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On the Continuous Dependence on Parameter of the Solution Set
of Differential Inclusions

HoaNG DUONG TUAN

We prove a theorem on continuous dependence of solutions of differential inclusions in Ba-
nach spaces on parameters and derive from it the first fundamental Bogoliubov type theorem

on averaging.
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In recent years the theory of differential inclusions in infinite-dimensional Banach spaces has
attracted much attention due to its application to optimal control problems described by par-
tial differential equations. An'important question that arises in the study of such inclusions is
the continuous dependence of the solution set with respect to a parameter contained in the
right-hand side. For finite-dimensional spaces atheorem on continuous dependence of soluti-
ons of differential inclusions on parameters has already been established (see [1, 10]). The aim
of this note is to extend this theorem to Banach spaces and to derive from it the first funda-
mental theorem of Bogoliubov on averaging in finite intervals [2] for differential inclusions in
standard form in Banach spaces (see [6, 10]).

Throughout the sequel solutions of differential inclusions will always be taken in Cara-
theodory sense.

Let X be a Banach space with a strictly convex norm |- || and the associated metric p(-,").
By Comp X (Conv X} we denote the collection of all non-empty compact (convex and com-
pact, respectively) subsets of X endowed with the Hausdorff metric of-,-), by o(x,A4) the dis-
tance from a point x ¢ X' to aset A C X, and by [ = [0,T] a segment of the real positive axis
R*= [0,+), 0 < Te R. By C(I,X)we mean the Banach space of continuous mappings from /
to X, equipped with the standard norm. We define the modulus of a set A ¢ Comp X to be the
number|A| = a(A,{0}). Measurability, strong measurability of mappings and integrals of multi-
valued mappings are understood as in [8].

Consider the differential inclusion

x(t) e F(r,x(1)), x(0) = x,, . (1)
where F: I x X = Comp X.

Lemma 1: Let F: I x X - Comp X be a mapping of Carathéodory type (i.e., a mapping
such that F(t,x) is strongly measurable in t and continuous in x). Assume, furthermore, that

F(t,x)satisfies a Lipschitz condition in x with constant k and that there exists a function w(t)
integrable on [ such that |F(t,0)l s w(t) for ail t € I. Then for any strongly measurable mapping
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v: [ > X there exists a solution x(t) of the inclusion (1) such that, almost everywhere on I,

Iv(e) - x(e)ll = p(v(e), F(e, x(1))).

Proof: Define a selector f(t,x)e F(t,x) by the relationllv(¢)-£(¢t,x)Il = o(v(t) F(t,x)).
Such a selector exists and is uniquely defined by virtue of the convexity and compactness of
F(t,x) and the strong convexity of the norm in X. Furthermore, by Lemma 1.1 in [8], £(¢,x)is
strongly measurable in ¢ for every fixed x and since F(t,x)is continuous in x, it follows from
the theorem on maximum of optimal solutions (see [3]) that f(t,x) is continuous in x for eve-
ry fixed t.

Following [8] we denote by U(t) the solution of Hukuhara's equation on [ associated with
the inclusion (1). This solution exists by Corollary 2.2 in [7). By Lemma 3.1in [8] the set K of
all continuous selectors x(¢) of the solution U(t) that satisfy

f2
x(t) - x(t) € [G(s,U(s)ds (1, s t,, t,,8, € 1),
Y
where G(s,U(s)) = CoU{F(s,y): y € U(s)}, is a convex, compact set in the space C(/,X)(Co
stands for the closed convex hull).
Consider the operator g on K,

gu)(t) = x4+ ff(s,u(s)) ds, tel

From the properties of f(¢,x)and the definition of K it is clear that g is a continuous mapping
from K into K. By the Schauder-Tikhonov fixed point theorem, there exists an element x(-)¢
K such that

x(t)=x4 + ff;(s,x(s)) ds.
o]

Obviously, x(t) is a solution of the inclusion (1) satisfying llv(t) - x(¢)Il = p(v{(¢),F(t, x(¢t )))al-
most everywhere in [ B

Consider now a differential inclusion
x(£) € F(£,x(£),%), x(0) = xg, (2
where F: I x X x A - Comp X, with A being a normed space.

Theorem 1: Assume that D C X is a bounded domain and that the mapping F satisfies the
following conditions:
(i) F is strongly measurable in t for every fixed (x,\) and is continuous in x for every fi-
xed (t,0\).
(ii) F satisfies a Lipschitz condition in x with some constant k.
Gii) |F(e,x, X))l s M, M >0, forall(t,x, A\) e I x X x A.
(iv) We have, uniformly with respect to (t,x) e I x D,

T T
lim F(t,x,A)dt, |F(t,x,\ )dt) =0,
xln:(! ( ) ! °

where A, is a limit point of the space A.
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(v) There exists a neighbourhood V(),) of the point X, such that any solution of the in-
clusion (2) for X € V(,) lies in D together with its B-neighbourhood.

Then for any n > 0 there exists a neighbourhood V(X)) C V(X,) of X, such that for all X
€ V(X,) and any solution x(t,)\) of the inclusion (2) there exists a solution x,(t,X,) of the in-
clusion

Xo(t) € F(t,x(t ) Xg), Xo(0) = X, (3)

satisfying
lx(e, %) - xo(&, A < n; ' (4)
and for any solution x,(t,\,) of the inclusion (3) there exists a solution x(t l) of the mclus:on

(2) satisfying (4).

Proof: In view of Consequence 2.2 in [7] it suffices to prove the proposition for the case
where F(t,x,X)e Conv X for all (t,x,X) e I x X x A. Divide the interval I into m equal parts by
the points t; (i =0,1,..., m). Let x(t,)) be some solution of the inclusion (2). Setting X(t) =
x(t;,X) for all t e{t;,t,,,] we consider the following two inclusions:

x(8) e F(,x(t)\), x,00) = x, (s)
x,(t) e F(£,%(£),),), X,(0) = x,. ' _ (6)

According to Lemma 1 there exists-a solution x,(¢) of the inclusion (5) such that
lx(e,2) - x,(e)ll = p(x(e,X), F(£, % (£),2).
Let te[¢;,¢t;,,]. Since
t . §
x(6,0) - x,(8;) = x(£,0) - x,(t;) +J;i[x(s,)\) - %,(s)] ds,
we can write

Ix(,2) = x, (1 5 x(2,3) = %)l + [ [Ges,0) - x,(s)] | ds
s llx(;,0) = ()l + [ o(x(s,3), Fs,%(s),\)) ds
s llx(t;,8) = (1)l + [ a(F (5, % (),2), F(5, x(s),\) ds

s Ix(e %) =)l + kM [ (s ~ ;) ds
S Ix(e;0) = x ()]l + kM T2%/2m?2.
Hence a simple computation yields
Ix(6,X) - x() < kMT%2m. <

From condition (iv) it follows readily that for every ny >0, m there exists a nenghbourhood V(X )
such that whenevér X € V(},), then i -

( tivy Livy

« fF(t,x,k)dt,fF(t,x,xo)dr) sm, forall x €D.
t; i
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Consequently, if
x,(t) = x,(¢;) *J‘:.vt(s) ds, vi(s) e F(s,x(£;,X), %), A
1

then there exists V(s) € F(s,x(t;X),X,) such that
fiv1

(vi(s) - ¥(s))ds
t

sn,.

t_

It is clear that x,(¢) = ¥,(¢;) +f v(s)ds (te(¢;,t;,]) is a solution of the inclusion (6) and

o
satisfies the inequality

Ix(t) -xt)|| s mn, +2MT/m. (8)
By Lemma 1 there exists a solution x,(¢,},) of the inclusion (3) such that
1%.(8) = 2o(8,26) = o(%,(£), F(t, x5(t,X6) X))
$ a(F(6,X(6),2) F(t, x(8,X0),24))
s k| x() - xo(8,%)|)-
Therefore,
1%,() = %o(e, x| s KR (8)-x0(8,20)]|
s k[j|)?(t)-x(t,)\)|| +Ix (e, ) -x (O] + Ix () -% ()] +]l Yl(t)—xo(t,)\o)"].
Taking account of the estimates (7), (8) and the boundedness of F we obtain
fi%,08) = %ot x| 3 klIx(t) - x(t,X)]| + k(mn, + kMT¥2m +3MT/m).
But by Gronwall's lemma
®e) - xo(t, )| s k(mn, + kMT%2m +3MT/m)exp(kT). (9)
Hence, in view of (7) - (9),

[Ix(e,0) - xo(t, X)) s k(mny+ kMT%2m +3MT/m)exp(kT)
+mn, +kMT%2m +3MT/m.

(10)

From this it follows that one can find m and 7 such that ||x(£,X)- x(£,X,)|| s 0, proving the
first assertion of the theorem. The second one can be proved in a similar way i

By an argument analogous to that used in [10] we can derive from this theorem the follo-
wing

Theorem 2: Let D C X be a bounded domain and assume that the right-hand sides of the
differential inclusions

x(t) e G, x(t)), x(0)=x, (11)

x(t) e eG(x(t)), x(0)= xo. (12)

satisfy the following conditions:
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(i) The mapping G: [0,+) x X > Comp X is of Caratheodory type and satisfies a Lip-
schitz condition in x with constant k.
(ii) We have |G(t,x)| s M, M > 0, for every (t,x) ¢[0,+®) x X.
(iii) We have, uniformly with respect to x ¢ D,

T
lim a(%fG(t,x) dt, 5(.\')) =0.
o

T+

(iv) Any solution of each of the inclusions (11), (12) lies in the interior of D.
Then for any 1> 0 and L > O there exists g, > O such that, on every interval [0, Le-1] with0 < ¢
< &4, for any solution x(t) of the inclusion (11) there exists a solution %(t) of the inclusion (12)
satisfying

Ix(e)-%=(eM s q (13)

and for any solution X(t) of the inclusion (12) there exists a solution x(t) of the inclusion (11)
satisfying the estimate (13).

Romarks: 1. Theorem 1 is Bogoliubov's theorem on averaging in finite intervals for diffe~
rential inclusions in Banach spaces. For differential inclusions in finite-dimensional spaces
this proposition has been established in [6,10]. 2. Using a lemma of Frankowska (Lemma 1 in
{4]), the above results can be extended to the case where the right-hand sides of the inclusi-
ons (2),(4) and (11),(12) are closed sets (see [9]).

Example: As an example of application of the above results let us consider a control sy-
stem described by the partial differential equation

AIX/At = E(sint cos(r)zx/r)y) + cost sin(ox/dy) +(sin1ty)u(t)). ¥ € (0,1) (14)
x(2,0)=x(t,1)=0, te[0,Le '), L >0, and x(0,y) = sinny,

where u(t) ¢ U =[0,1] is the control. A function u:[0,Le” 1] = U is called an admissible control
if it is measurable on [0,Le *]. A function x(t,y) is called a solution of system (14), if for every
t the function x(t,-) is of class L,(0,1), possesses generalized derivatives dx/0y, 3*x/9y 2, all of
class L,(0,1), and if x(t,y) satisfies (14) for almost every t.System (14) can be written in the
form (11) with state space X ={z eL ,(0,1): z(0) = z(1) = 0} and

G(t,x) =f(t,A;x,Ayx) + AU, xo(y) =sinny,
where
f(t,Alx.Azx) =8int cosA,x +costsinA,x,
with
Ayx = ?2xs/0y2, Ayx = 3x/9y and (AUXy) = (sinwty)u.

Let D ={z e L ,(0,1): llzll s 3L, z(0) = z(1) = 0}. From (14) we have x(t) ¢ D and since f is a
periodic function of period 27, we obtain

T 27
lim  [F(t,Ax, Ax)dt = o= [£(t,A;x, A;x) dt =0
T—=>+ o ™5

uniformly with respect to x ¢ D, and consequently
T
1
lim F[G(r,x)dt =AU

T+ 3

Now it is easily verified that the right-hand side of the corresponding inclusion (11) satisfies all

15*
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the conditions of Theorem 2 for G and D just defined. Furthermore, as an approximation of the
solution set to system (14) we may take

t
K¢ = {x: x(t,¥) = sinny + e(sinny)fu(s)ds, u(s)c U for (t,y)e [0,Le 1] x [0.1]}.
°

Clearly, K. is a solution set of the system

%’:—- = e(sinnty)u(t), ye (0,1), u(t)e U, t € (0,Le™ ']

x(t,0) = x(¢,1) = 0, x(0,y) = sinmny,

which is an averaging system for system (14).
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