) 

f (2) ( t 1 , t2 ) = f(t 1 ,i),	 (18) 

f(3)(t1, t 2 ) = f(t, t).	 (19) 

Theorem 4.1 (The Galerkin method): Let 

amq,bmq,cmq,dmq E C(F x 1'), arp,brp,cyp,drp E L00 (I' X 1') 

(r=O,l,...,m-1;p=O,1,...,q-l). 

For K E fl{P (9 P, P, 0 P} it is necessary and sufficient that the operators 

K € £(H'9 (1' x F),L2(r x F)) and C1 ,C2 ,C3 E £(L2(F x F)) 

are invertible, where 

Ci =	(P(& I )	amq(1) (P(&P)+(PØ I ) b't	(POP)  mq2 

+(P- ø I ) ct" (P-øP+ ) + (P- ø I ) mg 1	2 
(2) 

C2 = ( I ®P) amq (P®P) + ( I ®P1 ' 2 t	(POP) /	"52 

+( I OP)cmqt1(2) -m (P0P) + (I OP-)d(2)t-mtq(p-&p-)' mqj2 
(3) C3 = (POP) amq (P®P4 ) + (P®P' )	bmg3 t	(Pop) 

+(P- ®P) ctr (P- oP+ ) + (P-®P-')	(3)gm	(P- o p-) mg	1	2



Approximate Solution 209 

Proof: As in [12], we define on L 2 (r) the operator sequence 

( W A t) = Wn ( fk tk) = f_ 1 t + + f_nt' + In + In_it +	+ fot°. 

This sequence satisfies the relations (iii)-(v) from Section 2, therefore the necessity of the 

conditions of Theorem 4.1 follows immediately from Theorem 3.2, applied to the case X = 

H(r), Z = H(r), Y = V = L2 (F). The sufficiency can be shown as follows using Theorem 

3.2, Lemma 3.4, and Theorem 2.2. At first we describe a system of localizing classes in 

Ali " I L- and in A/j"L22. Denote by N C C(F), r E F, the set of real functions f 

with values in the segment [0, 1] and fT (t) = 1 for tin some neighborhood of r. The systems 
Mr C .A'2/J'.'2,M4 C	are defined for r € F as 

M = {{Pn(PirP + P fr P ) Pn} : Jr € iV} 

M4 = {{PD'(PfP + P f P ) DP } : IT € N}. 

For each r € r , they are localizing classes in AL2/3L2 and A/.J"2 , respectively. In-

deed, consider the product of two elements {PD'(Pf,'P + Pf,P-)DP} (i = 1,2) 

belonging to M4 for some fixed r € F. Using relations (16) and [12:(3.2)] we obtain 

P,D'(PJP + P f P ) DP,? . P,? D ' ( P f P + PfP)DP, 

= P,D'(Pf,'P + Pf,'P)P(PfP + PJ,2P)DP, 

= PD ( P 1T'J,2P + P ff P ) DP,?	 (20) 

+ PJPfP)DP, 

PD'(Wn P+ f,i P7P+ Wn + WnPf,'Pf,2PWn)DP,?, 

where f(t) = f(l/t) , t € F. The last two summands belong to the ideal -7 H9 since 

PfP , PfP are compact for f € C(F). Now the assertion follows easily from (20). 

Similarly to [12, Theorem 4.1], we can prove that 

{ Pn(aP 4 + bP)DP,	 + Pf7P)DP, 

Pn( afr P + bfr P ) DP,}	€ JHL2 

and

{ Pn(PJrP + P f P ) P . P,(aP + bP)DP, 

Pn( a fT P + bJT P ) DP }	€ 

where a, b € L(F), fT € Ni., r € I' . This immediately yield that, for each r € F, the 

systems M,' and M commute (see Definition 2.1(c)) with respect to any element of the form 

{Pn(aP +bP)DP,}, a,bE L(F).
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As a consequence of these considerations we get the following lemmata. 

Lemma 4.2: For each r E r , the systems 

{ {P	PD'(PfP + Pfr P ) DP };, f N} 

({{P 0 P(Pf1 P + P-fTP-)P,};, E Nr}) 

form a left (right) covering system of localizing classes in A/i 1 ,Ht2 , and they commute 

with respect to any element of the form 

{(P,  0 P)(aP + bP + cP + dP)(D 0 D)(P 0 P)} 

where a,b,c,dE C(l'®l') 

Lemma 4.3: For each r E F , the systems 

{ {PB 1 (PfrP + P fT P ) BP	f E N} 

({{P(PfP + P fr P ) Pn ® P};, f E N}) 

form a left (right) covering system of localizing classes in A/j h'" ' 22 , and they commute 

with respect to any element of the form 

{(P, 0  P)(aP + bP + cP + dP)(D 0 D)(P 0 P)} il	12 

where a,b,c,d E C(F x F). 

Now we continue the proof of Theorem 4.1. Consider an arbitrary fixed r e F and note 

that {K}; = {(P ® P)K(P, ® P)}; is locally {M, Mr) —equiva1ent to the element 

{K,};, where 

K = [Pn(amg(,r)P + cmq(, r)P)DP,] 0 [P,PDP,] 

+ [Pn(bmq(, r)rP + dmq(, r)r P_)DP] 0[P,,.tP D P]2	f2 91

Since the operator K is invertible, we infer from [81 the invertibility of the operators 

7	'1	'7	-7 . urn	j 
"01'	11'	O2 ,	I2	"2	2, 

where

= (amq(.,r)P+ +cmq(,T)P)D, 

K 2 = (P+a(.,r)P+ + P-c (.,r)tm P)D, 

= (bmg (,r)P+ + dmq(.,r)P)D,
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K 2 = r (P+b(i)(.r)P+ + P_d(1)(.,T)tmP_)Dmq	 mq 

Therefore, K,, K E H{P,P} [7]. Then there exists a number no EN such that for all 

n no the operators 

: im P -. im P,, where K 1 = P,1 KP	,	= PK 1 P01

are invertible and the norms of the inverses are uniformly bounded, i.e., 

II( K 1,)' P II !^ c	,	II( K 1,)	P II 15 c	n	no. 

Consider the operators R : im(P 0 P,) -. im(Pm ® P) having the form 

R = + (r(K1,)_lP)Ø (PD'PP) 

Compute the products RK T and KT ° flflfl 

=

® 2	t2 

2	t2 
= 

similarly, KR = P, ® P,. This shows that, for all fixed t 2 = r and for all n	n0 , the

operators 

K : im(P 0 P,fl -. im(P 0 P,) 

are invertible (and thus, {M, M}-invertible) and 

II('c)( P 0	= lI R II	21:11D-111 

Using the local principle (Theorem 2.2), we obtain the invertibility of the coset {I(} in the 

paraalgebraA/J'"' 2 . Analogously, one can prove the invertibility of {K} in 

According to Lemma 3.4, these facts yield the invertibility of {K,} in .A/J. This and the 

invertibility of A, CI ,C2 , C3 allow us to apply Theorem 3.2 which finishes the proof. 

Now we shall study the collocation method for solving the bisingular integro-differential 

equation (12). Denote by R R(l' x F') the set of functions which are Rieman n-in tegrable 

on F x F. Suppose that I E R. An approximate solution of equation (12) is sought in the 

form (14), but the unknown coefficients are to be determined by the following system of 

linear algebraic equations: 

(Kx)(t,, ti) = f(t, t,) (j,1 = 0, ±1,..., ±n) 1	 (21)
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where I, = exp( 1 j). Introduce the operator 

n	 1 L : R(F) -+ imP , (Lf)(t) =	
= 2n + 1	

f(t)çc 
k=-n	 j=-n 

It is obvious from Remark 2.4 that the solvability of (21) and the convergence of the appro-

ximate solutions (14) to the exact solution of (12),(13) is equivalent to the condition 

K  III fn" ®P,,LØL}. 

Theorem 4.4 (The collocation method): Let the conditions of Theorem 4.1 be fulfilled. 

For the validity of K E III P (D P,, LØ L} it is necessary and sufficient that the operators 

K E £(H(F x F),L2(r x F)) and O 1 , 2 , 3 € £( L2 (F x F)) 

are invertible, where 

+ C(I)t. 
mq 1

P_+±dtt;p__ 

C2 =aP + bt P	+ccmp_++dtmtp__, 

03=, (3) P+ bt p+ - + c(3) tm mq P+ dtt P,

and a,b q ,c	(i = 1,2,3) are defined as in (17) - (19). 

Proof: The proof of this assertion runs parallel to that of Theorem 4.1. We take as 

localizing classes in the paraalgebras A/j"2""22 and A11 ,11L2 the.systems 

{{PBLnfrLnB P.m øP,}} , {{LfLØP};} 

and

, {{Pn®LnfrLn}j}, 

respectively, with f running through N , r € F. Now little modifications in the proof of 

Theorem 4.1 are needed to obtain the assertion u 

Remark 4.5: It is easily seen that one can state Theorems 4.1 and 4.4 for systems of 

bisingular integro-differential equations. 
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S. REMPEL and B.-W. SCHULZE: Asymptotics for Eiliptic Mixed Boundary Problems. 
Pseudodifferential and Mellin Operators In Spaces with Conormal Singularity (Math. Re-
search: Vol. 50). Berlin: Akademie - Verlag 1989, 418 pp. 

At the beginning of the 20th century, when great success was being achieved in the 
formation of the classical theory of partial differential equations, there developed a 
tendency to start investigations in a whole series of new scientific directions. Among 
these were, in particular: 

a) Investigation of the behaviour of solutions of elliptic equations in the neighbour-
hood of sets of singular points and the description of removable singularities (possible 
generalizations of the Liouville, Borel and Bernstein theorems, which are known from po-
tential theory). 

b) Investigation of the influence of dimension and smoothness of the carrier (borders 
of the range of the solution) on the well- posedness of problems for elliptic equations. 

c) Extension of the sphere of linear problems, including those of mixed type and 
others. 
Resulting from the investigations in these directions, in the course of more than half a 
century the foundations were laid for the theory of elliptic equations on open and closed 
manifolds, respectively.


