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This paper gives necessary and sufficient conditions for the applicability of collocation and Galerkin
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1. Introduction

When solving bisingular integro-differential equations by collocation and Galerkin methods
one naturally asks whether the approximate solutions exist, are uniquely determined and
converge to the exact solution. These problems were studied in [2],[6] for Toeplitz and
singular integral operators by means of Banach algebra techniques. The integro-differential
operator treated here acts from one Banach space E; into another Banach space E;, where
E, # E,. Thus, there is no multiplication operation in the set L(E;, E;) of all bounded
linear operators. This necessitates the consideration of special paraalgebras which allows
us to reduce the original problem of the applicability of collocation and Galerkin methods
to the investigation of the invertibility of certain elements in a quotient paraalgebra Ald.
This problem can be solved using a local principle for paraalgebras (cf. [3}) generalizing
the well-known local principle of Gohberg-Krupnik [5]. We note that some results on the

approximate solution of pseudodifferential equations are already contained in [9].

2. The concept of paraalgebras

We suppose that the reader is familiar with the theory of Banach algebras, especially with
the local principle proposed in [5]. The modifications for the case of paraalgebras will be
given in the sequel. For convenience, we restrict ourselves to the case of paraalgebras of

operators. (The reader is referred for further details and for the general case to [10] and (3].)
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Definition 2.1: (a) Let E; be a Banach space and let A; be a subalgebra of £(E;) :=
L(E;, E;),i = 1,2. Further let S; and'S; be closed subspaces of L(E,, E;) and L(E,, Ey),
respectively. If for any operators A € S;, B€ S,, C € Ay, D € A, wehave AB € A,, BA €
Ay, DA,AC € S,, BD,CB € S;, then the system

P = (A, g; Az)

is called a paraalgebra of operators. It is called a paraalgebra with identities if A; contains
the identity operator on E; , i = 1,2. The elements of A; U A, U §; U S are called the

elements of the paraalgebra P.

(b) A two-sided ideal of a paraalgebra P is a paraalgebra

S’
7=( & )

with JC P such that for.any two elements A € 7, B € P for which the operation AB or
- BA is performable, the product AB or BA belongs to 7. It can be verified that in this case

’ S 1 1
P17 = (A SIS auar)
2

is a paraalgebra again. It is called the quotient-paraalgebra of P with respect to J.
(c) Let M) be a localizing class in A;,i = 1,2 (cf.[5]). They are said to commute with

respect to an element A € S, if
(i) for each C € MV there exists a D € M(? such that AC = DA,
(ii) for each D € M(?) there exists a C € M(V) such that AC = DA.
Two clements A, A’ € §; are called {M"), M(?)}_equivalent if
inf A-A = inf ||D(A-A")|=0.
o II¢ )CIl LV [1D( [

An clement A € 5 is called {M(), M)} _invertible if there exist C € M), D € M2 and
B € S, such that

BAC =C and DAB = D.

Theorem 2.2 (Local principle for paraalgebras, cf.[3, Theorem 3.1]): Let {Ml‘(,i)}wen be
a covering system of localizing classes in A; (i = 1,2) commuting for e;ich w € Q with respect
to an element A € S,. Further let A be {Mf,l),M‘f,z)}—equivalent to A, € §) for each w.
Then A is invertible if and only if A, is {M(,(,l), M‘f,z)}—invertiblc for each w € .

Now we proceed to the construction of a paraalgebra which can be related to approxi-

mation methods for certain classes of operator equations in a pair of Banach spaces. Let
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X,Y,Z,V be Banach spaces. We will denote the strong convergence of an operator sequence
{A}32, to Aby A, —» A asn — co. Assume that {PY}2,, € {X,Y,Z,V}, are operator

sequences defined on u, where
i) (P = P
(it) Pi — I, (the identity operator on u) as n — oo.

Analogously to [7),{12]), we assume that we are given operator sequences {W}}2, and

{WY}2, on Y and V, respectively, which satisfy
(i) (W3)? = Y, (W) = BY
(iv) WYPY =wY wYpY=wY
(v) the operators WY , WY (WY)*,(WY)* converge weakly to zero as n — oc.
(vi) (PY)" = Iy, (PY)" = Iy+ as n — oo.

Further, denote by CY the set of all sequences {C.}2,, Crn:imPY — imPY for which there

exist operators C,C € L(Y) such that

C.PY —c,wrc,wYy = ¢,

CaP ) = C, (W CaW )y (PY) = C
as n — oo. Suppose that there is an invertible operator B € £(X,Y) being subject to the
condition

BPX = PYBPY, n=1,2,....

Now define the Banach spaces AXY, AYX AX AY as follows:

AYY = {{A2) A = PYCuBPX (G, € €7}
A = {{Aa)3y s An = PYBTICuPY i {Cakiy € C7
A% = {{Ae,: An = PXBTIC.BRT; {Cak € CY )
AY = .

The operations in these spaces are defined in a natural v;'ay, and the norm is given by
{I{An}]| = sup,, |Anll. Assume further that there exists an invertible operator D € £(Z,V)
with DPZ = PYDPZ for all n = 1,2,... . As above, we define the Banach spaces

AZV AVZ AZ AV with the help of the operator D. Define

AXY,ZV =AXY®AZV +Nl,

14 Analysis. Bd. 11, Heft 2 (1992)
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where AXY ® AZY denotes the tensorial product of AXY and A%Y, i.., the closure with

respect to the supremum norm of the set of all sequences of the form

{An}e2, = { Y BW g DS,“}

k=1 n=1

0

wherem =1,2,3,..., {Bf,k)};";, € AXY, {Ds,k)};‘f:l € A%V and M is the set of all sequences
of operators Nl € £(X @ Z,Y ® V) tending uniformly to zero as n — oo . Similarly, put

.A"YX,VZ - .AYX ®AVZ +N” ,
AX.ZzAX ®.AZ +N”I
.A'Y,V =.AY ®.AV +NIV .

Remark 2.3: Notice that {A,} € AXY'ZY implies that there exist operators A €
L(X,Y)® L(Z,V) and C,C,,Co,C3 € L(Y) ® L(V) satisfying the following relations as

n — 00!
An(P¥ ® PZ) = A | (1)
Cili= (WY@ PY ) An(PY ® PL)B™ @ D)WY FY) — ) @)
CP.= (PY @WY )A.(PX ® PZ)B~1® D-')( PY @WY) - C; ()
CP:= (WY QWY )A(PX ® PZ)B™' @ D) (WYQWY) = C3 (4)
[An(PY¥ @ PEY B @ DT')(PY @ PY)'[PY ® P{]" = C* (5)
(COYPY @ PY)" - C!, i =1,2,3. (6)

For the sake of brevity we shall assume that the spaces Y, V satisfy K(Y ®@V) = K(Y)®K(V),
where K(u) designates the set of all compact operators on the Banach space pu. Observe
that all spaces occuring in Section 4 possess this property. So we can define the ideal
of our paraalgebra by means of tensorial techniques. To this end define the sets JXY ¢
AXY gYX c AYX gX c AX, TV C AY by

T = {2y dn = PYTBPX + WMWY BPY + NV}

T = {{UaYy e = PYBTPYTRY + PYBT'WI MW + NP}
I% = {{Jn)y: dn= PXBPYTBPY + PYB™'W MW BP) + NG
T¥ = ()2 Ju= PYTRY + WMWY + N},
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where N,(,‘) are operators on the adequate spaces satisfying ||N,(,i)|| —0asn—oo0 (i=
1,2,3,4) and T, M run through K(Y). Similarly, we define 72¥ € A%V, JVZ ¢ AVZ, 7% ¢
AZ, TV € AY.
Now let
jXY,ZV — JXY ®JZV +Nl , jX,Z = JX ®jZ +Nlll
FYXVZ _ g¥X@gVZ NI FYVV o g¥ eV NIV,
where NTILILIV are a5 above. Finally, we introduce one more notation.
Definition 2.4: Given a sequence of projections {P,(,")};,“’=1 on the Banach space E;,t =
1,2. For A € L(E,,Ep) let A, € C(imP,(,l),imP,gz)) be the restriction of P,(,z)A to ifnP,Sl).
We denote by H{P,(‘l), P,(,z)} the set of all operators A for which

(i) AuPY 5 Aasn — oo

(ii) An is invertible for all sufficiently large n , say n > ng
(iii) Suppyn, 47| < o0
(iv) P o Ig, as n — oo.

Remark 2.5: The importance of the set H{P,(ll), P,(,z)} can be illustrated by the following:
IfAe H{P,(,l), P,(,z)} , then for all y € E, the sequence {z,,};',°=,,° , where z,, € imP,(,‘) is the

(unique) solution of A,z, = P,(.Q)y, converges to an element z € E, which satisfies Az = y.

3. General theorem

As in [4, Theorem 1.2], we prove

Lemma 3.1: The sets
i ixz ATy : xz XV Ly

A= (A T gvxvz AT ) and J = (-7 © gvxvz 7 )
are a paraalgebra with identities and a closed two-sided ideal in A, respectively.

Denote by {A.} (€ A/J) the coset containing the sequence {A,}. The next theorex.n
states a criterion for A € NI{PX ® PZ,PY @ PV} in terms of the invertibility of certain
elements in a quotient-paraalgebra. .

Theorem 3.2: Let A € L(X ® Z,Y ® V) be an operator for which {A,}32, € AXV"2V
and A,(PX ® PZ) - A asn — oo , where A, is defined according to Definition 2.4 (with
P = PX® P,,Z,P,(.z) =PY ®@PY). For Aec I{PX® PZ,PY ® PV) it is necessary and

14+
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sufficient that the operators A, C),C2,C; from Remark 2.3 are invertible and the coset {A,}
is invertible in A} J .
Proof: We shall give a proof for the sufficiency part only. Assume that the coset {A4,}

is invertible in A/J. Then there exists a sequence {B,}2, € AYXVZ such that

B.A, = PX @ PZ4+(PXB-'PY @ PZD-'PY YT( PYBPX ® PYDP?)
+HPXB'WY® PZD'PY YM(WY BPX® PY DPZ)
+(PXB-'PY @ PZD'WY )R( PY BPX @WY DP?)
+(PXB'WYQPZD'WY )S(WYBPX@WY DPZ) + N,,
where T M, R,S € K(Y ® V) and ||N,|]| = 0 as n — oco. Since the operators 4 € L(X ®
Z,Y V), C1,C2,C3 € LY ® V) are invertible we can define a sequence {B}}32; by
B, = B"—(F,{‘ B-'PY®PZD-'PY)T(B® D)A~'(PY®PY)
—(PXB'WY@ PZD'PY YMC;Y(WY®PY)
—(PXB'PY @PZD'W,)RC;! (PY @W,)
—(PXB'WYQPZD'WY)SC;' (WYewY)
and calculate the product B, A, :
BLA, = PXQPZ+(PXB'PY @ PZD'PY)T(B® D)A™!
x [A=(PY ® P{)A(PY ® PD)(PY ® PZ)
+ (PXB'WY @ P,?D“P,Y)MC;“
x [C1 - (WY @ PY)AL(PXB-'WY @ PZD'PY (WY BPX ® PY DP?)
+ (PXB™'PY @ PZD"'WY)RCS! (7)
x [C2 = (PY @ WY )AL(PY B~ PY ® PZD™'W,)\(P{ BPY @ W, DP)
+ (PXB'WY @ PZD™'W))SC5!
x [C3 — (WY @ WY)AL(PXB'WY @ PZD™'WY) (WY BPX @ WY DPZ)+ N},.
By virtue of (1) - (6), we derive from (7) that
B,A. = PX®PZ+ N, (8)

where [|[N”|| — 0 as n — oo. Hence, the operators A, : im(P¥ ® PZ) — im(PY ® PY) are

left invertible for all sufficiently large n. Analogously, we find a sequence { B2}, with

AB! =PYQ@PY + N , |IN/l-0 as n— oo. (9)

Now the proof follows immediately from the relations (8),(9) =
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Next we proceed to a result about the invertibility in A/J. Therefore we introduce the
paraalgebras

AXY@jZV +Nl

71,2V _ X V4 I
J —(A 8 TZ+ N ik o gvz 1

Ao gY +N"’)

TXY @ AZY + AT

7XY.2 _ X z 11
J 2—(.7 ®AT+ NI @ AVZ 4 AT

‘7Y1®.AV +‘A/”/).

Note that they are both ideals in A. So we can consider the quotient-paraalgebras Algrezv
and A/JXY2. The corresponding cosets containing the sequence {A,}2, € A will be
denoted by {A,}, and {A,},, respectively.

Remark 3.3: Observe that the quotient-paraalgebras A/ 7VZY and A/ J X Y2 are smaller
than A/J , since 7 is properly contained in both 7% and JX¥:2. Therefore one can
expect that, in special situations, the question of invertibility in A/TVEY and Al FXY?
is simpler to be investigated than in A/J. Actually, this is the case for the paraalgebras
considered in Section 4. There the invertibility in the smaller paraalgebras is tackled with
the local principle (Theorem 2.2). This, together with Lemma 3.4, will solve the problem of
invertibility in A/J.

Lemma 3.4: Let {A,}%, € A. The coset {A,Y is invertible in A/J if and only if the
cosets {An}, and {A,Y, are invertible in A/JV2V and A/JTXY?, respectively.

Proof: Since J ¢ J"2Y and J ¢ FX¥?, the invertibility of {A.}, and {A,}, follows
from the invertibility of {A,}. For the proof of the reverse implication suppose that {4},

and {A.}, are invertible. Then there exist sequences {Bf.l)}°° {85.2)};',‘;1 € A such that

n=1 1
m)
BVA, = PY@PZ+Y (FPeTHM) + N, (10)
k=1
mz
BPA, = PX@PZ+3 (MY @GY)+ NP, (11)
=1

where {F} € AX, (TP} € 72 (k = 1,2,...,m1) , {MP} € 7%, {(GY)} € AZ (j =
1,2,...,mz) and ||N,(,i)|| —0asn— oo (i=1,2). From (10),(11) we get

m; ma
(B + BY - BV 4, BP) A = PY @ PZ = 3" 3 (FOMP @ THGY) + NP
k=1 j=1
Since
m; ma : 00 -
{35 roup oo+ v}~ €7,
k=1 j=1 n=1

{AnY} is left invertible in A/J. The right invertibility can be shown in a similar way »
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4. Approximate solution of bisingular integro-differential

equations

Let T = {t € C:|t| = 1} be the unit circle with the center at the origin of coordinates.
It is known [5] that the operators S), S, defined by

T—-1 T = h

(S]‘P)(tl,tg) = —/M , (S2<P)(t1,t2)= %/W(t],‘r)d‘r
r r

are bounded on Ly(T' x I'). Denote by P*+, P+= P~+ P== the projections
1
P:i:t = 4—(1 + 51)(1:t 52)

Define the derivative of a function f(t) = 3}  fitk by

+o00
( 3 i S SRS
k=—00 k= —o00

k#—1
In a similar way, we define partial derivatives %y of functions z on T x I, and we denote
them for short by z("?) (r p=0,1,2,... ).
Let m, ¢ be fixed positive integers and consider the following bisingular integro-differential
equation
Kz = ap  PHz(mo 4 bmq pPt-z(ma) 4 Cmg Pt 2™ ¢ dpg P~ 2(m9)

m—1g-1 12)
+ Zo Eo{aerHz("p) + b,,,P+‘z("”) + c,,,P—+z('-P) + drpp——z(r.p)} =f (
r=0 p=

with the condition

//z(tl,tg)tl'"'t;”_'dtldh=0 (r=0,1,....m-1;p=0,1,...,¢-1), (13)

where a,p, b5, ¢;p, drp are bounded functionson T X T (r = 0,1,...,m; p=0,1,...,¢) and
f € Ly(T x T). Let ¢ € Lo(T x T). Denote by w;x (j,k = 0,%1,...) its Fourier-coefficients:
27 2x

. {0 iny,—ij0 ,—i
Pik = W//ga(e'a,e"’)e 19¢=kn 4o,
00

We shall seek an approximate solution to equation (12) in the form

n+m ntq n+m ki

Za(ti,t2) = X 2 Zijty tJ +X E Tiit t2
k=m j= q k—mJ——" (14)
-1 n

-1
+ 2 Z Ikzt t2+ b)) Z katlt27

k=~n j=¢ k=—nj=-n
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where the coefficients z; are determined by the following system of linear algebraic equati-

ons:

m+k)(g+3)! (m.aq) .
‘k)‘(—L!,‘! Q_k,s—jTmtkqt)
. +k)IG=1)! p(m.q)
m H-1)! 9 .
(-1 ®(G—9-1) bl-k.a+jz"‘+“vq-1

Ed
I
o
-
fl
=}

+
M= T
5 10

k=0 j=g+1
n+m n . k
k=1)!(g+3)! (m.q)
* k—%x:ﬂ;go(_l)m (k=m=T)!j! Clyk,s—jIm-kagti
n+m n+g

™ E—1)G-1)! ,
+ X X (=D +q(k__(,7__|))_!((1j—_z,)__ﬁ_! d;:‘k?zi-jzm-k-Q—j

k=m+1j=q+1

m-19—1 ( n4m—rntg—p . A
* Z:0 z:o { & Py 2 '+'k£:'1.:+1 : afi'z?s—jz’*"‘v”*j
r=0 p= =m-—r j=g¢—p
n+m-—r n+p .
r+k)!1(5-1)! 1(r.p) .
* k by <Z+1(_l)p K(j—p-1) bl-k.a+i1'+""’_1
=m-Tr J:ﬁ
n4r ntg—p )
k=1)Y(p+3)! (rp) .
+ XY (0 5t Clak,s—jTr—kp+s

(15)

k=r+1 j=q-p

ntr n+p .
+ (k—l)!?:—l)! (r.p} i -
* k Z:H ‘Zﬂ(_l)r p("-"-‘)! j—p-1)! & ks sTr—kp=i [ = fro
=r ]:p

l,s=-n,—n+1,...,n.

Here f]-k,a;;'p),bg’;p),cfi;'p),dgzp) (r=0,1,....,m; p=0,1,...,q; J,k = 0,%1,...) are the
Fourier coefficients of the functions f, a,p,brp, Crp, drp, respectively. In the following we shall
investigate the solvability of the system (15) and the convergence of the sequence {zn} of
approximate solutions to the exact solution of problem (12),(13).

We introduce some necessary notations. Denote by HI = HJ(T) the set of g—times

differentiable functions ¢ which possess absolutely continuous derivatives e (j=0,1,...,
g — 1) and satisfy

/w(z)z-i-‘d: =0 (j=0,1,...,g-1)

r
and for which there exists ¢(@ € Ly(T). Similarly, H;"? = H;"9(I xT') is the set of functions
¢ which possess absolutely continuous mixed derivatives ek} (k = 0,1,....m—1; j =

0,1,...,— 1) and satisfy

//tp(ll,tg)tl_k-ll;j_ldhdtg=0 (k=0,1,....m-1;j=0,1,...,g-1)
rr

and for which there exists @(™9) € Ly(T x T). We consider the following sequence { P }3%;
of projections on HJ :

n+q -1 2n
1 . .
(Plo)(t) = D it + ) wut’, where ¢y = 27‘/¢(e-9)e-"<9d9 (k=0,%1,...).
k=q °

k=-n
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Obviously, {Pn}32, with P, = PY  is a sequence of projections acting on Lo(T') = HI(I").
It is known that P; = P, and
P,?—»]H;: y Pa—=1p, as n— oo

Further we need the projections P*, P~ being defined on L,(T') by

oo -0
(Pro)0) =Y et (PTo)t)= Y et
k=0 k=-1
where @, are as above.

Let D{ denote the operator (D{y)(t) = p(9)(t). According to [11], the operators
B=(P*+t™P )D: Hf — L, and D = (P* 4+ t9P~)D{: HI — L,
are invertible, and from {1] we can derive the validity of the identities
BP = P,BP' =P,B , DP!=P,DP!=P,D. (16)
Now it can be seen that the linear algebraic system (15) is equivalent to the equation
(Pn® Po)K (P @ Pl)zn = (Pa® Pu)f,

where K is defined as in (12).
For a function f € Loo(T x ') put

FO(t, ) = f(6h, ), (17)
FOt, 1) = f(t1, ), (18)
fO(tr,t2) = f(t1,83). (19)

Theorem 4.1 (The Galerkin method): Let
@mgs bmgs Emas dmg € C(L X T), @rp, brp €rpy drp € Loo(T X T)
(r=0,1,...,m-1;,p=0,1,...,¢ - 1).
For K € I{P* ® Pi, P ® P} it is necessary and sufficient that the operators
K € L(HJ(T x T), Ly(T x T)) and Cy,Cy, Cs € L(Lo(T x T))
are invertible, where
Ci= (P*® 1) ab) (P*ePt)+(Pte I) b9 (P+oP)
+(P~® I ) ety (P~@P*) +(P=® I )ty t;*(P-®P-),
Ca= (1 8P*) o) (P*@P*)+( 1 @P~) b2 (Ptepr-)
+( I @P*)cT™(P~@P*) + (I ®P~)dti™y(P~®P-),
Cs= (P*@P*) aff) (P*@P*)+(P+@P-) b (P*eP-)

+H(P=®P*) e (P-@P*) + (P-®P~) dSired (P-oP-).
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Proof: As in [12], we define on L,(T) the operator sequence {W,}2, :

+o0
(Waf)(®) = w,,( > fktk) =St b foatT o ot fasat 4+ fot®

k=-o0

This sequence satisfies the relations (iii)-(v) from Section 2, therefore the necessity of the
conditions of Theorem 4.1 follows immediately from Theorem 3.2, applied to the case X =
HP(T), Z = H{(T),Y =V = Ly(T). The sufficiency can be shown as follows using Theorem
3.2, Lemma 3.4, and Theorem 2.2. At first we describe a system of localizing classes in
A/JVHil2 and in A/ JHTL22, Denote by N, C C(T), 7 € T, the set of real functions f,
with values in the segment [0, 1] and f,(¢) = 1 for ¢ in some neighborhood of 7. The systems
Mr c Al2j gt M! c A3 [ JH] are defined for 7 € T as

M7 = {{Pa(P* £, P* + P~ [.P")PuY: o € N, }
M! = {{PsD"(P*[.P* + P~[,P")DPI}: ], € N}
For each 7 € T, they are localizing classes in AL7/ 712 and AH:/]H: , respectively. In-
deed, consider the product of two elements { PID~Y(P* fi Pt + P~ fiP™)DP}} (i=1,2)
belonging to M! for some fixed r € T. Using relations (16) and [12:(3.2)] we obtain
PID~YPYfIP* + P~ fIPYDPY- PID~Y(P* 2Pt + P~ f}P7)DP?
= PID"Y(P*f}P* + P~ f}PT)P.(P*f2P* + P~ f2P")DP]
= PID~N(P*f1f2P* + P f} f2PT)DPS (20)
—PIDY (PP 1Pt + P~ f}P*fIPT)DP]
~PAD™ (WoP* fLP™ f2P*Wo + Wo P~ fLP* f2P~W,)DFY,
where f(t) = f(1/t) ,t € T. The last two summands belong to the ideal JH{ since
Pt fP=, P~ fP* are compact for f € C(T). Now the assertion follows easily from (20).
Similarly to {12, Theorem 4.1], we can prove that
{Pa(aP* +bP")DIPy - PAD™'(P* f,P* + P~ {,P")DP}

~Pu(af-P* + b, PT)DIP} " € gl
1

o0
n=

and

{Pa(P* £, P* + P f,P")P.- P(aP* + bP7) D} P
~P.(af.P* +bf,p-)D;'Pg}°° ¢ JHIL
n=1
where a,b € Loo(T), fr € N;, 7 € T . This immediately yield that, for each r € T, the

systems M! and M commute (see Definition 2.1(c)) with respect to any element of the form

{P.(aP* +bP7)D]PIY, a,b € Loo(T).
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As a consequence of these considerations we get the following lemmata.

Lemma 4.2: For each 7 € ', the systems
{{Pm @ PID™\(P* [, P* + Pf,P")DPIY,, 1, € N.}
({{Pn® Pu(P*£-P* + P £,PT)Pa),, S € N.})

form a left (right) covering system of localizing classes in A/FVHIL: | and they commute

with respect to any element of the form

{(Pa@ Pa)(@P** +bP*~ 4 cP™+ + dP™")(D] ® DY)(PT @ PI)}

where a,b,c,d € C(I'®T) .

Lemma 4.3: For each 7 € T, the systems
{{PrB=\(P*1,P* + P[P )BPT @ PIY,, fr € N, }
({{Pu(P* 1. P* + P[P )PL@ P}, fr € N })

form a left (right) covering system of localizing classes in A/ JH3"L2? | and they commute

with respect to any element of the form

{(Pa® Pa)@P** +bP*~ + cP™* + dP=")(D} ® DL)(Py @ PI)}

2
where a,b,c,d € C(T x T').

Now we continue the proof of Theorem 4.1. Consider an arbitrary fixed 7 € I' and note
that {K,}, = {(P. ® P.)K(P] ® P})}, is locally {M!, MI}—equivalent to the element
{KY,, where

K, = [Pn(amq('vr)P+ + Cmq(':T)P_)D:?P:zn] ® [P..‘P+ D?,Pf!]
+ [Pa(bmg(s )T IPY 4 dpng(-, 7)™ IPT)D P @ [Put3 P~ DY, Pl .
Since the operator K is invertible, we infer from [8] the invertibility of the operators
K&, Ky, Kooy Kip: HFY — Lo,
where
K31 = (amg(T)P* + cmg(-7)P™) D,
K5 = (P*all)(,1)P* + P=eb)(, )ii™P~) DT,

K7y = (bmg(-,7)P* + dung (,7)P7) DI,
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Kiz =770 (Pl ) P* + P-ds;g(-,r)zfmp-)oy; .

Therefore, K§,, K7, € I{P7, P,} [7]. Then there exists a number no €N such that for all

n > ng the operators

Koy s Kyt im P7* — im P,, where K3, ,, = P.EoG P, Ki,.= P.K, P |
are invertible and the norms of the inverses are uniformly bounded, i.e.,

I(KG )" Pall<e s (K ) PallSc o n2mo
Consider the operators R, :im(P, ® P,) — im(P™ ® P}) having the form

R = ((Kg0) 7' Pa) ® (PIDT PHPa) + (r%(K{y 0) 7' Pa) ® (PIDT'P™Fy) .
Compute the products R, K} and K] R, :

RuKy = P7 @ ((PID™'P* P,)(P.P* D}, PY))

+P7 Q(PID™' P~ Py)(Puty P~ DY, PY)]

t2

= PP @ [PID™'(P* + 3P)D!. P!

t2° n

=PTQP

similarly, KT R, = P, ® P, . This shows that, for all fixed t; = 7 and for all n > no, the

operators
K] :im(P]® Pl) — im(P, ® P,)

are invertible (and thus, {M!, MI}—-invertible) and
(K7 (Pa ® Pa)ll = I Rall < 2¢iD7Y] -

Using the local principle (Theorem 2.2), we obtain the invertibility of the coset { A}, in the
paraalgebra A/ JHi"12:2, Analogously, one can prove the invertibility of { K.}, in ./i/j‘-”gl”.
According to Lemma 3.4, these facts yield the invertibility of {K,} in A/J. This and the
invertibility of 4, C},C3,Cs allow us to apply Theorem 3.2 which finishes the proof m

Now we shall study the collocation method for solving the bisingular integro-differential
equation (12). Denote by R = R(I" x T') the set of functions which are Riemann-integrable
on I' x T. Suppose that f € R. An approximate solution of equation (12) is sought in the
form (14), but the unknown coefficients are to be determined by the following system of

linear algebraic equations:

(Kz,)(t,t) = f(tj, 1) (4,1=0,%1,...,£n), (21)
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where t; = exp(:,f"zlj). Introduce the operator

Lo: R(T) = imPa, (Laf)()= ) at* , ax= 2n'+1 DI

k=-n j=-n

It is obvious from Remark 2.4 that the solvability of (21) and the convergence of the appro-

ximate solutions (14) to the exact solution of (12),(13) is equivalent to the condition
Kel{P®Pi,L,®Ln}.

Theorem 4.4 (The collocation method): Let the conditions of Theorem 4.1 be fulfilled.
For the validity of K € I{P™ ® P, L,® Ly} it is necessary and sufficient that the operators

K € L(HT(T x T), Ly(T x T)) and Cy,C3,C3 € L(LoT x T))

are invertible, where

Cr=aa) P+ 400159 P+ chlim P+ 4d0)ire; 9P~

Ca=aim) P4 b00t5 P+= 4y iy ™ P+ +d 2Ny P~

Ca=a)P++ 4+ 63008 P-4 ym P+ 4 dimeg P--,

and al b5 &) dl) (i = 1,2,3) are defined as in (17) - (19).
Proof: The proof of this assertion runs parallel to that of Theorem 4.1. We take as

localizing classes in the paraalgebras A/FH7'%22 and A/ J"HiLl2 the systems
{PPB7 LafrLaBPT ® PIY,}  {{LnfrLn® Pu),}

and
{PT ® PID™'Laf:LnDPIY}  {{Pa® LafrLa}},

respectively, with f; running through N, , r € T. Now little modifications in the proof of
Theorem 4.1 are needed to obtain the assertion m
Remark 4.5: It is easily seen that one can state Theorems 4.1 and 4.4 for systems of

bisingular integro-differential equations.
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At the beginning of the 20th century, when great success was being achieved in the
formation of the classical theory of partial differential equations, there developed a
tendency to start investigations in a whole series of new scientific directions. Among
these were, in particular:

a) Investigation of the behaviour of solutions of elliptic equations in the neighbour-
hood of sets of singular points and the description of removable singularities (possible
generalizations of the Liouville, Borel and Bernstein theorems, which are known from po-
tential theory). '

b) Investigation of the influence of dimension and smoothness of the carrier (borders
of the range of the solution) on the well-posedness of problems for elliptic equations.

c) Extension of the sphere of linear problems, including those of mixed type and
others.

Resulting from the investigations in these directions, in the course of more than half a
century the foundations were laid for the theory of elliptic equations on open and closed
manifolds, respectively.



