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On the Boundedness and Periodicity of a Certain Differential Equation of Fifth Order 

A.M.A. ABOU-EL-ELA and A.I. SADEK 

There are given sufficient conditions for the ultimate boundedness of Solutions and for the 
existence of periodic solutions of a certain ordinary differential equation of fifth order. 
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1. Introduction and statement of results 

We consider the real non-linear non-autonomous ordinary differential equation of fifth order 

+f(Y.)x' + f(x) + f3(x) + f4() + f5(x) = (1.1) 

in which the functions f1 ,..., 1 and p depend at most on the arguments shown, are continuous 
for all values of their respective arguments and the derivatives f' and f exist and are conti-
nuous. The boundedness result obtained here generalizes that of Chukwu [41, where f() = a 
and f,(M) c for some constants a and c and reads as follows. 

Theorem 1: In addition of the basic assumptions on the functions li,.., I and p suppose 
the existence of arbitrary constants a 1 ,...,a5 and of sufficiently small positive constants 

s 5 such that the following conditions are satisfyed: 

	

(1) a 1 > 0, a 1 a2 - a3 > 0, (a 1 a2 - a3 )a3 - (a 1 a 4 - a5)a 1 > 0	
() 

8: (a4 a. -	a5 )(a1 a2 - a3 ) - (a(x4 - a5 )2 >0, a5 >0 

(a4a3 - a2a 5 )(a1 a2 - a3)
- (a 1 I'(y) - a 5) > 2ta2 for ally a 1 a4 - a5 

a4a3 a2 0( 5	y(a1a4-as) -	> 0 where 
t	 f4(y)/y for y*0 -	'' a 1 a4 a 5	a4(a1a2-a3)	a 1	 (y) for y0. 

(ii) t o :^ 11(w) - a 1 :5 t 1 for all w. 

(iii) 1(0) = 0 and 0 :r 1(w)/w- a2 :5 E2 for all w* 0. 

(iv) !(0)=0 and 0l 1(z)/z_a3 :5t 3 for all z*0. 

(v) f(0) = 0 and f4(y)/y a a4 for ally * 0, Ia4 - f'(y)I s t 4 for ally, 

14(y)	a580 
f(y) - y	a(a1a2 - a3) for ally * 0.
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(vi) 1(0)=O

0 :s a - 4'(x) :; E, for all x. 

(vii) Ip(t,x,y,z,w,u)I s < 00 for all (t,x,y,z,w,u), where A is some constant. 

Then there exists a constant D0 depending on 1 and ft ,..., Is only such that every solution x 
,x( t) of equation (1.1) satisfies 

x(t)I, Ix(t)I, Iii(t)I, Ix'(t)I, Ixkt)I S D
	

(1.3)

for all sufficiently large t. 

Theorem 2: 1!, in addition to the conditions of Theorem 1, the function p satisfies for some 
w € R the condition 

(viii) p(t +,x,y,z,w,u) = p(t,x,y,z,w,u) for all (t,x,y,z,w,u), 

then there exists at least one w-periodic solution x = x(t)of equation (1.1). 

Notation: In what follows we shall use the letter D for positive constants whose magnitudes 
depend on a s ,..., a5 , A and f1 ,..., I. No two D's are ever the same unless they are numbered, 
but all the D's: D1 ,D2 ,... with suffixes attached retain their identities throughout the sequel. 

2. The function V(x,y,z,w,u) 

In what follows it will be convenient to use the equivalent differential system 

x = y, = z, ± = w, W = u	
(2.1)

U -f(w)u -f2(w) - 4z) - I(y) - f(x) +p(t,x,y,z,w,u) 

which is obtained from (1.1) by setting x = y, 3i = z, ,' = w and x = u. The actual proof of 
Theorem I will rest mainly on certain properties of a piecewise continuously differentiable 
function Vrr V(x,y,z,w,u) defined by V t' +t, where 

2a4(;tx2-a3) 
2V(x,y,z,w,u) = u 2 2a1 uw +	 uz +26yu +2f/(w)d a1a4-a5 

+ a 4 (a 1 a2 - a5)) W2 + 2 {a3 a
1 1x 4 (a 1 a2 - a5) 

-Wz a 1 a4 - as J	 aa4 - as 
z 

+ 2a8wy +2wl(y) +2w1(x) +2;fI(t)dc	 (2.2) 
0 

a 1 a4 - as	a4 -8 Z2 + 28a 2yz +2azf) 

- 2a5zy +2aiz(x)+2a4	2a3) 
a1a4-a5 

+ (8a 3 - a5a5)y2 + 2a4(a1a2 a3) yf(x) + 2f)d,
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with 8 = E + a 5(x 1 a 2 - a3 )/(a 1 a4 - a 5 ), and 

V2(x,u) fxsgnu 
if ui aixi 

tusgnx ifiui:5Ixi
	 (2.3) 

The first property of Vis stated in the following 

Lemma 1: Subject to the assumptions (i) - (vi) of Theorem 1, there is a constant D5 such 

that

V(x,y, z, w, u) 2t - D5 for all(x,y, z, w, u) and V(x,y, z, w, u) -	as x 2 k...	--> Co . (2.4) 

Proof: From (2.3) we obtain i!4(x, u)i :5 lul for all x and u. It follows that 

V2(x, u) 2: - lul for all x and u. 

Now, V here is the same as the function Vdefined in [2]. The estimate for Vthere gives 

2V5(x,y,z,w,u) '^2sff5()d+D1y2+D2z2+D3w2+D4u2. 

From these estimates for V1 and V2 we get the estimate for V 

2V(x,y,z, w, u) a2Ef)d+Djy2+D2z2+D3w2+D4u2_2iul 

X 
= 2Ef4()d + D1 y 2 + D2 z 2 + D3 w 2 + D4(iui - D.-1)2 - D

4 
0 

By using (vi) we deduce that the integral on the right-hand side here is non-negative and tends 
to infinity when Ix  do so. It is evident that (2.4) is verified, where D. = D411 

The next property of the function Vis connected with its total time derivative and is con-
tained in the following 

Lemma 2: Let (x,y, z, w, u) be any solution of the differential system (2.1) and the function 
v = v(t)be defined by v(t) V(x(t),y(t),z(t),w(t),u(t)). Then the limit v(t) limsuph.3.+o 
v(t + h) - v(t)h exists and there is a constant D6 such that 

v(t) :^ -1 whenever x(t) +...+ u 2(t) 2! D6 .	 (2.5) 

Proof: In accordance with the representation V V1 + V2 we have an representation v = v1 + v2. 
The existence of V'is quite immediate, since v1 has continuous first partial derivatives and v2 
is easily shown to be locally Lipschitzian in x and u so that the composite function v = v1 v2 is 
at least locally Lipschitzian in x,y,z,w and u. An easy calculation from (2.1) and (2.2) shows 
that, for y, z, w * 0, we have 

= _U 2
 (4(w) - a 1) - w2[aj	- {a3 + a

1 a4 (a 1 a 2 - 0(3) - 
W a1a4 - as 

-a3)	
- (6a2 +a1f4'(y) 

a 1 a 4 -a 5	z
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2{sZ2_ 
a4(csia2_a3)f )} - 

cz 1 uw(1(w) -a 1) -Y
	y	a1a4a 

	

I f3(z)	a4xa2a3) - uz — — a z - 
•i - 

a1a4 -	
uz(1(w) -a1) 

- a 4 (X 1 0'2 a3)	If(w) 
Wz a 1 a4 - a5	 - a4 - 8yu(4(w) -a1) 

-wz(a4 - f(y)) -yw(a	 1f3(z)5 - t(x)) - 8yz	- a3} 

8ywt_
I 1.(W) 

_ a2} -a1yz(a5-ç(x)) 

0(4(a1a2-a3) 
- a5	+ 

ala4

As is shown in [2] we have 

- f(su 2 +EW 2 + E a2 z 2 +a4y 2)

	

	+a1w + 
a 4 (a 1 a 2 a3) 

+ 8Y}P(t,XY,Z,w,U).a1 a4 - a5 

The case (y,z,w) = 0 is trivially dealth with. From (vii) we find 

V1^ _f(Eou2+Ew2+Ea2z2+Ea4y2)+Di(Iui+iwi+izI+iyl), 

where D7 = A max {l,a 1 ,a4 (a 1 a2 -a3 )/(a 1 a4 - a5 ),8}. A straightforward calculation from (2.1) 
and (2.3) gives by (ii) - (v) and (vii) that 

	

.._ fysgnu ifiui^lxl 
V2 

l-fs(x)sgnx-(uf(w+f2(w+f3(z) +I(y) -p(t,x,y,z,w,u))sgnx	if J ul ^ lxi 

fly1 if Jul 2t lxi 

l-i(x)sgnx +D8(iul + iwi+izl+iyi+1) if Jul S lxi, 

where D5 max {a1 + ..... a4 +	From these estimates for f j and v it can be shown that 
v +V; necessarily satisfies the estimate 

- (s0u2 w2 sa2 z 2 +ta4y2) + D9(iul +iwl +lzi + iyl),	 if Jul e lxi or	 (2.6) 
_..(Eou2+Ew2+Eaaz2+Ea4y2)+Do(iuI+Iwi+izI+Iyi+l)f(x)sgnx if Jul !r lxi, 

where D9 = 2D7 and D10 D7 +D8 . Thus, it will be clear from either one of these two estimates 
that

-1, provided that y' +...+ u 2 is large enough, say y2 +...+ u 2 2! D 1 . .	(2.7) 

If, however, y 2 + ...+ u 2 :5 D11 and lxi a D11 , then we have lxi a I ui. Hence 'satisfies the 
second estimate of (2.6). Since y 2 +...+ u 2 15 D121 , it is clear here that v:9 -1(x)sgnx +D12 15 
-1, provided that Ix  a D11 is sufficiently large, say Ix  ^ D13 (^ D11 ), by (vi). Therefore v ' !5 -I 
ify 2 +...+ u 2 -s D1 but lxi a D13 .This result combined with (2.7) clearly shows that v:5 -1 if 
X2 

+ y 2 +...+ u 2 a D +D 2 = D6 , which verifies (2.5) 1 11
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Proof of Theorem 1: The usual Yoshizawa-type argument, a simple extension of Theorem 
1 . in [3], applied to (2.4) and (2.5) would then show that, for any solution (x,y,z,w,u) of the 
differential system (2.1), we have Ix(t)l, Iy(t)I, Iz(t)I, 1w(t)j, u(t)I :5 D for all sufficiently large 
t, which is equivalent to (1.3)1 

3. Proof of the periodicity theorem 

Our method of proof here will be based on an adaptation of a procedure which has been used 
(see, for example, [6,1]) for some third and fourth order differential equations. 

Consider the parameter ti-dependent (0 :5 V :5 1) ordinary differential equation of fifth order 

ax +ax) = x(p(t,x, x.... . x') -ic)x'- f(). - f(x)-4(x)). (3.1) 

This equation reduces to the linear one + ;x+ a 2 x + a 3 k +a4X + a5x = 0, when i' = 0. 
And (1.2) are the Routh-Hurwitz conditions for the asymptotic stability in the large of its tri-
vial solution. Replace (3.1) by the equivalent system 

X-Y,y=Z,Z=W,W-U,	

(3.2) 

= -(1 - 0(a1 u + a 2 w + a3 z * a 4y + a 5 x) +	- u41 -4 -4 - - 

which is obtained from (3.1) by setting x = y, x = z, x = w and	= u. It is more convenient
now to consider the system (3.2) in the vector form 

X = AX+1iE(t,X)
	

(3.3)

where

xl	ro 1 0 0 0	 r	 0 

	

IO 0	1	0 0	 I 0
X=[zy I,A = 1 o 0 o	i 0 , E(t,X)= I	 o	 .(3.4) 

wI	10	0	0	0	1	 I	 0 
U]	[a5 a4 a3 -a2 -a1	 [p-(4-;)u-(4-cx2w)-...-(f-a5x) 

The relationship between the equation (3.1) and the original equation (1.1) is that (3.1) reduces 
to (1.1) for i = I. Thus, since (3.1) is equivalent to (3.3), it is enough, in order to prove Theorem 
2, to show that (3.3) has at least one periodic solution for each value of i in the range 0 :9 LL :9 1. 

Observe that since f,_ f, and p are assumed to be continuous and p to be periodic then 
E(t,X) is continuous in Xand t and is u-periodic in t. Furthermore, there exist positive con-
stants c1 and c2 such that 

e(t_t)II c1e2(1_1) for all t 2! t, (3.5) 

since the characteristic roots of A have negative real parts from (1.2). The norm here denotes 
the sum of the absolute values of the entries of the matrix. 

Here we denote by S the normed linear space of all continuous and periodic 5-vector 
functions X= (x,y,z,w,u) which are of period w, with the norm IIXIIs of Xdefined by 

IXIIs = sup0 jJx(0I + Iy( r )I + 1z(t)1 + Iw(t)I + Iu(t)I}.	 (3.6)

We are now in a position to define the operator T. It is given for any X€ S by 

TX 
= ft__e(t_t)E(t,X(t))dt, -
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where A and Eare given by (3.4). The infinite integral on the right-hand side here exists and 
is differentiable in t, since e(tt)satisfies (3.5) and since X(t)e S-*E(t,X)e S. Next, since 
the integral may be reset in the form f. eE(t - t,X(t - t))dt, it is also clear that TX is peri-
odic for arbitrary X  S. The continuity of TX for arbitrary X e S follows readily, from the dif-
ferentiability of TX, so. that Tmaps S into itself. The relationship between the operator Tand 
our existence problem is the subject of the next 

Lemma 3: Any X  S satisfying the functional equation X - i TX = 0 (0 !^ Vs 1) is necessa-
rily a solution of the vector equation (3.3). 

Proof: If X  5, then dTX/dt exists. From the definition of T, dTX/dt = ATX+ E(t,X(t)) 
follows. If further X- tiTX= 0, then X = 1idTX/dt iATX + iE(t,X(t)) AX+iiE(t,X(t))I 

In view of the above lemma the existence of a a-periodic solution X X(t) of (3.3) will 
therefore be assured, once it can be shown that the functional equation X - TX = 0 has at 
least one solution X  Sfor each value (1 in the range [0, 11. 

The Schäffer's theorem [5] guarantees the existence of an X  S satisfying X - iiTX = 0 
for each V e [0,1] provided that 

(i) T: S - Sis completely continuous and 
(ii) IIXIIs :5 D for every Xe S satisfying X - 1iTX = 0 

where D is a constant independent of i. The proof of (i) proceeds as in [1,61. Indeed, let {X1} 
C S be an infinite sequence satisfying OX1 1 1 S s D for all i. It is a simple matter to verify that 
the sequences {TX1 } and {dTX,/dt} are uniformly bounded and this implies the equi-continuity 
of the sequence {TX1 }. Thus by the Arzela-Ascoli theorem, this sequence is compact, and so T 
is completely continuous. 

It is difficult to prove (ii) directly because of the nature of the conditions on the functions 
l' and p. We observe that, since every X  S satisfying X - IITX = 0 is necessarily a so-

lution of (3.3) and since (3.3) is equivalent to (3.2) it suffices to show that every solution (x, 
y, z, w, u) of (3.2) ultimately satisfies 

1x(t)1 +ty(t)I +Iz(t)I +Iw(t)I +Iu(t)I :5 D.	 (3.7) 

For if this condition is fulfilled, then (ii) would follow from (3.6) and the periodicity of S. Now 
to prove (3.7) it suffices to show that there exits a constant D independent of i, 0 ^ tL s 1, such 
that every solution (x,y,z,w,u) of (3.2) ultimately satisfies the condition 

W01, Iy(tN, z(t)I, kv(t)I, Iu(t)I 15 D.	 (3.8) 

Rewrite (3.2) as follows: 

x = y, y = z, z = w, w u, is P- uf -I -F - F -F 
where 

F(w) = a 1(l - ii) +1jf(yj) ,	F(w) =	(1 -ii)w+t11(w) 

F3(z) = c 3(1 -4z +1f3(z), F(y) = c(1 -i)y +iI(y) 
F(x) sx 5(1 -ii)x +if(x) , P(t,x,y,z,w,u)=.ep(t,x,y,z,w,u). 

The procedure for this is by the Yoshizawa technique, using the same function V defined by 
(2.2), (2.3) but with F,,..., F, and P instead of f1 ,.., f and p, respectively. To prove (3.8) we
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only need to verify that if the functions f1 ,..., 1 and p satisfy hypotheses (1) - (vii) of Theorem 
1, so also do the functions F1 ,..., F5 and P: 

- (a4a3 - a 2a5 )(a 5 a 2 - a3) 
-	a1a4 - a	- ,1'(Y) - a5) 

(a4a3 - a 2a 5 )(a 1 a 2 - a3 )	J(a4a3 - a	 -2sa2 (1 2a5 )(a 1 a2 - a3)	} -- i)(a 1 a4 - a5) 

	

a 1 a 4 - a 5	- t t	aa - a  

2t 2tix 2(1 - ii ) + 21Ea2 = 2sa2 , by W. 

a 4a	y a 3 a2a 5	14a5)	s	 1F:(y)/y fory*0 
-	 = 

= a 1 a4 - a	- a 4 (a 1 a 2 - a3) -	, where y (y) a 1	 tc(0) for  
= 0Then 

a 4a 3 - a2a 5	y(a1a4 - a 5 )	(1 -ti)(a 1 a 4 - a 5 )	t 
a 1 a4 - a5	- a4(a 1 a 2 - a 3) -	a1a2 - a3	- a1 

^ (1	
)Ja 4a3 - a 2a 5 - y(a 1 a4 - a5)	1 ^ 0, by (1). 

	

a 1 a4 - a 5	a4(a1a2 - a3) - —J  

(ii)' F1(w) - a 1 ti(f(w) - a 1). Then to 15 F(w) - a 1 5 s 1 for all w. 

F( w)	"2	 F(w) 
('ii) F2(0) = 0, -b-- - a2 

= i{--- 
_as} therefore 0 :5- a2 :5 2 for all w* 0. 

F3(z) 1f3(z) 1	 F(z) 

	

(iv) F(0) 0,---- - a3 =	- a 31, therefore 0 :5 -i--- - a3 :5 t for all z *0. 

(v)' F(0) = f.—(Y—) = a 4 (1 - )+	a4 for ally *0.

asso 
F'(y) - !ic2. 

=	

- f4(Y)} S
a(a 1 a2 - a3) for ally * 0. 

a4 - F4 (y) = 1(a 4 - f(y)), therefore Ia 4 - F'(y)I :5 s for ally. 

(vi)' F(0) = 0, a 5 - F(x) [i(a, - f(x)), therefore 0 s a 5 - F(x):s t for all x. By conside-
ring the cases 0 s t 1/2 and 1/2 :5 i 15 I separately, it is clear that F5(x)sgnx ;- 
xmin{I(x)sgnx,a 5 lxI}, so that F(x)sgnx >0 for all  * 0. Now 

= 1/2 a5(1 - i)x 2 + J'f5() d, therefore 5 ,(& )d -	as lxi '	. 

(vii)' 1P(t,x,y,z,w,u)l r i p( t, x ,y, z , w, u)l <	< °. 

Now (3.8) is verified which completes the proof I 
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Book review 

H. BAUM, TH. FRIEDRICH, R. GRUNEWALD and I. KATH: Twistors and Killing Spi-
nors on Riemannian Manifolds (Teubner-Texte zur Mathematik: Vol. 124). Leipzig - 
Stuttgart: B. G. Teubnet Vetlagsges. 1991, 180 pp. 

A spin manifold, that is a Riemannian manifold (M'g) carrying a global spin structure, 
admits two natural differential operators: the well - known Dirac operator D and the twi-
stor operator fl. By definition, Dq' is the projection of the spinor derivative Vp to the 
kernel of the Clifford multiplication (X,p) - Xp by a vector field X. Among the twistor 
spinors, i.e. the solutions of Dp = 0, the Killing spinors are particularly interesting. They 
obey Vp = 13Xq' with some complex number i, called the Killing number to W. Physical 
motivations come from twistor theory and supergravity; a mathematical motivation 
comes from the eigenvalue problem of the Dirac operator D on a compact manifold (M', g). 

The present book develops the theory of twistor spinors and Killing spinors in a sy-
stematic and self-consistent way. It brings together the various results which the group 
of authors from the Humboldt University (cf. the 28 citations of their papers in the book) 
and other authors achieved over years. It serves both as an introduction into the field and 
as a resource book. 

A manifold which admits a Killing spinor p 0 is Einstein with constant scalar cur-
vature R = 4n(n - 1)112 (Theorem 8 of Subsection 1.5); p is called real, imaginary or paral-
lel if 11 is real, imaginary or zero, respectively. The methods differ in the three cases: The 
manifold is compact or non compact if p is real or imaginary, respectively (Theorem 9 of 
Subsection 1.5). The methods also depend of the parity of the dimension n: For even n, 
certain almost complex structures give rise to Killing spinors (Chapters 5 - 6), while for 
odd n, Einstein-Sasaki structures generate Killing spinors (Chapter 4). Thus families of 
manifolds of any dimension are constructed. Moreover, low dimensions n S. 7 are treated 
very detailed. A new characterization of the manifolds of constant curvature and other 
results deserve attention. 

An ultimate goal is the full classification of Killing spinors. This is reached in the 
present book for the imaginary case: A complete manifold which admits an imaginary Kil-
ling spinor p * 0 is isometric to some warped product of a special spin manifold and the 
real line. The real case is solved in a paper which appeared after the reviewed book (Ch. 
Bar: Real Killing spinors and holonomy. Preprint. Univ. Bonn 1991). 

Greifswald	 R. Schimniing


