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On the Continuous Dependence on Parameter of the Solution Set 
of Differential Inclusions 
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We prove a theorem on continuous dependence of solutions of differential inclusions in Ba-
nach spaces on parameters and derive from it the first fundamental Bogoiiubov type theorem 
on averaging. 
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In recent years the theory of differential inclusions in infinite-dimensional Banach spaces has 
attracted much attention due to its application to optimal control problems described by par-
tial differential equations. An important question that arises in the study of such inclusions is 
the continuous dependence of the solution set with respect to a parameter contained in the 
right-hand side. For finite-dimensional spaces a theorem on continuous dependence of soluti-
ons of differential inclusions on parameters has already been established (see [1, 101). The aim 
of this note is to extend this theorem to Banach spaces and to derive from it the first funda-
mental theorem of Bogoliubov on averaging in finite intervals [2] for differential inclusions in 
standard form in Banach spaces (see [6, 10]). 

Throughout the sequel solutions of differential inclusions will always be taken in Cara-
théodory sense. 

Let X be a Banach space with a strictly convex norm IIII and the associated metric 
By Comp X(ConvX) we denote the collection of all non-empty compact (convex and com-
pact, respectively) subsets of Xendowed with the l-lausdorff metric cx(,), by p(x,A) the dis-
tance from a point x c X to a set A C X, and by I = [0, TI a segment of the real positive axis 
R= [0, + ), 0< T  R. By C(I,X)we mean the Banach space of continuous mappings from I 
to X, equipped with the standard norm. We define the modulus of a set A t Comp X to be the 
number I Al = a(A,I0}). Measurability, strong measurability of mappings and integrals of multi 
valued mappings are understood as in [8]. 

Consider the differential inclusion 

E F(t,x(t)), x(0) = x0 ,	 (1) 

where F: I x X— Comp X. 

Lemma 1: Let F: I x X - Comp X be a mapping of Carathodory type (i.e., a mapping 
such that F(t, x) is strongly measurable in t and continuous in x). Assume, furthermore, that 
F(t,x) satisfies a Lipschitz condition in x with constant kand that there exists a function w(t) 
integrable on I such that IF(t, 0)1 :^ (t) for all t E I. Then for any strongly measurable mapping
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v: I- X there exists a solution x(t) of the inclusion (1) such that, almost everywhere on 1, 
IIv(t) -x(t)If = p(v(t),F(t,x(t))). 

Proof: Define a selector f( t, x) e F( t, x) by the relation 11v( t) - f(t,x) jI = p(v( t ), F( t, x)). 
Such a selector exists and is uniquely defined by virtue of the convexity and compactness of 
F(t,x) and the strong convexity of the norm in X. Furthermore, by Lemma 1.1 in [8], f(t,x) is 
strongly measurable in t for every fixed x and since F(t,x) is continuous in x, it follows from 
the theorem on maximum of optimal solutions (see [31) that f(t,x) is continuous in x for eve-
ry fixed t. 

Following [8] we denote by U(t) the solution of 1-lukuhara's equation on I associated with 
the inclusion (1). This solution exists by Corollary 2.2 in [7]. By Lemma 3.1 in [8] the set K of 
all continuous selectors x( t) of the solution U( t) that satisfy 

r2 
x(t2) -x(t1 ) € J'G(s,U(s))ds (t 1 :5 t2 , t1 ,t2 €1), 

ti 

where G(s,U(s)) = C0U{F(s,y) : y € U(s)}, is a convex, compact set in the space C(I,X)(Co 
stands for the closed convex hull). 

Consider the operator g on K, 

u)(t) = x0 + ff(s,u(s)) ds, t €1. 

From the properties of f( t, x) and the definition of K it is clear that g is a continuous mapping 
from K into K. By the Schauder-Tikhonov fixed point theorem, there exists an element x( 
K such that 

x(t) =x0 +fr(s,x(s))ds. 

Obviously, x( t) is a solution of the inclusion (1) satisfying 11 v( t) - x(t) II	p(v( t ), F( t, x( t ))) al-



most everywhere in I  

Consider now a differential inclusion 

x(t) e F(t,x(t),),), x(0) = x0,	 (2) 

where F: I x X x A -+ Comp X, with A being a normed space. 

Theorem 1: Assume that D C X is a bounded domain and that the mapping F satisfies the 
following conditions: 

(i) F is strongly measurable in t for every fixed (x, A) and is continuous in x for every fi-
xed (t,X). 

(ii) F satisfies a Lipschitz condition in x with some constant k. 
(iii) IF(t,x,X)I :^ M, M> 0, for all (t,x,),) E I x A' x A. 
(iv) We have, uniformly with respect to (t, x) E I x 

urn a(JF(txX)dtJ'F(txXo)dt) 0, 
-* )X0	 o 

where X. is a limit point of the space A.
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(v) There exists a neighbourhood V(A 0 ) of the point A 0 such that any solution of the in-
clusion (2) for A E t7(A 0 ) lies in D together with its 3-neighbourhood. 

Then for any i > 0 there exists a neighbourhood V(A 0 ) C tA) of A 0 such that for all A 
V(A0 ) and any solution x(t,A) of the inclusion (2) there exists a solution x0(t,A0) of the in-

clusion

X0(t) € F(t,x0(t),A0), x0 (0) = X.	 (3) 

satisfying 

IIx(t,A) - x0(t,)'0 )I1 _-	 (4) 

and for any solution x0 ( t, A 0 ) of the inclusion (3) there exists a solution x( t, )') of the inclusion 
(2) satisfying (4). 

Proof: In view of Consequence 2.2 in [7] it suffices to prove the proposition for the case 
where F(t, x,A) E Cony Xfor all (t,x, A) € I x Xx A. Divide the interval I into m equal parts by 
the points t, (i = 0,1.... . in). Let x( t, A) be some solution of the inclusion (2). Setting ( t) = 

x(t 1 ,A) for all t e[ ti , t +1 ] we consider the following two inclusions: 

x 1(t) € F(t,.V(t),A), x 1(0) = x0	 (5) 

€ F(t,(t),),0),	(0) = x0 .	 (6) 

According to Lemma I there exists a solution x1(t) of the inclusion (5) such that 

IIx(t,A) - x1(t)II = 

Let t € [ t1 , t,, 1 ]. Since 

x(t,A) - x 1 (t2 ) = x(t1,A) -x1(t1) + ft [x(s,A) - x1(s)]ds, 

we can write 

11x( t ' A) - x( t ) II :5 IIx( t 1 , A) - x( t1)lI +f, ll[(, A) - x(s)] lids 

^ IIx(t 1,A) - x1(t1 )II +ftp(s,A),F(s,(s),A))ds 

Ilx( t 1 , A) - x1( t)II +jtcx(F(s, x(s), A), F(s, x(s), A)) ds 

IIx(t 1,A) -x1(t1 )II t kMf(s - ti) ds 

:9 Ix(t,,A) -x1(t1 )II + kMT2/2m2 

Hence a simple computation yields 

IIx(t,A) -x1(t)II :5 kMT 212m.	 (7) 

From condition (iv) it follows readily that for every 71, >0, m there exists a neighbourhood V(X0)

	

such that whenever A € V(A0 ), then	 - -	- 
ti...1	

"i-1c(JF(t,x,A)dt,JF(t,x,Ao)dt)s i for all x € D. 
t i	ti 
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Consequently, if 

x1(t) = x1(t1) +ftvj(s)ds, v1(s) E F(s,x(t,X),X), 

then there exists 171(s) E F(s,x(t,A),)o) such that 

ti..-1 

5 (vs(s) - V1(s))dsll 
ri 

It is clear that	t) = V,( t i ) + E t t(s) ds (t € (ti , t..-1 ]) is a solution of the inclusion (6) and
satisfies the inequality 

IIxi( t ) -V1(t)II :5 m y 1 +2MT/m.	 (8)

By Lemma I there exists a solution x0 (t,X 0 ) of the inclusion (3) such that 

I 1 (t) - xo(t,xo)I	p( 1 (t), F(t, x0(t,Xo),X0)) 

^ 

^ kflV(t) - xo(t,Xo)II. 

Therefore, 

II1( t ) - xo(t,Ao)II :5 k II( t )-x0(t, A0)II 

Taking account of the estimates (7), (8) and the boundedness of F we obtain 

- xo(t,Ao)II !, k IIx 1( t )- x0( t , X0)II +k(m yj 1 + kMT 2/2m +3MT/m). 

But by Gronwall's lemma 

II1(t) - xo(t,Xo)II k(mri 1 + kMT 2/2rn + 3MT/m)exp(kT).	 (9)

Hence, in view of (7) - (9), 

Ix(t,X)xo(t,Ao )II !^ k(mi 1 + kMT 2/2m +3MT/m)exp(kT)	 (10) 
+m 1 +kMT 2/2m +3MT1m. 

From this it follows that one can find m and i such that Ifr( t ,), )- xo( t , xo)fl s i, proving the 
first assertion of the theorem. The second one can be proved in a similar way U 

By an argument analogous to that used in [10] we can derive from this theorem the follo-
wing

Theorem 2: Let D C X be a bounded domain and assume that the right-hand sides of the 
differential inclusions 

(t)e sG(t,x(t)), x(0)x0	 (II) 

#(t) € EG(X(t)),	(0) = x,.	 (12) 

satisfy the following conditions:
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(i) The mapping G: [0, +co) x X - Comp X is of Carathéodory type and satisfies a Lip-
schitz condition in x with constant k. 

(ii) We have IG(t,x)I :^ M, M> 0, for every (t,x) E[0,+cO ) xX. 
(iii) We have, uniformly with respect to x € D, 

rlirn(+jG(t,)ft, t(x)) o. 

(iv) Any solution of each of the inclusions (ii), (12) lies in the interior of D. 
Then for any > 0 and L > 0 there exists E, > 0 such that, on every interval [0, LE- 1 1 with 0 < 

!^ s, for any solution x( t) of the inclusion (11) there exists a solution x( t) of the inclusion (12) 
satisfying 

11x(t) - (t )II (13) 

and for any solution x( t) of the inclusion (12) there exists a solution x ( t)  of the inclusion (11) 
satisfying the estimate (13). 

Remarks: 1. Theorem 1 is Bogoliubov's theorem on averaging in finite intervals for diffe-
rential inclusions in Banach spaces. For differential inclusions in finite-dimensional spaces 
this proposition has been established in [6,10]. 2. Using a lemma of Frankowska (Lemma I in 
[41), the above results can be extended to the case where the right-hand sides of the inclusi-
ons (2),(4) and (11),(12) are closed sets (see 191). 

Example: As an example of application of the above results let us consider a control sy-
stem described by the partial differential equation 

)x/c)t = c(sint cos(l 2xAly) cost sin()x/ay) +(siny)u(r)), y £ (0,1)	 (14) 
x(t,0) = x(t,I) = 0, t t [0,LE 1], L >0, and x(0,y) = sinTry, 

where u(t) e U = [0,1] i8 the control. A function u: [0,Lc ] - U is called an admissible control 
if it is measurable on [0,Lr1].A function x(t,y) is called a solution of system (14), if for every 

the function x(t,) is of class L 2(0,1), possesses generalized derivatives ax./ay, a2x/y 2, all of 
class L2(0, 1), and if x(t,y) satisfies (14) for almost every r. System (14) can be written in the 
form (II) with state space X {z €L 2(0,l): z(0) z(l) = 0) and 

G ( t , x ) f ( t, A tx, A2x ) >A3 U, x0(y) sinTry, 
where 

f(t,A1x,A2x) = sin  cosA 1 x -cos tsinA2x, 
with

AX 
= 2x/ày 2, A2x = c)x/cly and (A3 U)(y) (sin,ry)u. 

Let D {z £ L. 2 (0,1): IIzII s 3L, z(0) = z(1) = 01. From (14) we have x(t) c D and since f is a 
periodic function of period 27r, we obtain 

T	 27t 

lim j'f(t, A ix, A2x)dt	ff(t,Aix, A2x)dt = 0 T—>+co o	 o 
uniformly with respect to x e D, and consequently 

T 
lim TfG(t,x)dt = A3U' o 

Now it is easily verified that the right-hand side of the corresponding inclusion (11) satisfies all 

15*
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the conditions of Theorem 2 for C and D just defined. Furthermore, as an approximation of the 
solution set to system (14) we may take 

KE {x: x(t,y) sin7ry £(sinTry)fu(s)ds, u(s)c U for (t,y)c [0,Lt'J a [O.IJ}. 

Clearly, K is a solution set of the system 

aX = c(sinty)u(t ), y€ (0,1), u(t ) C U, t E LO, Lc1] 

x(t,O) x(t,l) 0, x(0,y) = sinlry, 

which is an averaging system for system (14). 
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