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A Generalization of the Barnes C-Function 
R. SCHUSTER 

Generalizing the Barnes C-function we define an entire function of order m with the zeros k 
with multiplicity km (k, m c t'J). We prove functional equations for it and study its asymptotic 
behaviour and Taylor series. This generalization is useful in order to describe the topological 
zeros of the Selberg zeta function with respect to the spectrum of the Laplace operator for 
differential p-forms on n-dimensional compact hyperbolic space forms. 
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1. Introduction 

The Selberg zeta function with respect to the spectrum of the Laplace operator for differenti-
al p-forms on n-dimensional compact hyperbolic space forms plays an important role for the 
study of the length spectrum and eigenvalue spectra. One part of the zeros and poles of the 
Selberg zeta function is related to topological properties of the space form, the other one is 
related to the eigenvalue spectrum of the Laplace operator. We want to give a generalization 
of the Barnes G-function in order to handle the topological aspects. Voros [141 used the 
Barnes G-function to discuss the two-dimensional case. 

First we want to give some details about the spectral geometric background of the inten-
ded generalization. Let Vbe an n-dimensional compact hyperbolic space form and let C) be 
the set of non-trivial free homotopy classes of V. In every class W € 0 there lies exactly one 
geodesic line. We denote by 1(o) and v(w) its lenght and multiplicity, respectively. The paral-
lel displacement along the closed geodesic line induces an isometry of the tangent space in 
every point of the geodesic line with the eigenvalues ()..... with I13(N = 'I (i = 
1,..., n-I). Let ep() be the th elementary symmetric function of the 3(w), and put e,() = I. 
Further on, we introduce the weight

with N = I	 n-i 
- 

Let S, denote the p-spectrum of the Laplace operator i A + 8d. Thereby we have used the 
differential operator d and the codifferential operator 8 acting on differential p-forms on V. 
It is well known that the Selberg zeta function for the classical case n = 2 and p = 0 that is 
defined by 

a(s)	fl 
Co 

 
rJ (1 - e ' ") for Res > 1, 

c.eQ,v()t k=o 

bears a very striking resemblance to the Riemann zeta function (as well as differences). One
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easily shows 

I()o(w)e1) *2) dln(s) 
ds 

There are many papers about the two-dimensional case, for further information we refer to [6]. 
We define 

'y (s) = r(p + 1) r( - p)J	 '' for n even, Res > 2N, N = 
(.)eO 

This function 'l's, can be considered as the logarithmic derivative of the Selberg zeta function 
(cf. [ ii ]) and it has a meromorphic continuation to the whole complex plane. One part of the 
poles of 'I'J, is related to the eigenvalue spectrum S,, of the space form V, and the other one' is 
related to topological properties (with the exception of the points N and N ±IN - p 1 in which 
the residues of the poles of '1',, may reflect both topological and spectral aspects of V) There 
are the (topological) poles s = -k (k E N) of the function 'I',, with residues (_1)'22(N +k)V) 
xP(-(N+k)2) for n even (cf. [111). Thereby x denotes the Euler-Poincar6 characteristic of V, 
and the polynomial P is defined by P(s) = 

flU = i,2,U 1,iNpI(s + u 2). In order to generalize the 
factorization of the Selberg zeta function given by Voros [14] for n = 2, we look for a function 
having the zeros s = -k (k e N) with multiplicities k' (m £ N). For further information about 
Selberg zeta functions and the spectral geometric background we refer to [2 - 6,10,12,14]. Our 
main result is the following 

Theorem A: The generalized Barnes G-function Gm defined by 

G,(1 +z) = exp{_	ç(J-m) (i - (( +3-)/(m +1))(_z)i4m	('y )cu _m)(_z)i} 

{(l	
km

exp(( 
m+t 

+)	> .(_z)jk m)} for m =0,1,2,... 

by help of the Riemann zeta function C and the Euler number y is an entire function of order m 
with the zeros -k with multiplicity k m (k £ N). Further on, there is the zero 0 with multiplicity 
I for m = 0. The used infinite product is absolutely convergent. We have Gm(1) = 1, and Gm 
satisfies the functional equation 

Gm(Z +1) = flo(Gm_r(Z))(_1)r(z;l) for m > 0. 

Proposition 5 will describe the asymptotic behaviour of Gm(z +1) for z- co and Propositi- 
on 6 will give the Taylor series of lfl Gm(z +1) for IzI < 1. The function Gm generalizes also the 
gamma function. In fact, we have G0 = hr. 

2. Spectral formalism 

We want to apply techniques described in [14] in order to handle abstract spectral sequences. 
For further information cf. [7 - 91. For the convenience of the reader, we recall those formulas 
of [14] which we will use later on. 

One studies an abstract sequence (Xk)k°o C R with 0 < X, Ak :^ A k ,l for all k and Ak --> co 
for k-a. co• It is supposed that the partition function at) =Oexp(-Akt) converges for all t
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with Re  > 0 and admits a full asymptotic expansion 

(t)	cjktlk for t-+0	 (1)
k=o 

for a suitable increasing sequence (k) of real exponents with 1k - for k - and i < 0. 
The number i = -i is called the order of the sequence ( Ak ) .With respect to our applications, 
we suppose the order i to be an integer. It will be useful to define, by convention, c = 0 for 
any real number a which is not in the sequence (k)• We now define a zeta function Z by 

Z(s) 
=

for Res > j . ( 2) 

We emphasize that this zeta function is quite different from the Selberg zeta function. It has a 
meromorphic continuation to the whole complex plane, it is holomorphic for Res> i and has 
the simple poles s = - ik with the residues cjk/fl_ik).lt is convenient to introduce a two-para-
metric zeta function by Z(s,a) = Z(s), where Zis the zeta function related to the global 
shift Ak - Ak + a of the sequence (Ak). The Weierstrass product i as a regularized Fredholm 
determinant is defined by 

(A) = H(1---)	' 
IA Xr 

 
k 0	

expi 5'—'-l. 
k	\EalrX

j
kI 

This is the unique entire function of order ti having the zeros Ak which satisfies the normali-
zation conditions 

In AM = din A(A) 1 = =	= dI2ln(X) 
X 0	dA	I=O = 0.	 (3)

We get the convergent series 

R(A) = x!(Ak - A)-1 - -d1ln(A) for A<0	 (4) 
k=0	 -	dA'1 

and

dln(A) = (	j -
	 - A)	for A <0 and j € N	 (5) 

dA	 k=o 

The functional determinant D is introduced by D(A) = exp(-Z'(O,-),)), the sign' thereby deno-
tes the derivative with respect to the first variable. We use the Finite Part prescription as 
usual:

If (s)	 if s is not a pole 
FPf(s) = lim (f(s +s) - residue/s) ifs is a simple pole. c-+o 

There is an important relation between the Weierstrass product and the functional determinant: 

D(A) = exP{_Z'(0) -	 - c_J(( xJ)}A(x).	 (6) 
J =2	\ri 1/ 1 

One has 

d'1(-lnD(A)) - - dI1$l(_ln(A)) = R(A).
	 (7) 

dA' 1	 dA1 

The normalization conditions (3) are related to the normalization point A = 0:
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Xv1 v 

-In A(X) = if ... fR(I1)dL... d1dX. 
00	 0 

If we consider asymptotic expansions, it is useful to choose - instead of 0 as the lower inte-
gration point, and we have 

 -lnD(X) = ff ... fR()d... ddX.	 (9) 

We denote the functional determinant D(X) under a global shift Ak - Ak + a by Da()). Then we 
get D8(A) = D(A - a). The analogous transformation of i(X) is much more complicated. Further 
on, we get the asymptotic expansion

	

.L	 ((	 J 

lnD(X)	_Ncjkr(ik)(_A)ik + 21c-j in(-A) -	 for A --> -co.	(10) 
j'O	 r1 

3. The generalization of the Barnes G-ftinctlon 

The Barnes G-function G = G(z) is defined by the infinite product 

G(z +1) =	 + z)k_z*z2/2k) 
k=i 

with the Euler number '. It is an entire function of order 2. Its zeros are the negative integers 
-k with multiplicity k (k E N). The Barnes G-function satisfies the normalization condition 
G(1) = I and the functional equation G(z + 1) = r(z)G(z) with the gamma function F. The func-
tions D or A with respect to the sequence of integers k (k € N) with multiplicity k don't satisfy 
the mentioned normalization condition and functional equation. Thus we have to handle the 
problem to find useful normalization conditions for our spectral functions. We put G1 G and 

= I/F. The function G0 is an entire function of order one, its zeros being the negative inte-
gers -k and zero, each with multiplicity I, and it satisfies the normalization condition G0(l) =1. 

Now we will introduce a generalized Barnes G-function Gm (m € N) which satisfies the 
following conditions: 

(G) 3m is an entire function of order in with the zeros -k (k e N) with multiplicity ktm. 
(G) 2 Gm(l)1.	

m	(j)r(') 
(G), We have the functional equation G,(z ) = 1Jr=o(Gmr(Z)) 

We apply the described spectral formalism to the sequence of integers k with multiplicity ktm 
(we will call this sequence F). We get the partition function 

dm1 W t) =	4- = (- --) 

It is well known (cf. [1, 13)) that 

I	 ___ 
- 2 t	(2r	

Brt2r_l

(8) 

with the Bernoulli numbers Br (B1 = 1/6, B2 = 1/30, B3 = 1/42,B4 = 1/30, ... ). It follows that 
the sequence Fm is of order ti = m +1. We get
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/ d \ 
)
m I	= m'-1--- +	(_1)r-i-m(2F - 1 - m)! B t2_i_m k	ij	tm 2r r= r0 

with , (m + 1)12 for odd m and , = (m + 2)/2 for even m> 0. If we denote the coefficients 
of the asymptotic expansion (1) with respect to the sequence Fm by cm), we conclude 

I	(m)	= m!	m ()	- (_ 1 )r_lzn(2T - 1 - rn)!	for r € Z, r  -	 -	 2r	r 

It valids cam) = 0 if and only if c(' ) is not included above. So we have enough information 
about the asymptotic expansion (1). The zeta function Z, defined by (2) with respect to Fm is 
given by 

Zm(S)	kmk-s = ç(s - m). 

Thereby denotes the Riemann zeta function. In the first part of this paper we have mentio-
ned the analogies between the Selberg zeta function and the Riemann zeta function. It turns 
out that the Riemann zeta function also plays an important role for the description of those 
zeros of the Selberg zeta function which reflect topological properties of the related hyperbo-
lic space form V(which are only depending on p,n and x(V)). We immediately get the follo-
wing

Proposition 1: The regularized Fredhoim determinant A.. with respect to the sequence Fm 
is given by

. km	m 1 

=	i - )k-)	
exp((__7X1)km fI(	 )	 ( ii) 

k=i 

In order to describe the relation (6) between the regularized Fredholm determinant Am and 
the related functional determinant Dm we have to consider the relation 

-Z(0)	FPZm(J)J	
((	

)/)xi 

rn *i FP (j _ m) m 

	

- - ( m) -	 A-' _((-)/(m +l)))'m*1	 (12) 
j=1

r1 
- (&	

-)/(m + 1)) xtm 

Thereby we have used FPt(l) = y (Euler number). Notice further that (cf. [131) ç(0) = -1/2, 
ç(-2r) = 0, 0 - 2r) = (_1) tBr/2r (r E N). It is immediately clear that both functions Dm(), 
- 1) and llrTo(Drn_r 

F( 
are entire functions of order ti = m + I having the zeros A = k 

with multiplicities (k - I)m (k € N). Using (4) and (7) we get 

(d)m2lD(X 1) = (m + 1)!km(k - ), - 1 ) 1 12-	-.. 

(m +I)(k_I)m 
k=i	(k - 

16	Analysis. Bd. II. Heft 2 (1992)
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M	 cc

	

m-r	1 = (m + 1)!(-1y('!)k	
(k - r0	k1 

M	'm d 'r	 cc 
=	(-1)' r )x) (m

 

	

+ I - r)!	km (k - 
r0	 k1 

I -	d \m 2 
-	 ..(_1)t(1)lflDm_r(X) 

r=0 

for A < 0. Further on, an easy calculation shows that 

•	Id IndX)Dm(X -1) 0 = urn (.)(_l)r(11)1n Dm _r(X) for j 0,1,2.....m -1 

By using the normalization point A = -, it follows 

Proposition 2: The functional determinant D, with respect to the spectral sequence Fm 
satisfies the functional equation 

mF(m) 
Dm(X -1) = fF (Dm _r(A))	

r	 (13) 

The normalization point A = - co turns out to be essential to prove the functional equation 
for the generalized Barnes G-function. Indeed, we define 

Dm(X) = ex(	Pz" )")Gm(1 - A)	 (14) 

and specify the constants p7by the conditions (0) 2 and (0) 3 . Using A = 0 in (14), (G) 2 implies 
Dm(0) expp". Now we take into consideration that we get Dm(0) = exp(-ç(- m)) by (6),(11) 
and (12). It follows 

Pc" = -r(-m).	 (15) 

Using (13) and (14) we see that (0) 3 is satisfied if and only if 

	

p"((A _1) r - At) =	(_l)r(i!)(p,m_r)J).	 (16) 

Proposition 3: Supposing (15) the equations (16) have the unique solution p = -(')c( k -m). 

Proof: If we compare the coefficients of Ak in (16), we get a system of linear equations 
for p,m,...,pT with a triangle matrix and elements different from zero on its diagonal.Thus 
p1m p' are uniquely determined. Indeed, we get the equations 

(1 '' +j -	m	-	(_.fm'1 m-r ) (	r )Pk+r-i -	1) r )Pk-i 
r1	 r1

- for the coefficients of ),k,,k.1 (k = 1,2.....m). But these equations are identities if we use i- m k - 
'— k+r O M-1) 

m s'm h 

Proposition 4: The generalized Barnes C-function Gm defined by (14) can also be intro-
duced by the infinite product definition



A Generalization of the. Barnes G- Function	235 

Gm(Z +1) exP{_c(_m) -	(i:m)(j - ((.y +i)/(m +1))(_z)m1 +('/)c(j _m)(_z).1} 
j=i	J I( , z k" i
 exp((

m	
(_z)r)km)} 

k= i 

Proof: In order to get the infinite product definition of 0m' we have to consider equation 
(6) with respect to our situation. Using (11), (12), (14) and Proposition 3, we get the assertion I 

Theorem A is an immediate consequence of the results above. We remark that the Rie-
mann zeta function plays an important role for the normalization condition (0) 3 . Using (10) 
and (14), the calculated coefficients c (M) and Proposition 3, we get 

Proposition 5: The generalized Barnes G-function Gm has the following asymptotic beha-
viour:

(I) For odd m,

1( m	 (_1)r+ni	
B zm+12r )c(i -m)(-z) 

+ =(3)/2 2r(2r -1 - m) 
lflGm(l+Z)	J=O 

m •1 1 -_1_--(In  -	f1(z)''	+(_1)(m1)/2B 
m+	r1	 m+1 

(ii) For even m >0, 

M 

m	 (_1)r*m 
{	( j )c(i -m)(-z)J 

r m+1 2r(2r -1 - m) Br m 
lnGm(1+z)

n.1•1 
- 

(iii) Form = 0, 

In G,0 +z) ç(0) +	(i)r B	- 
2r(2r-1) r Z	lnz +(1 - lnz)z for  >0, z- co. 

Next we will give the Taylor series of lnG m(1 z) for 1z  < 1. By (5) we have 

() ln m( X)Io = - ( j +j1)!k--i+m = - ( m +j)!	k J	= -(m +j)!c(j+l) 

for  E N. On the other hand, the normalization point A = 0 in equation (8) implies lnm(A) = 
0(x2m) for A - 0. Applying (6),(12) and (14) we get 

Proposition 6: The generalized Barnes C-function 0m has the Taylor series 

c(j - m)	. ' I	m 
(-z) - ( fy + i1/(m +1))(z) m+1 lnGm(1+z) = -	 r1 1/ J=i

-	(j +1)
	Z)	+j 

J=i	
.1mlj 

for lzl <1 

16'
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Using the generalized Barnes G-function, we would be able to find a function having the 
numbers -k as zeros with multiplicity (N+k)P(-(N+k)2) and the value I at the point s =N. 
We will give details about the application to the situation remarked in the first part of this 
paper in a subsequent paper. 

REFERENCES 

[Ii FICHTENHOLZ, G. M.: Differential- und Integralrechnung, Vol. If. Berlin: Dt. Verlag 
Wiss. 1971. 

[2] FRIED, D.: Analytic Torsion and closed geodesics on hyperbolic manifolds. Invent. Math. 
84 (1986), 523 - 540. 

[3] FRIED, D.: Zeta functions of Ruelle and Selberg.Ann. Sci.Ecole Norm. Sup. 19 (1986), 491 
- 517. 

[4] GANGOLLI, R.: Asymptotic behaviour of spectra of compact quotients of certain spaces. 
Acta Math. 121 (1968), 151 - 192. 

[5] GANGOLLI, R.: Zeta function of Selberg's type for compact space forms of symmetric 
spaces of rank one. Illinois J. Math. 21 (1977), 1 41. 

[6] HEJI-LAL, D.A.: The Selberg Trace Formula for PSU2, R), Vol. I. Lect. Notes Math. 548 
(1976), 1 - 516. 

[7] HILLE, E.: Analytic Function Theory, Vol.1 and II. Blaisdell: Ginn Comp 1962 and 1963. 
[8] OLVER, F. W.: Asymptotics and Special Functions. New York: Academic Press 1974. 
[9] SARNAK, P.: Determinants of Laplacians. Stanford preprint 1986. 

[10] SCHUSTER, R.: The Selberg trace formula and a Poisson formula for the p-spectrum of 
compact hyperbolic space forms. Serdica, Buig. math. publ. 12 (1986), 288 - 299. 

[11] SCHUSTER, R.: Spectral estimates for compact hyperbolic space forms and the Selberg 
zeta function for p -spactra. In preparation. 

[12] SELBERG,A.: Harmonic analysis and discontinuous groups in weakly symmetric Rieman-
nian spaces with applications to Dirichlet series. J. Indian Math. Soc. 20 (1956), 47 - 87. 

[13] TITCHMARSH, E.C.: The Theory of the Riemann Zeta Function. Oxford: Univ. Press 1951. 
[14] VOROS, A.: Spectral functions, special functions and the Selberg zeta function. Comm. 

Math. Phys. 110 (1987), 439 - 465. 

Received 24.09.1990; in revised form 22.11.1991 

Dr. Reinhard Schuster 
Institut fur Mathematik der Universität Leipzig 
Augustusplatz 10 
D (Ost) - 7010 Leipzig


